A 32 nm, 3.1 billion transistor, 12 wide issue Itanium® Processor for Mission-Critical Servers

Reid Riedlinger¹, Rohit Bhatia¹, Larry Biro², Bill Bowhill², Eric Fetzer¹, Paul Gronowski², Tom Grutkowski¹
¹Intel® Corporation, Fort Collins, CO
²Intel® Corporation, Hudson, MA
Agenda

• Poulson Overview
• Core enhancements
• System interface overview
• Server challenges
 – Minimum voltage operation
 – Frequency improvements
 – Power reductions
 – Core asymmetries
• RAS Improvements
Processor Highlights

- New chip micro-architecture
 - Enhanced Power measurement system
 - Socket compatible with Tukwila
- 8 Hyper-Threaded 64 bit cores
 - Significant architectural enhancements
- 32 MB Last Level Cache
 - Intel® Cache Safe Technology
 - 54MB on-board SRAM and Register File Storage
- Improved Memory and System I/O
 - 33% bandwidth improvement
- On die Ring interconnect
- Improved RAS with twice the cores
Chip Statistics

- 32nm bulk CMOS, 9 layer Cu interconnect
- 8 cores with 3.1 billion transistors
 - 29.9 mm x 18.2 mm = 544 mm² die size
 - 170 Watt max TDP
- 6 voltage and 4 frequency domains

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Devices (million)</th>
<th>Area (mm²)</th>
<th>Voltage (Volts)</th>
<th>Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core logic</td>
<td>712</td>
<td>158</td>
<td>0.85 -- 1.2</td>
<td>95</td>
</tr>
<tr>
<td>LLC cache</td>
<td>2,173</td>
<td>163</td>
<td>0.90 -- 1.1</td>
<td>5</td>
</tr>
<tr>
<td>SysInt logic</td>
<td>224</td>
<td>137</td>
<td>0.90 -- 1.1</td>
<td>50</td>
</tr>
<tr>
<td>IO logic</td>
<td>44</td>
<td>68</td>
<td>1.05 -- 1.1</td>
<td>20</td>
</tr>
</tbody>
</table>
Core Design

- Micro-architecture and floor plan optimized for future process generations
 - First comprehensive redesign of IPF core since Itanium 2 design (McKinley)
 - RC minimization of critical core signals
- Design methodology that enables process scaling
 - Emphasis on power reduction, higher frequency, low voltage operation, and high yield
 - Elimination of dynamic logic outside of RF topologies
- Decoupling buffer between Instruction fetch and execution
 - Holds 96 instructions – replicated per thread
- Replay versus Stall design
 - Significant power reduction across all work loads
 - Instruction buffer acts as replay point for backend execution
 - Commit, exception and stall timing made easier
Poulson Core Architecture

Key Architectural Advances

- New Data and Instruction Pipelines
- New Floating Point Pipeline
- New Instruction Buffer
- Double max execution width
 - From 6 to 12 wide

Derived Benefits

- Increased instruction throughput
- Improved performance/watt
- Improved RAS coverage
- Core optimized for future technologies

Increased performance, power reduction and reliability
Core architecture enables futures IPF processor designs
Main Core Pipeline

Front End:
- instruction fetch
- branch prediction
- register renaming
- 2 bundles per cycle
- sort into queues

Back End:
- read 4 bundles per cycle
- execute instructions
- access FLD, or send to MLD
- replay back to queues
- instruction in queue until retirement

IBD Queue per thread

M queue
I queue
A queue
F queue
B queue
Ctl queue
Instruction Buffer Logic - 12 Wide issue

Renamed Bundle Pair Distribution
- Memory Queue: 4W/2R, 32 entries
- Integer Queue: 4W/2R, 32 entries
- ALU Queue: 4W/2R, 32 entries
- FPU Queue: 2W/2R, 32 entries

Execution Engines
- Instruction based, not bundle based
- Program order within each queue
- No order between queues
- Control queue keeps order

FE BrInfo
- Branch Queue: 2W/1R, 16 entries
- Raw Bundles
 - Bundle Queue: 2W/1R, 32 entries
 - Ctl Queue: 2W/4R, 32 entries

Execution Engines
- NOPs only in Control Queue
- Squashing contributed to power reduction
- Separate read pointer per queue

Max 12 wide issue including NOPs
System Interface Design

- Enables socket compatibility with Tukwila design
- Ring Based system interface
 - Provides high bandwidth low latency access to cache
- Two home agents
 - Directory based cache coherence protocol
- 10 port crossbar router for IO and memory traffic
- Improved RAS capabilities
- System management bus interfaces
- Power Control Unit
- Clock delivery and configuration unit
System Interconnect

• All interconnects are double pumped at a maximum transfer rate of 6.4 GT/s. (4.8 GT/s on TKW)
• Poulson implements four full-width and two half-width QuickPath™ Interconnects (QPI)
• Four full-duplex Scalable Memory Interconnects (SMI) for processor-to-memory traffic
• Dual integrated memory controllers with Double Device Data Correction
• Enhanced DIMM clock gating to reduce system power consumption
• The IO circuit area consumes 66 mm² and contains 44M transistors
System Interface Overview

700 GB/s bandwidth provided by Ring based interconnect
System Interface Overview

45 GB/s bandwidth provided by Scalable Memory interconnect
System Interface Overview

128 GB/s bandwidth provided by QuickPath™ interconnect
System Interface Overview

700 GB/s bandwidth provided by Ring based interconnect
SRAM Cache Summary

<table>
<thead>
<tr>
<th>Structure</th>
<th>Logical Size (MB)</th>
<th>Local Bit (row)</th>
<th>Access</th>
<th>Redundancy</th>
<th>ECC Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Level Cache</td>
<td>32</td>
<td>256</td>
<td>Cycle</td>
<td>Column/Row/Way</td>
<td>DECTED</td>
</tr>
<tr>
<td>Last Level Tag/LRU</td>
<td>3.6</td>
<td>64</td>
<td>Phase</td>
<td>Column</td>
<td>SECDED</td>
</tr>
<tr>
<td>Directory</td>
<td>2.2</td>
<td>128</td>
<td>Cycle</td>
<td>Column/Row/Way</td>
<td>SECDED</td>
</tr>
<tr>
<td>Mid Level Data</td>
<td>2.0</td>
<td>64</td>
<td>Phase</td>
<td>Column/Row</td>
<td>SECDED</td>
</tr>
<tr>
<td>Mid Level Instruction</td>
<td>4.0</td>
<td>256</td>
<td>Cycle</td>
<td>Column/Row</td>
<td>SECDED</td>
</tr>
<tr>
<td>Mid Level Inst Tags</td>
<td>0.165</td>
<td>64</td>
<td>Phase</td>
<td>Row</td>
<td>SECDED</td>
</tr>
</tbody>
</table>

All SRAM arrays protected by Intel’s Cache Safe Technology
Cache Overview

Intel’s 32 nm process technology enables the integration of 50 MB of on die SRAM

SRAM bit cell

Tukwila SRAM bit cell

65 nm, 0.570 um²

Poulson SRAM bit cell

32 nm, 0.171 um²
Operation at minimum Voltage

- 32nm process presented challenges
 - increased fet variation
 - increased number of fets
 - Higher core count
 - More cache
- Core implemented a fully gated Register File (RF) bit cell
 - Improved write performance at Vccmin (contention free)
 - Lower power design
 - Word line power less than bit lines
 - Same size as other RF topologies
Clock Manipulation Circuitry

Duty Cycle Modification

Long CK phase

Long NCK phase

Edge Manipulation

Early CK

Late CK

• Clock tuning enables 400 MHz Improvement
• Duty cycle correction / Independent edge control
Power reductions

- **Methods**
 - Removal of dynamic logic
 - Stall -> Replay architecture
 - Aggressive clock gating
 - FET width reduction via algorithmic tools

- **Focus on power reduction to meet socket compatibility demands**
 - (15 Watt socket power reduction)

- **Core leakage and Cdyn reduction**
 - Low Leakage insertion 82% vs. 70% in Tukwila
 - Idle / TDP power reduction vs. Tukwila

Power distribution

- Core, 55%
- uncore, 32%
- IO, 10%
- Analog, 2%

- **Core Power Scaling**

Significant reductions in Leakage, Idle, and TDP power translate to improved Perf
• Tukwila introduced instruction level power prediction
• Data activity represents up to 35% of dynamic power
Poulson introduces data level power prediction
Digital Power measurement now within 2% of measured values in 50 nanoseconds
Core Asymmetries

- Poulson has 10 thermal diodes
- Located in hot and cold spots on the design
- Active system to respond to thermal changes

L_{eff} varies across the die
- Slow core limits operating frequency
- Fast cores are higher power
- Effects are stepper and mask dependent
Processor Power Planes

Power is optimized across the 6 voltage domains
Core Pair Optimization

Speed and Power @ Uniform Voltage

Speed and Power can be optimized for each Voltage domain for improved performance.
Core Pair Optimization

Speed and Power @ Optimized Voltage

- **Cores 01** are slower and lower power
 - Increase voltage and power to improve frequency
- **Cores 45** are faster and higher power
 - Decrease voltage and frequency to recover power
Core Pair Optimization

Speed and Power @ Optimized Voltage

- Cores 23 are slower and lower power
 - Increase voltage and power to improve frequency
- Cores 67 are fast and low power
 - Decrease voltage and frequency to recover power
Independent supply optimization improves frequency up to 5% with no impact to power!
Poulson RAS enhancements

- Last Level Cache now utilizes inline DECTED and Intel cache safe technology
- Core Cache designs now have inline SECDED protection
- Integer and Floating Point Register Files have SECDED
- All other Register File arrays have error protection
 - Hardware/Software mechanisms that enable parity errors to be corrected
 - On Tukwila this would have resulted in Design Uncorrectable Errors
- End to End protection on many internal buses
- Residual error protection on FPU Adders and Multiplier
- PSN with 2X the cores improves RAS capabilities of IPF

Poulson enables even higher levels of Reliability
Summary

• Poulson design builds on Itanium’s strengths:
 – High performance cores
 – Industry leading cache design and density
 – High levels of integration enabling mission critical RAS capability.

• Adds new features to deliver increased performance
 – 2X the number of cores
 – Power reductions translate to performance
 – High bandwidth low latency system interface

• Demonstrates innovative engineering work
 – First reported 3.1 billion transistor microprocessor
 – Deterministic adaptive power-frequency management
 – Core micro architecture optimized for 32nm process and beyond

Poulson builds a foundation for future Itanium designs