Equalization for High-Speed Serdes:

System-level Comparison of Analog and Digital Techniques

Vivek Telang Broadcom Corporation

August 10, 2012

- □ High-Speed Serdes Channels
- Overview of Equalization Techniques
- Performance & Cost Comparisons
- **Future Directions**

Outline

□ High-Speed Serdes Channels

- Overview of Equalization Techniques
- Performance & Cost Comparisons
- □ Future Directions

Serdes Channel Examples

- Copper Backplane
- □ Twinax Copper Cable
- □ Twisted Pair Copper Cable
- MultiMode Fiber/Single Mode Fiber
- PCB Trace

Serdes Channel Examples

□ Twisted Pair Copper Cable

MultiMode Fiber/Single Mode Fiber

PCB Trace

Backplane Enclosure

Midplane

Backplane Channel Overview

□ 40in trace end-to-end + 2-3 connectors

- Bandwidth Limited Channels
 - Channel is reasonably well behaved
 - No sharp nulls or peaks
- □ Key challenge: High Signaling Rate (~25 GBd)
- □ BER Target is 10⁻¹² 10⁻¹⁵

Channel Types

"Legacy" backplanes using older PCB material, e.g., FR4, Nelco4000-13

Next Generation" backplanes newer PCB material, e.g., Megtron-6 and ISOLA-680

Channel Impairments

- □ Attenuation (resistive loss)
- InterSymbol Interference (ISI) caused by bandwidth limitation
- Reflections (Return Loss) caused by impedance discontinuities
- Crosstalk caused by coupling between traces and in connector
 - Near End CrossTalk (NEXT)
 - Far End CrossTalk (FEXT)
- □ Jitter (Tx and Rx)
- □ Thermal Noise

Backplane Example

- 40in Total Length
 - Footprint traces add 2.8in additional length
- □ 30 in Backplane
- 2 Daughter Cards, 5 in trace each
- 2 connectors STRADA Whisper*

25Gbit/s data rate!

*TE Connectivity Trademark

Insertion Loss of 40in Backplane

Return Loss of 40in Backplane

Crosstalk – 8 NEXTs, 8 FEXTs

End-to-End Channel

Channel Impulse Response

Outline

□ High-Speed Serdes Channels

Overview of Equalization Techniques

Performance & Cost Comparisons

□ Future Directions

Equalizer Architecture Options

Many different ways to equalize the channel

Tradeoff between power/area and performance

Equalization Overview

				Pros	Cons
		Cost	Transmit Pre-emphasis	 Low complexity 	Non-adaptiveAmplifies crosstalk
	mance		Linear Equalizer	 Adaptive 	 Noise enhancement
	Perfo		DFE	 No noise enhancement 	ImplementationDifficultyError propagation
			MLSE	• Optimal Performance	 Implementation Cost

Equalizer Architecture Options

Many different ways exist to equalize the channel

Transmitter Pre-Emphasis

Pre-distorts the Tx signal to compensate for the channel

- Simple implementation, but fixed behavior
- Implemented as de-emphasis, low-freq signal is reduced
- Equalization in Tx is lower complexity than in Rx
- 2 or 3-tap FIR Frequency Response of Tx Pre-Emphasis Filter 2 Magnitude (in dB) [-0.125 0.575 -0.3 -8 -0.125 0.875 -10 -12 -14 -16 -18 0.5 1.5 2 2.5 3 5 4 5 C_1 Co C₋₁ Frequency (in GHz)

Equalization for High-Speed Serdes

Optimized Tx Pre-Emphasis Filter

Effect of Tx Pre-Emphasis

Equalizer Architecture Options

- Many different ways exist to equalize the channel
 - Tradeoff between power/area and performance

Analog Equalizer Options

- Continuous Time Linear Equalizer (CTLE) is typically implemented as a "Peaking" Filter
- An analog linear equalizer can also be built as an FIR, using continuous-time tapped delay lines, with T-spaced, or T/2 spaced taps
- Analog Decision Feedback Equalizer (DFE)

Peaking Filter + DFE Block Diagram

Analog Peaking Filter

- Pole-Zero filter that provides peaking, in order to "invert" the channel
- Typically one low frequency zero followed by two or more poles
- Relative location of zero and first pole determine frequency and magnitude of peaking
- Adjustable peaking levels, e.g., 16 settings
 - LMS-like algorithm can be used to adapt

Peaking Filter Freq Response

Decision Feedback Equalizer

Cancels post-cursor ISI

- Equalization without noise enhancement
- Implementation is challenging at high speeds
- Error propagation can be an issue
- Coefficients are adapted using LMS

Analog DFE Challenges

- □ Closing the feedback loop with 1 UI (~40ps)
 - Binary symbols (+/-1) simplify multiply to add/subtract
- □ Feedback is susceptible to PVT variation
- As the number of taps increases, the capacitive loading on the summing node increases, which leads to reduced BW
- Implementation can be simplified by "unrolling" the DFE, or using tentative decisions
 - Costs additional area and power for parallel calculations

Unrolled DFE : 1-tap Example

Conventional equation is $y(n) = x(n) - a \hat{y}(n)$

- Instead of subtracting the coefficient
 - Move the slicer level to include the compensation
 - Slice for each possible level, since previous value unknown
- □ Offset slicer levels by +/- a
 - Previous symbol selects correct value

2 slicers for L taps

Analog Equalizer for 40in Backplane

Peaking Filter

- Peaking location and boost are adaptive
- Peaking optimized to 12dB boost @ ~9GHz

DFE

- 10-taps adaptively optimized to cancel postcursor
- Taps can be constrained to limit error propagation

Pulse Response – At Rx Termination

Optimized Peaking Filter

Pulse Response – After Peaking Filter

Optimized DFE Filter

Pulse Response – After DFE

Slicer Eye Diagram

Equalizer Architecture Options

- Many different ways exist to equalize the channel
 - Tradeoff between power/area and performance

Digital Equalizer Options

Most commonly used architecture is FFE + DFE

- Non-linear channels can benefit from MLSE equalizers
 - Performance comes at a steep area/power penalty
- Essential building block is Analog-Digital Converter
 - Very high sampling rate, and moderate resolution
 - 25Gsps ADC with ~5 ENOB

Digital Equalizer Architecture

Digital Equalizer Design Challenges

- Entire data path is high-speed and high resolution
- Parallelized data paths allow efficient CMOS implementation
 - Cost of parallelization is area and latency
- □ FFE can be pipelined
 - Cost of pipelining is area and latency
- □ DFE is particularly challenging, cannot be pipelined
 - "Unrolled" architecture is the only option

Feed-Forward Equalizer

- Multi-tap FIR filter, typically spaced one UI apart (T-spaced)
- Goal is to whiten the noise and equalizer precursor ISI
- Coefficients are typically adapted, using Slicererror based LMS

Equalizer Adaptation

- Channel is not known a priori, and can vary significantly
 - Short backplane trace, long backplane trace
- Equalizer needs to "learn" the channel using "blind" adaptation
- Adaptation techniques are based on the "gradient search" or LMS algorithm
- Requires spectrally rich, scrambled data for stability

Digital Equalizer for 40in Backplane

□ ADC

- ENOB = 4.5
- Sampling rate = 25 Gsps

🗆 FFE

- 10 taps adaptively optimized
- T-spaced

DFE

- 10-taps adaptively optimized to cancel postcursor
- Taps can be constrained to limit error propagation

Pulse Response – At Rx Termination

Pulse Response – after ADC sampling

Optimal FFE Filter

Pulse Response – after FFE

Pulse Response – before DFE

Pulse Response – after DFE

Slicer Eye Diagram

VO = 298 mV
HO = 557 mUI
BER =
$$8 \times 10^{-36}$$

SNR Margin = 4.9dB

□ High-Speed Serdes Channels

Overview of Equalization Techniques

Performance & Cost Comparisons

Future Directions

Analog Equalizer Performance

□ SNR Margin = 4.4 dB □ BER = 8×10^{-32}

Breakdown of Noise Sources

Digital Equalizer Performance

□ SNR Margin = 4.9 dB□ BER = 8×10^{-36}

Breakdown of Noise Sources

Cost Comparison

	Power	Area
10G Analog Serdes: PF + DFE	1	1
25G Analog Serdes: PF + DFE	1.9	1.4
25G Digital Serdes: ADC + FFE/DFE	2.3	2.4

25G Serdes Line Code Options

Insertion Loss Comparison

Digital Equalizer Parameters

ADC

- ENOB = **5.7**
- Sampling rate = 12.5 Gsps

🗆 FFE

- 10 taps adaptively optimized
- T-spaced

DFE

- 2 taps adaptively optimized to cancel postcursor
- Taps can be constrained to limit error propagation

Digital Equalizer Performance

□ SNR Margin = 5.4 dB □ BER = 6×10^{-40}

Breakdown of Noise Sources

Cost Comparison

	Power	Area
10G NRZ Analog Serdes: PF + DFE	1	1
25G NRZ Analog Serdes: PF + DFE	1.9	1.4
25G NRZ Digital Serdes: ADC + FFE/DFE	2.3	2.4
25G PAM-4 Digital Serdes: ADC + FFE/DFE	1.8	1.5

Analog vs. Digital - Pros and Cons

Analog Equalizer

- Smaller area
- Lower power
- Suitable for high-scale integration in large ASICs

Digital Equalizer

- □ Higher performance
- **Flexible** architecture
- Powerful diagnostics
- Easier to port to smaller geometries
- Less susceptible to PVT variations

Future Direction

- Higher Multi-level line coding being investigated – PAM-8, PAM16
 - Signal processing becomes significantly more complex
- For future applications at 100+Gbps, more efficient line coding is a possibility, e.g., DMT

Summary

- Serdes Channels vary widely from application to application
- As data rates increase, sophisticated equalization is necessary
- Wide spectrum of equalization techniques is available
- Choice of optimum equalization method is a tradeoff between power/area and performance

References

- M. Shanbhag (TE Connectivity), "Strada Whisper Backplane Channels", IEEE 802.3bj, Apr 2011. http://ieee802.org/3/100GCU/public/ChannelData/TEC 11 0428/shanbhag 03 0 411.pdf
- K. Parhi, "Design of Multigigabit Multiplexer-Loop-Based Decision Feedback Equalizers", *IEEE Transactions On Very Large Scale Integration (VLSI) systems*, Vol. 13, No.4, April 2005
- R. Blahut, "Fast Algorithms for Digital Signal Processing", Addison-Wesley, 1985
- Y. Greshishchev et al., "A 40GS/s 6b ADC in 65nm CMOS", ISSCC 2010, pp. 390-391
- □ J. Cao, "A 500mW digitally calibrated AFE in 65nm CMOS for 10Gb/s Serial links over backplane and multimode fiber", ISSCC 2009, pp. 370-371
- □ V. Parthasarathy, et al., "Feasibility of 100 Gb/s Operation on Installed Backplane Channels", IEEE 802.3bj, Jul 2011.
- □ S. Bhoja, et al., "Study of PAM modulation for 100GE over a single laser", IEEE 802.3 Next Generation 100 Gb/s Optical Ethernet Study Group, Jan 2012.

THANK YOU!

QUESTIONS?

vtelang@broadcom.com

Vivek Telang

Equalization for High-Speed Serdes

67 of 67