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With the rapid developments in very large-scale integration  High-speed interconnect problems are not always handled
(VLSI) technology, design and computer-aided design (CAD) appropriately by conventional circuit simulators, such as
techniques, at both the chip and package level, the operating fre- SPICE [23]. If not considered during the design stage, these

qguencies are fast reaching the vicinity of gigahertz and switching . t t effect logic alitches that d
times are getting to the subnanosecond levels. The ever increasin nterconnect efiects can cause logic giitches that render a

quest for high_speed app“cations is p|acing h|gher demands fabricated d|g|ta| CirCUit inopel’able or they can distort an

on interconnect performance and highlighted the previously analog signal such that it fails to meet specifications. Since
negligible effects of interconnects, such as ringing, signal delay, extra iterations in the design cycle are costly, accurate pre-
distortion, reflections, and crosstalk. In this review paper, various diction of these effects is a necessity in high-speed designs.

high-speed interconnect effects are briefly discussed. In addition, H itb t i tant for desi o si
recent advances in transmission line macromodeling techniques ence, it becomes extremely importantior designers 1o sim-

are presented. Also, simulation of high-speed interconnects usingulate the entire design along with interconnect subcircuits

model-reduction-based algorithms is discussed in detail. as efficiently as possible while retaining the accuracy of
Keywords—Asymptotic waveform evaluation, AWE, CFH, cir- simulation [23]-[139].

cuit simulation, complex frequency hopping, distributed networks, L

high-speed interconnects, Krylov-subspace methods, macro-A- What is High-Speed?

modgling, model-order rgduqtion, moment-matching techniques, Speaking on a broader perspective, a “high-speed inter-
multiconductor transmission lines. connect” is the one in which the time taken by the propa-
gating signal to travel between its end points cannot be ne-
I. INTRODUCTION glected. An obvious factor that influences this definition is
the physical extent of the interconnect; the longer the inter-
connect, the more time the signal takes to travel between its
end points. Smoothness of signal propagation suffers once
the line becomes long enough for the signal’s rise/fall times
to roughly match its propagation time through the line. Then
the interconnect electrically isolates the driver from the re-
ceivers, which no longer function directly as loads to the
driver. Instead, within the time of the signal’s transition be-

The recent trend in the VLSI industry toward miniature
designs, low power consumption, and increased integration
of analog circuits with digital blocks has made the signal in-
tegrity analysis a challenging task. The quest for high-speed
applications has highlighted the previously negligible effects
of interconnects (Fig. 1), such as ringing, signal delay, distor-
tion, reflections, and crosstalk. Interconnects can exist at var-

lous levels of design hierarchy (Fig. 2) such as on-chip, pack- tween its high and low voltage levels, the impedance of in-

aging structures, multichip modules, printed circuit boards, . .
and backplanes. It is predicted that interconnects will be re- terconnect becomes the load for the driver and also the input

sponsible for majority of signal degradation in high-speed |mpedqnc§ to.the receivers [1}-{12]. Th.'s leads to various
systems [1]-[22]. transmission line effects, such as reflections, overshoot, un-

dershoot, crosstalk, and modeling of these needs the blending
of EM and circuit theory.

Alternatively, the term “high-speed” can be defined in
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Fig. 1. High-speed interconnect effects.

sidered” are interconnect length, cross-sectional dimensions,
signal slew rate, and the clock-speed. Other factors that also
should be considered are logic levels, dielectric material, and
Ty conductor resistance. Electrically short interconnects can be
; represented by lumped models whereas electrically long in-
terconnects need distributed or full-wave models.

The rest of the paper is organized as follows. In Section Il,
a brief description of high-speed effects and interconnect
models is provided. Section Il provides a detailed analysis of
transmission line equations and derivation of a generic mul-
ticonductor transmission line stamp, suitable for inclusion in
an MNA analysis. Section IV provides a review of circuit
equations in the presence of distributed elements. Review of
efficient techniques for discretization of Telegrapher’s equa-
tions is given in Section V. Sections VI-VIII give a detailed
account of simulation of interconnects using model-reduc-
tion techniques. Section IX provides references to related ad-
vanced topics.

Fig. 2. Interconnect hierarchy.

An important criterion used for classifying interconnects
is the electrical lengthof an interconnect. An interconnect
is considered to beélectrically short if, at the highest
operating frequency of interest, the interconnect length
is physically shorter than approximately one-tenth of
the wavelength (i.e.length of the interconnett =~ 0.1,

A = wv/f). Otherwise, the interconnect is referred to as

“electrically lond [1], [12]. In most digital applications, High-speed effects influencing a signal propagating on

the desired highest operating frequency (which correspondsan interconnect could be multifold, such as delay, rise time

to the minimum wavelength) of interest is governed by degradation, attenuation, crosstalk, skin effect, overshoots,

the rise/fall time of the propagating signal. For example, undershoots, ringing, and reflection. In this section, we give

the energy spectrum of a trapezoidal pulse is spread overa detailed account of each of these high-speed effects (which

an infinite frequency range; however, most of the signal are also known as transmission line effects).

energy is concentrated near the low-frequency region and

decreases rapidly with the increase in frequency. Hence,A. Propagation Delay

ignoring the high-frequency components of the spectrum A signal traversing from one end of a transmission line to

above a maximum frequencyu.ax, ill not seriously alter  the other end takes a finite amount of time; in other words, it

the overall signal shape. Consequently, for all practical experiences a certain amountdeflay (7). Fig. 3 illustrates

purposes, the width of the spectrum can be assumed to bgne case of an ideal delay line. In addition, the signal may

finite. A practically used relationship between the desired gncounter rise time degradation as shown in Fig. 4, where

fmax @andt, the (riseffall time of the signal) can be expressed the rise time at the receiver elitl) is larger than the rise

as [2], [4], [36], [66], [90] time at the source en,.) [2], [4]. Rise-time degradation

further adds to the overall delay experienced by the signal,

Frax % 035/t 1) as it influences the maximum and minimum attainable logic

This implies that, for example, for a rise time of 0.1 ns, the levels between the switching intervals.
maximum of frequency of interest is approximately 3 GHz or
the minimum wavelength of interestis 10 cm. In some cases,
the limit can be more conservatively set [90]fas. ~ 1/¢.. The signal through an interconnect may suffer attenua-

In summary, the primary factors that influence the decision tion, due to ohmic or conductance losses. This is illustrated
“whether high-speed signal distortion effects should be con- in Fig. 4. Ohmic losses are more pronounced at higher fre-

Il. HIGH-SPEEDINTERCONNECTEFFECTS

B. Attenuation
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. L Fig. 4. lllustration of attenuation and rise-time degradation.
quencies due to the uneven current distributions. Conduc-

tance losses are proportional to the dielectric loss factor of the

dielectric material and are also a function of the frequency. the phenomenon of overshoots, which occur when the termi-
If the losses are h|gh, the Signa|5 may not retain the Spec_nating impedance is Iarger than the characteristic impedance
ified logic levels during the transit through an interconnect ©f the line. As seen, the undershoots, overshoots, and the

and may result in false switching of digital circuitry. ringing experienced by the signal increases with the delay
of the interconnect. Fig. 6 illustrates the ringing associated
C. Signal Reflection and Ringing with a lossy line, for various cases of terminations.

1) Mechanism of ReflectionsConsider the interconnect
system shown in Fig. 7, which shows the simplest case of
impedance variation froriZy) to (Z). Such a variation re-
sults in part of the onward propagating sigita)) getting

Signal reflection and the associated ringing can severely
distort signal propagation at higher frequencies. The prime
cause of reflection-related signal degradation is the discon-
tinuity in characteristic impedance of the transmitting line. - ; o
Such a discontinuity can be either distributed or lumped in reflected(v. ). T/he coefﬂcn/—:‘nt of reflectiorfp) is given py
nature. In the case of distributed discontinuity, the impedance” = v [vi = (L — Zo)[(Zp + Zo). AS seen,/the reflection
variation on a line takes place over a certain length. For ex- Will vanish when there is no mismatc, = Z;). Care must
ample, this can occur due to the change in the medium alongbe _taken in h!gh-speed deS|_gns to minimize the reflections,
the length of the signal trace, which may have to traverse which otherwise may result in false switching.
several layers on a printed circuit board (impedance may
not be well controlled from layer to layer). Following are D- Crosstalk
some common causes of discontinuities: connectors between Crosstalk refers to the interaction between signals that are
card-to-board, cable-to-card, leads between chip and chippropagating on various lines in the system. An analogy of
carriers, or between card wiring and chip carriers, long vias, crosstalk could be the “the interference from other lines while
orthogonal wiring, flip-chip soldier balls, wire bonds, and re- talking on the phone.” Crosstalk is mainly due to the dense
distribution lines, etc. wiring required by compact and high-performance systems.

Another major contributor to the reflection related signal High-density and closely laid interconnects result in electro-
degradation is the impedance mismatch between the linemagnetic coupling between signal lines. The active signal
characteristic impedance and source/terminating imped-energy is coupled to the quiet line through both mutual ca-
ances. Fig. 5 illustrates these effects for the case of a losslespacitance and inductances, resulting in noise voltage—cur-
line. Fig. 5(b) and (c) shows the undershoots for relatively rents. This may lead to inadvertent switching and system
small and large delay lines. In general, undershoots occurmalfunctioning. Crosstalk is a major constraint while routing
when the terminating impedance is less than the characterin high-speed designs. An example of crosstalk is given in
istic impedance of the interconnect. Fig. 5(d) and (e) shows Fig. 8. By its very nature, crosstalk analysis involves systems
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Fig. 6. lllustration of ringing in lossy interconnects.

of two or more conductors. Such systems are studied on theE. High-Speed Interconnect Models

basis of dominant propagating modes. System behaviorin re-

sponse to any general excitation is then a linear combination Depending on the operating frequency, signal rise times,
of modal responses. and nature of the structure, the interconnects can be mod-
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¢ ::3\__' v, the signal conductor. To account for these effects, modeling

I based on frequency-dependent p.u.l. parameters may be
Z, i+, zy necessary. An illustration of frequency-dependent variation
TIIIIII o of R and L parameters for an example microstrip are given
in Fig. 9.
Fig. 7. Reflection due to impedance mismatch. 4) PEEC and rPEEC ModelsAs switching speeds

extend into the gigahertz range, two-dimensional (2-D)
eled as lumped, distributed (frequency independent/depen-transmission line models become inadequate due to the
dent RLCG parameters, lossy, coupled), or full-wave models. Spatial EM effects of three-dimensional structures. The mod-

1) Lumped Models:At lower frequencies, the intercon- eling of these structures has been successfully accomplished
nect circuits could be modeled using lumpBd’ or RLC using partial element equivalent circuit (PEEC) models.
circuit models.RC circuit responses are monotonic in na- PEEC models ar&LC circuits where individual resistances
ture. However, in order to account for ringing in signal wave- and capacitances are extracted from the geometry using a
forms,RLC circuit models may be required. Usually lumped quasi-static (nonretarded) solution of Maxwell's equations.
interconnect circuits extracted from layouts contain a large The rPEEC models include the retardation and provide
number of nodes that make the simulation highly CPU inten- full-wave solution. Simulation of these models is relatively
sive (more details about lumped circuit modeling are given CPU intensive as they involve large resultant networks
in Section V). [15]-[22].

2) Distributed Transmission Line Modelgt relatively
higher signal-speeds, electrical length of interconnects Ill. DISTRIBUTED TRANSMISSIONLINE EQUATIONS

becomes a significant fraction of the operating wavelength,  Transmission line characteristics are in general described
giving rise to signal distorting effects that do not exist at py Telegrapher’s equations. Consider the transmission line
!ower freque.nmes. Consequently, the conve_ntlonal lumped system shown in Fig. 10(a). Telegrapher’s equations for such
impedance interconnect models become inadequate and strycture can be derived by discretizing the line into infin-
transmission line models based on quasi-transverse electrojieasimal sections of lengtihz and assuming uniform p.u..
magnetic mode (TEM) assumptions are needed. The TEM parameters of resistané&), inductance(L), conductance
approximation represents the ideal case, where Bofind (), and capacitancéC). Each section then includes a re-
H fields are perpendicular to the direction of propagation gistanceRAz. inductanceAz. conductanc€ Az. and ca-

and it is valid under the condition that the line cross section pacitance'Ax [Fig. 10(b)]. Using Kirchhoff's current and
is much smaller than the wavelength. However, the inho- voltage laws, one can write [12]

mogeneties in practical wiring configurations give rise to

E or H fields in the direction of propagation. If the line v(z + Az, t) = v(z, t) — RAzi(z, t) — LAx Qi(% £)

cross section or the extent of these nonuniformities remain )

a small fraction of the wavelength in the frequency range of

interest, the solution to Maxwell's equations are given by

the so-called quasi-TEM modes and are characterized by v(z + Az, ) —v(z, 1) _ Ri(e. ) — L gi(x ». (3)
7 t 7 -

distributed R, L, C, G per unit length (p.u.l.) parameters Az
[12] (discussed in detail in Section 111). Taking the limitAz — 0, one gets
In practical situations, owing to complex interconnect ge-
ometries and varying cross-sectional areas, the interconnects 9 v(z, t) = —Ri(x, t) — L 9 i(z, t). (4)
may need to be modeled as nonuniform lines. In this case, &

the p.u.l. parameters are functions of the distance, along the Similarly, we can obtain the second transmission line

length of the transmission line [96]-[98]. equation

3) Distributed Models with Frequency-Dependent Pa- ) )
rameters: At low frequencies, the current in a conductor is iz + Ax, t) =i(x, 1) — GAzv(z + Az, 1)
distributed uniformly throughout its cross section. However, —_CAz o v(z + Az, ). (5)
as the operating frequency increases, the current distribution t

gets uneven and starts getting concentrated more and moré&ubstituting (2) in (5), we have
near the surface or edges of the conductor. This phenomenon
can be categorized as follows: skin, edge, and proximity wat+Az, 1)
effects [12], [30], [99], [100]. The skin effect causes the

current to concentrate in a thin layer near the conductor sur-
face and this reduces the effective cross section available for
signal propagation. This leads to an increase in the resistance — Az 2 <U($’ t)— RAzi(z, t)

=i(z, t)-GAzx <v(a:, t)— RAzi(z, t)— LAz % iz, t))

to signal propagation and other related effects [9]. The edge ot

effect causes the current to concentrate near the sharp edges LAz 9 i(x t))

of the conductor. The proximity effect causes the current to ot

concentrate in the sections of ground plane that are close to (6)
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i(0, 1) i(x, 1) i(d, 1)
(0, D) ST v(d, 1)
ground .
x=0 xx+Ax x=d
(@
Fig. 10. Transmission line system.
or
(z+Ax, t)—i(x, t)
Ax
7]
=—Gu(z, t)-C 5 v(z, t)+Az
. J . 9*
-| GRi(x, t)+(GL+RC) 5 i(z, t)+LC gn iz, 1))
(7
Taking the limitAz — 0, one gets
g . g
92 i(z, t) = —Gu(z, t) = C g v(z, t). (8)

Taking the Laplace transform of (4) and (8), one can write

Viz,s)=—(R+sL)I(z, s) = —ZI(x, s)

. (9)
;x Iz, s) =—(G+sC)V(z, s) ==Y V(z,s) (10)

698

CEE B - |
Frequen;.y (Hz)
i(x, 1) i(x + Ax, t)
— —
v(x,t) LAx RAx v(x+ Ax, t)
CArx <GAx
'. —_— .
X< Ax —»(x+ Ax)
®)

where Z andY represent the p.u.l. impedance and admit-
tances of the transmission line, given by

Z=R+sL, Y=3G+sC (11)

The set of equations represented by (9) and (10) can be solved
if they can be written in terms of one of the unknowns [either
V(x, s) or I(z, s)] as follows:
o2 9
92 Viz, s)=2YV(z, s) =TV(x, s)
2

9 2
ﬁl(x, $)=YZI(z, s) =T I(z, s)

(12)

(13)
whereY (s) is the complex propagation constant, given by
Y(s)=a+jB=VZY = \/(R+ jwL)(G + jwC)

(14)
wherea represents the real part of the propagation constant
and is known as thattenuation constantvhose units are
expressed in nepers/m. represents the imaginary part of
the propagation constant and is known agthase constant
whose units are expressed in radians/m. The solution of (12)
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i1(0,1) i(x1) i(d, 1) whereZ andY represent the impedance and admittance ma-

5 e _ _
v,(0,7) V(% 1) v (d, 1) trices, given by
% =R+ sL, Y =G+ sC. (22)
i5(0,1) iy(x, 1) ir(d, ) . ' |
NN vy (x, 1) ——’d TheR, L, G, andC matrices are obtained by a 2-D solution
7200 va(d 1) of Maxwell's equations at appropriate positions, along the

propagation axis. For this purpose, depending on the nature
and geometry of the structure, and the desired accuracy, tech-
niques based on quasi-static or full-wave approaches can be
used. TheR, L, G, andC matrices are symmetric and posi-

in(0. 1) e iy@dn tive definite [12], [90].
v (0, 1) vnl 1) v(d, 1)
B. Multiconductor Transmission Line Stamp
ground . _ . In this section, we derive a stamp relating the terminal cur-
= _ = rents and voltages of MTL structures, suitable for inclusion
X = X X =

in SPICE-like simulators. The transmission line stamp [63]
Fig. 11. Multiconductor transmission line system. is derived througldecoupling of MTL equations
Differentiating the partial differential equations given in

and (13) can be obtained as a combination of forward-re- (20) and (21) with respect to, we have

flected waves traveling on the line as 9?2 9
sz V(z, s)=—Z—I(z, s) (23)
V(z, s) =V(0, s)et )= (15) 832 857
I(z, s) =I(0, s)et* ()=, (16) 952 I(z, s)=-Y p V(z, s). (24)
X X
The phase shift and attenuation experienced by t.he travelinggubstituting (21) in (23) and (20) in (24), we get the fol-
waves are given by®/%(=)* and ¢**(=)*, respectively. If  |owing two sets of coupled wave equations:
the lines are lossless, the propagation constant is given by 52
Y(s) = jB =+vZY = jwyLC. The line in this case rep- —— V(z,5) =2ZYV(z, s) (25)
resents gure-delayelement. 832
A. Multiconductor Transmission Line System gz 1@ 8) =YZI(z, 5). (26)

Consider the multiconductor transmission line (MTL) Decoupling of equations in (25) or (26) can be achieved
system, with\V coupled conductors, shown in Fig. 11. through the use of suitable modal transformation matrices
Using steps similar to the case of single transmission line, [11]. For this purpose, introduce a transformati¥irelating
we can derive the multiconductor transmission line equa- the circuit voltaged” and modal voltage¥” as
tions. Per—unit—length parameterR,(L, G, andQ) in this Vie, )= WV (z, s). 27)
case become matrices and voltage—current variables become _ S _
vectors represented hy and i, respectively. Noting these  Hence, (25) can be rewritten as [for simplicity, we omit the

changes, we can rewrite (4) and (8) as accompanying ternw, s)]
3] ) a . o2 N -
g v(z,t)=—Ri(z,t)— L 5 i(z, t) a7 902 WV =ZYWV (28)
O i) =—Gola. ) -C e ). a8 :
—x, t) =—Gu(z,t) - C —v(z, t). - -
9z ot L (W=zyw) V. (29)

The MTL equations represented by (17) and (18) are a set of _ Jx? _ _
2NN coupled first-order partial differential equations (PDE) For effective decoupling of equations to take place, the ma-

and they can be put in a more concise form as trix product in parenthesis must lead to a diagonal matrix as
o [vlz,t) 1 T2 g 0
%[1(37 t):| W—2ZYwW-=| 0 --- ()2 (30)
0 R U(.T, t) 0 L a U(.T, t) - . 0 0 TN -
7 l@ o i(z, 1) “le oot i(e, 1)) where the diagonal matrix contains the eigenvalues of the
7 ’ (19) productZY’, which corresponds to the roots of the charac-

teristic equation

For the case of multiconductors, (9)—(11) are modified as |T2U _ ZY| _0, k=12 ... N (31)

e V(z, s) =—ZI(z, s) (20) whereU represents the unity matrix (we assume the general
) case that there exis{ distinct eigenvalues). Next, as is evi-
% I(z, s) =-YV(z, s) (21) dent, the transformation matri#%, which relates the circuit
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voltages and modal voltages, consisté\olinearly indepen-

dent column vector&wy,), corresponding to the eigenvectors

of productZY, given by
(YU — ZY) we = 0,

k=1,2,...,N. (32

[Similarly, we can write a transformatidfi relating the cir-
cuit currents(I) and modal current&l) asI = T'I. Hence,
(26) can be rewritten g$?/822)I = ('Y ZT)I. The di-
agonalization ol Z leads to the same diagonal matti¥,

Gy

Fig. 12. Example circuit for MNA formulation.

represented by (30). (This can be easily proved by noting thatA relationship between the near-efd = 0) and far-end

YZ = (U)YZ = (Z7'2)YZ = Z ' (ZY)Z. In other
words, matricesZY andY Z are similar or they have the
same eigenvalues.) The transformation métfigonsists of
the eigenvectors corresponding to the proddt.]

(z = d) can be derived using (38) as

ﬁg} B [ngw) —W,-_[EE;)]*

C:
C:

I

} . (39)

Having obtained the propagation constants, the solution of Using (36) and (39) and eliminating the consta6ts and

(29) can be written in the standard form as
V(@) = ¢ T+ Mgy, k=1,2,...,N (33)

whereV;,(x) represents théth modal voltage andy;, cx.

are the corresponding constants, pertaining to incident and

reflected waves, respectively. Equation (33) can be written
in the matrix form as

Vi(x)

C—le e Cli
Va(z) | e~ T2 c2
~ G—TNJC ]
V() CN
ele i Cir
C“fzm Cop
+ . (34)
CT,‘\]J}
Lcng

Defining E(z) = diagle=1*-..¢~T~*] and premulti-
plying both sides of (34) by the modal transformation matrix
W [from (27)], we can write (34) in terms of circuit voltages
as

V(z) = WIE(2)|C1 + W[E(x)]'C (35)
whereC; andC5 are constant vectors, which can be deter-
mined from the terminal currents and voltages (i.ez; at 0
andz = d).

A relationship between the near-efid = 0) and far-end

(xz = d) voltages can be derived using (35) as

Vol [ w w C,
i) = wh wis-|[6] - ©9
Next, substituting (35) in (20), we have
~WT[E(2)]|C: + WT'[E(2)]*Cs = —ZI(x)
T
I = [ . (37)
T
or
I(x) =W;[E(2)|C, — W[E(x)] 1C,, W;=Z 'WT.
(38)
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C,, we get
Hégﬂ - {ng(d) _W,._[Z;)]l}
v
.[W;:V(d) W[EV(I;)]_I} {Végﬂ (40)

Assume that thg-parameter-based stamp of multiconductor
stamp is required in the standard form, where curré()
flows inwards In this case, the expression fb¢d) in (40)
must be multiplied by-1. Noting this and simplifying (40),
we can write the MTL stamp in terms gfparameters as

o) i ][V
—I(d) Yo Yn|[V(d)
[WiE WL WiE,W ] [V(0) 1)
T\WiEWT WEIWT || v(a)
where
] 1+6(—2de)
El :dlag{ 1 _ C(Qde)}

—92p(=Trd)

E2 :dlag{ 1_ C(_Qde)

Matrix Exponential Stamp:An alternative form of the
MTL stamp is also quite popular and it has the matrix
exponential form [72], which is explained below. Equations
(20) and (21) can be written in the hybrid form as

}, k=1,2,...,N. (42)

5 H(f,’ sﬂ =D+ oF) Hg: sﬂ
b 58
E_[_g —ﬂ (43)

Using the terminal conditions, the solution of (43) can be

written as
[I(d, 5) 1(0, s)}

A relationship between the forms represented by (41) and
(44) can be obtained as follows: Defiff&s) as

T(s) = {TH s

:| _ 6(D—l—sE‘)d |: (44)

(45)

— (DB}
Ty To
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Using some algebraic manipulations, we can express the re-The above equation, representing a simple three-node cir-

lationships between the hybrid parameters (44) ang-{ba-
rameters (41) as

[y Y| [VO)
|:Y21 Y221:| {V(d)} 1
et T V(0
V:(C[)—Tm + ;322111;21T11 —T221;'121} L’Edﬂ (46)
[I(d) }
[ 2]l
= _Y1_21Y11 Y1_21 V(O)
s Yol Y —YQQYI;} o)
(47)

Similarly, another useful representation of the MTL stamp is
in terms of ABCD parameters, which can be written as

52 Ul G-

Ty 0]\ V(d) Ty U] |I1(d)
In the next section, we will review a generic formulation of
distributed interconnect circuit equations, suitable for gen-
eral purpose circuit simulators.

IV. FORMULATION OF CIRCUIT EQUATIONS

Prior to introducing interconnect simulation algorithms,
it would be useful to review a generic formulation of cir-
cuit equations. For both frequency or time-domain analysis,
the first step is to set up theodified nodal analysis matrix
(MNA)[140]. For example, consider the circuitin Fig. 12. Let
V3 be the desired output. Using Kirchhoff’s current law, the
time-domain MNA and the output equations can be written
as

00 0 07"
00 0 O U2
00 C 0]
00 0 O i
G4 -G 0 1
N -G Gi1+G:+G -Gz 0
0 —Gs Gz +G4 0
1 0 0 0
U1 0
U2 0
= et
NEHES
. 1
(3
v1
s
y=1[001 0]
v3

te
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cuit, has the same form as any other MNA matrix repre-
senting a large linear lumped network. Hence, MNA and
output equations for lumped linear networks can be written
using a generic notation as

Wix(t) + Gx(t) = Bu(t)
y =L x(t) (49)
whereB and L are selector matrices, with entries (0 or 1),
and the superscriptI™ denotes the transpose. L&ft) =

Bu(t). From (49), MNA equations in the frequency-domain
can be written as

(G+ sW)X(s) =b(s)
Y(s) =L"X(s). (50)
For the case of nonlinear elements, MNA equations in (49)
can be modified as
Wax(t) + Gz(t) + F(z(t)) — b(t) =0
y =L x(t)
whereF(x(t)) is a nonlinear function aof.
1) Formulation of Linear Subnetworks Containing
Distributed Elements:Consider a linear subnetwork
7« containing distributed elements. Using (41), the fre-
guency-domain equations of a distributed subnetwork
containingny coupled conductors can be written as [63]
Ya(s)Va(s) = La(s) (52)
where Vy(s) and I4(s) represent the Laplace-domain
terminal voltages and currents of the distributed element,
respectivelyY 4(s) represents the admittance matrix having
complex dependency on frequency, which are described in
terms of line parameters. Equation (50) representing the
lumped linear network can be combined with (52) as

W+ G, Ly } [Xﬂ(s)} _ {bﬁ} (53)
where

YL U] | I4s) 0

e W, G € RV=XN~ gre constant matrices describing
the lumped memory and memoryless elements of sub-
networks, respectively, anék™~ is the node-space of
subnetworkr;

» L,isthe selector matrix that maps the terminal currents
of the distributed subnetwork to the nodal space of the
linear subnetworkr, andU is the unity matrix;

* b, € RN~ is a constant vector with entries determined
by independent voltage—current sources of subnetwork
7, and X .(s) € R¥~ is the vector of node voltage
waveforms appended by independent voltage source
currents, linear inductor current waveforms of linear
subnetworkr.

Equation (53) can be concisely written as

P(5)X(s) = b(s). (54)

2) Generic Formulation of Nonlinear Circuits with Dis-
tributed Elements:Consider a general network containing
an arbitrary number of nonlinear and linear (lumped and dis-
tributed) components. For simplicity, let the linear compo-
nents be grouped into a single linear subnetwods shown
in Fig. 13.

(51)
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Linear subnetwork 1

Distributed element
s, Vd\

Linear lumped elements

Network ¢

Lumped linear and
nonlinear components

" T —~
Vi 4
i
> Y, Y, vV, I
Vi l.n_-’ Y"ﬂ] Y”x"n Vn" 1,,7‘
T b9
.—.}‘
Fig. 13. Nonlinear networks containing linear subnetwork with distributed elements.
Linear subnetwork 1t
S R €7 lil'-'-’-'-' N 1 """"""""" Cs
vy V2. vs A1, 4z v ] . TR
P | ' ] |
2 Vs I_dii: : d4 y . 4
: —° Gel
. A ‘.““I 9 :
et)| . Distributed ,
te : 1 element !
! ™ C G !

Fig. 14. Example circuit with lumped/distributed/measured and nonlinear devices.

Using (51), without loss of generality, the circuit equations ~ The linear multiterminal subnetwork can be character-

[140] for the networkp can be written as ized in the frequency-domain by its terminal behavior as
d . .
W¢% &y(t) + Goxs(t) + Lt (t) + F(zo(t)) — by (1) Yo(s)Vr(s) = Ix(s) (56)
=0 t [0, 7] (55) whereY . (s) is the y-parameter matrix of subnetwork,
where V .(s) is the vector of terminal voltage nodes that connect

the subnetwork to the network andl.(s) is the Laplace
t. transform of(é(t)).
3) Example: To illustrate the formulation scheme de-
d Scribed in this section, consider the circuit shown in Fig. 14.
The network equations can be written as follows.
The entities in (55) with respect to the given nonlinear net-
work can be obtained as

« Wy, G, € RN+*Ne are constant matrices describing
the lumped memory and memoryless elements of ne
work ¢, respectively, antl, € R4 is a constant vector
with entries determined by the independent voltage an
current sources;

» F(z4) is a function describing the nonlinear elements
of the circuit, z,(t) € R is the vector of node

voltage waveforms appended by independent voltage 0 0 001 0
source current, linear inductor current, nonlinear ca- 0 000 0O
pacitor charge, and nonlinear inductor flux waveforms, G — 000 00O
N, is the total number of variables in the MNA for- =10 0 0 0 0 0
mulation, andn; is the total number of ports in linear 1 0 0 00O
subnetworkr; L0 O O 0 01

* L. = [l; ;] with elementd; ; € {0, 1} wherei € 0 0 0 0 00
{1, ..., Ny}, 7 € {1, ..., ng} with a maximum of 00 0 0 0 0
one nonzero in each row or column, is a selector matrix 00 C3 —-C3 00
that maps.(t) € ®"~ the vector of currents entering Wo= 10 o —Cy; C3 0 1
the linear subnetwork, into the node spac®™+ of 00 O 0 0 0
the networke. L0 O 0 0 0 0
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[—f1(ve —v1)] [v1 ] using a traditional ordinary differential equation solver such
fi(vs — 1) U as SPICE [23], [140]-[151].
v CPU Expense:Frequency-domain simulation of large
F(zy(t) = F2(vs) ; Ty = * linear networks is conventionally done by solving (50) or
0 v7 (53) at each frequency point using LU decomposition and
0 ie forward—backward substitution. For time-domain simu-
— fa(vr) 7 lation, integration techniques are used to convert a set of

- time-domain differential equations into a set of difference

ro 0 0 . S .
0 1 0 equations. For example, apphcaﬂo_n of the trapez_0|dal rule
0 0 1 to (51) leads to a nonlinear set of difference equation [151]
bo= 1 ¢ L==10 o a2 A A
c 0 0 < t5 W) v(t+AL)+F(u(t + At))
L0 00 9
" |:i2(t):| = <Kt W—G) v(t)+(b(t)+b(t + At))—F(u(t)).
Tr =
ig(t) (57)
The entities in (53), (54), and (56) characterizing the given  To solve (57) at each time point, Newton iterations are
linear subnetwork can be obtained as required, which may need several LU decompositions. This
e 0 0 0 causes the CPU cost of a time-domain analysis to be expen-
sive (note thaW andG matrices for interconnect networks
—G1 G 0 0 0 are usually very large).
G+ sW, = 0 0 Gu+sCi O 0 The objectives of interconnect simulation algorithms are
0 0 sCy 0 to address both mixed frequency/time problem as well as
to handle large linear circuits without too much of CPU
- 0 0 0 G expense. There have been several algorithms proposed for
0 0 0 0 V2 this purpose, which are broadly classified into two main cat-
100 0 Va egories, as follows. 1) Approaches based on macromodeling
Li= |0 1 0 0], X.(s)= | Vi each individual tran;m_ission line set. Techpiques such as
00 1 0 v “method of characteristics” are grouped in this category and
0 0 0 1 5 are discussed in detail in Section V. 2) Approaches based
Vs on model-order reduction (such as AWE, CFH, PRIMA)
Yui1(s) Yaio(s) Yaiz(s) Yara(s) of the entire linear subnetwork containing lumped as well
Yior(s) Yaso(s) Yass(s) Yaoa(s) as distributed subnetworks and are discussed in detail in
Yu(s) = Sections VI-VIII. It is to be noted that the second approach
Yuzi(s) Yasa(s) Yasa(s) Yasa(s) can also be used in conjunction with the first approach.
LYau1(s) Yauo(s) Yaus(s) Yaua(s)
rln V. SIMULATION TECHNIQUES BASED ON
I Yii(s) Yia(s) TRANSMISSION-LINE MACROMODELS
La(s) = I3 Ya(s) = {Ym(s) YQQ(s)} In this approach, transmission-line networks described by
I Telegrapher's equations (partial differential equations) are
L L4

translated into a set of ordinary differential equations (known
I(s) = [12(3)} ’ Vals) = [‘/2(3)} ' as the macromodel), through some kind of discretization.

) The conventional approach [12], [36] for discrete mod-
eling of distributed interconnects is to divide the line into
segments of lengti\z, chosen to be small fraction of the
wavelength. If each of these segments (assume that the line

Simulation of large interconnect networks is associated is discretized into //” segments) is electrically small at the
with two major bottlenecks: mixed frequency/time problem frequencies of interest (i.eAxz = L/M <« \), then each
and CPU expense. segment can be replaced by lumped models. Generally the
Mixed Frequency/Time ProblemThe major difficulty in lumped structures used to discretize transmission lines con-
simulating high-frequency models such as distributed trans- tain the series elemenfsAz and RAz, and shunt elements
mission lines is due to the fact that, while described in terms GAx andCAz. The parameterd)(, R, GG, C are the p.u.l.
of partial differential equations, they are best represented ininductance, resistance, conductance, and capacitance of the
the frequency-domain (56). As seen, they do not have a di- line, respectively (Fig. 10).
rect representation in the time-domain. On the other hand, Distributed versus Lumped: Number of Lumped Segments
nonlinear devices can only be described in the time-domain Required: It is often of practical interest to know how many
(55). These simultaneous formulations are difficult to handle lumped segments are required to reasonably approximate a

A. Interconnect Simulation Issues
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Fig. 15. Macromodel using Method of Characteristics.

distributed model. For illustration, consid&C' segments, A sample of such techniques asompact finite differ-
which can be viewed as low-pass filters. For a reasonableences integrated congruent transformand exponential
approximation, this filter must pass at least some multiples Padé-based matrix-rational approximatiorand are dis-
of the highest frequency,,... of the propagating signal (say cussed in Section V-D-V-F.

ten times,fo > 10 f,..x). In order to relate these parameters,

we make use of the 3-dB passband frequency of the LC filter A- Method of Characteristics

given by [2], [4] The method of characteristics (MC) [43]-[45] transforms
o= 1 _ B (58) partial differential equations of a transmission line into or-
0~ /LdCd nrd dinary differential equations containing time-delayed con-
whered is the length of the line and = +/LC represents  trolled sources. S
the delay p.u.l. From (1), we hayg,.x = 0.35/¢, and using Conglder the case of two cgnductor.tran_smlssmn lines, as
(58), we can express the relatififn > 10 f,ax intermsofthe  Shownin Fig. 15(a). An analytical solution, in termsyepa-
delay of the line and the rise time agr7d > 10 x 0.35/¢,., rameters for (9) or (10) can be derived [43] as
or I=YV
_ 1 1 14 e 27d  _9pe—7d Vi
t. > 3.5(r7d) =~ 107d. (59) [IJ “Zo(l—c 29 | _ged 14 G_Q’Yd:| [VJ
In other words, the delay allowed per segment is approx- (61)
imately ¢,./10. Hence, the total number of segmenf€)(  \herey is the propagation constarf, is the characteristic
needed to accurately represent a total delayiib given by impedance); and; are the terminal voltage and current
N =7d/(t,./10) = 107d/t,. (60) at the near end of the line, and and, are the terminal

voltage and current at the far end of the line. Fhparame-

In the case o LC' segments, in addition to satisfying (59), Lat R !
ters of the transmission line are complex functions,aind

the series resistance of each segment must also be accounte h - )
Example: Consider a digital signal with rise time of 0.2 I most cases cannot be directly transformed into an ordinary

ns propagating on a lossless wire of length 10 cm, with a differential equation in the time domain. The MC succeeded

p.u.l. delay of 70.7 ps (this can be represented by a distributedin doing such a transformation, but only for lossless transmis-
model with p.u.l. parameters df = 5 nh/cm andC’ = 1 sion lines. Although this method was originally developed in

pF/cm). If the same circuit were to be represented by lumped the time domain using what was referred to as characteristic
segments, one need& = (10 x 70.7¢~12 x 10/(0.2¢~9) ~ curves (hence, the name), a short alternative derivation in the

35 sections. Itis to be noted that using more sections does nofr€auency domain will be presented here. By rearranging the

clean up ripples completely but helps to reduce the first over- €ms in (61), we can write

shoot (Gibb’s phenomenon). Ripples can be reduced when Vi =ZoIL + e 2Vy — e Zo I + V1)

losses are properly taken into account. Vo = Zoly + ¢ 12Vy — e YN ZoLr + V2)]. (62)
One of the major drawbacks of the above conventional

discretization is that it requires a large number of sec-

tions, especially for circuits with high operating speeds Vi—Zolh =W

and sharper rise times. This leads to large circuit sizes Vo — Zolo =Wo (63)

and the simulation becomes CPU inefficient. In order to

overcome these difficulties, several techniques for effi- o v

cient discretization were proposed in the literature. These Wy =e2Va — e (Zo Ly + V1]

methods can be broadly classified, based on the passivity Wo =e 2V; — e " ZoIr + Va)). (64)

property (details concerning passivity of macromodels can Using (62) and (64), a recursive relation ¢ and¥, can

be found in Section VIII-F) as follows. 1) Macromodels pe obtained as

with no guarantee of passivity: A sample of such techniques W = o=

.. . . 1 =¢ [2‘/2 - WQ]

are method of characteristiggtransfer function approxi- o

mation and Chebyshev polynomial-based approximation Wy =e 7[2V1 — W], (65)

and are discussed in Section V-A-V-C. 2) Macromodels A lumped model of the transmission line can then be de-

with guaranteed passivity by construction of macromodels: duced from (62) and (65), as in Fig. 15(b).

Next, (62) can be rewritten as

where
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If the lines were lossless (in which case the propagation The least square solution of (70) is given by
constantis purely imaginary;, = j/3), the frequency domain

t _ t
expression (65) could be analytically converted into time- ©00z=0%. (71)
domain using the inverse Laplace transform as Poles of the system are obtained by computing the roots
wy(t 4+ 7) = 2vz(t) — wa(t) of the denominator polynomidd(s) and they belong to the

walt +7) = 200(t) — wy(£) (66) #HS gganle]c only, slince they arle pbtai_ned fror:n an even fun((j:-
ot . . ion (68). If any poles are purely imaginary, they are rejected.
wheree™/"¢is replaced by atime shift (or delay). Eachtrans- Next, the residues are obtained by matching the real and

mission line can, therefore, be modeled by two impedancesimaginary parts of (67) to the sampled data, as follows:
and two voltage controlled voltage sources with time delay.

Since this transmission line model is in the time domain, it 1 ~1/p1 —1/pq
can be easily linked to transient simulators. 1 -1/ - —1/pq

For lossy lines, the propagation constant is not purely 14 (wy/p1)? 1+ (w1 /pg)?
imaginary and, hence, cannot be replaced by a pure delay.
In that case analytical expressions for andws cannot be
found in the time domain. To handle such cases, classical 1 1 1
MC can be extended through Padé synthesis of character- 1+ (wy/p1)? 1+ (wn/pg)?
istic impedance and complex propagation constant [44]. In —w, /py — w1 /pg
the case of multiconductor transmission lines, MC can be 0 W W
applied through decoupling of MTL equations [12]. !
B. Transfer Function Approximation —wy /Py —wx /pq

Least square approximation-based techniques [111] de- L 14+ (wn/p1)? 14 (wn/pg)? 4
rive a transfer-function representation for the frequency re- c
sponse of transmission line subnetworks. The method fits ey
data from sample frequency points, to a complex rational
function H(s), where :

q
_ ey kq
H(s)=c+ ; p— (67) " RYE(Q) -
wherep; andk; are theith pole-residue paiy is the total Re(H (w1))
number system poles, ards quotient. In order to obtain a
stable-model (poles restricted to the left-half plane), the real :
part [even part off (s = jw)]is fitted to the real part of data — | Re(H(wn)) | . (72)
samples. Let the real part of (67) be approximated as
g Im(H (wy))
A(s) 2l
5 i=0 :
ReH(3) = B3 zq: by ' (68) LIm(H (wy))
— i Here, the solution for the residues are obtained by solving the

least square approximation, similar to the equations in (71).
Once the pole-residue model is obtained, it can be easily
converted to a time-domain macromodel described in terms
of ordinary-differential equations.

Writing (68) at several frequency point8, wi, ... wy),
and expressing it in a matrix form, we get the matrices in
(69) at the bottom of the page. Expressing (69) in a simple

notation S . . S
Least square approximation provides higher flexibility in
0Z =40. (70) modeling all types of interconnect models. However, the so-
- ag
1 0 - 0 0 0 : Re(H(0))
1wl o wf® —wiRe(H(w)) - —wi'Re(H(w:)) ag Re(H (w1))
= (69)
SRR : : by :
1w} wil —uwdReH(wy)) - —w¥ReH(wy))] | Re(H (wy))
Lb
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lution of (71) can be ill-conditioned. Also, the algorithm does (10). The variations in space for voltages and currents of a
not guarantee a passive macromodel. transmission line system can be expressed as

C. Chebyshev Polynomials

One of the efficient approaches for discretization is to ex-
press the variations in space for voltages and currents of Q
a transmission line system in terms lafiown basis func- I(z, s) = Z I.(s)B,(x) (76)
tions, such as Chebysheyv, [91], [37] or Wavelet polynomials.
For example, consider the single transmission line equations
(4) and (8). Assume that the voltagér, ¢) and the current ~ whereP and(@ are the degrees of freedom of approxima-
i(z, t) can be expanded in the form tion, while A,,,(x) andB,,(z) are the known expansion func-
N tions. Assume that the line is divided indd equal segments

. of length Az. The unknown voltage¥(x) are represented
v(z, t>=Z an(t)In(z), i, t>=Z b (1)L () in terms of values at nodes corresp(orzdingxto: iAT;
=0 =0 (73) (¢ =0, 1--- M). The current distributiod (z) is described
in terms of its values at the centers of thesegmentsy =
where T;,(z) is the nth degree Chebyshev polynomial; (i — 1/2)Az; (¢ = 0,1---M). Next, spatial derivatives
a,(t) andb,(t) are the unknown variables. The derivatives Of V(z; s) and(z, s) can be approximated using compact
of v(x, t) andi(z, t) with respect tar are also expanded ~central difference operator as
using Chebyshev polynomials as

N

IECLLE0) ) (€5 7 (5
5 N Jx it1 oz dzr |,_;
2 vz, t) = ()T () _ fivi2 = fic1y2 (77)
n=0 Ax
B, S
— iz, t) = b, ()T () (74) wherei denotes the node where the operator is centgiad,
Ox n=0 represents either 8 (x) or I(x). The unknown coefficients
a1 anda, are computed such that the desired truncation error
wherea,, (t), b, (¢) are related ta, (¢) andb, (¢) as priterig is satisfied. For example, fourth order approxirr?ation
is achieved wheay = 1/24, ap = 11/12. Performing dis-
1 cretization operation on TL equations (9), (10) results in a
an(t) = o (G 1(t) = Gry1 (D) discrete form [90]
n
1 /. .
ba(t) = o (bn—l(t) - bn+1(t)) . (75) —o1Zigzjalivze —oZipiyaliviye —oaZiayali1)0
Vin —V; .
= i=01---M—-2
s 1 =0,

Using (73) and (74) and the orthogonal properties Cheby-
shev polynomials, the Telegrapher’s equations (4), (8) can be I T
converted to a set of ordinary differential equations in terms = M,
of the unknown coefficients,,(¢) andb,, (¢). Az

One of the advantages of the algorithm is that it can also bewhereZi — RiAz + sLiAz andY; = GiAz + sCilx.

applied for interconnects with nonuniform line parameters Using suitable corrections for end-points, the set of equations

by expanding line parameters as Chebyshev polynomials e, esented by (78) can be converted to the standard MNA
with respect to positior:. Chebyshev approximations are orm

able to achieve better accuracy with fewer variables when Or'le of the advantages of the algorithm is that it can

compared to direct lumpe®@LC' segmentation. HOWever,  , pieve better accuracy with fewer variables when com-
the algorithm does not guarantee the passivity of the re- pared to direct lumpedRLC segmentation. Also, the

sulting macromodel. Similarly, an aIternati\{e approximation algorithm guarantees the passivity of the macromodel by
strategy can be adopted based on expansion§ft) and construction [90]

i(z, t) in terms ofwavelet basis functior{88], [89].

—o1Yi1 Vi1 — oYV — oY Vi
i=0,1.--M—1 (78

E. Integrated Congruence Transform

D. Compact Finite-Differences-Based Approximation Consider anm-conductor system and the TL equations

Compact finite-differences (CFD) [150]-based ap- represented by (19), which can be expressed after slight mod-
proximations were suggested in the literature to convert ification, in the Laplace-domain as
Telegrapher’s equations into ordinary differential equations
[90]. For the purpose of simplicity, consider the case of

a single transmission line system, represented by (9) and <3P+ Q +T@) Z(w,5) =0 (79)
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where proximation. Also, it guarantees the passivity of the resulting

macromodel.
4z, 5) = [I(% s) } p_ [L 0} Matrix-Rational Approximation:Consider the exponen-
’ V(z, s) 0 C tial form of Telegrapher’s equations describing the multicon-
R O ductor transmission lines, given by (44)
o-[tol e w
0 G 10 [V(d, s)} Z[V(O, )

} , Z=D+sE)

and arel(z, s), V(z, s) the vector of currents and voltages 1(d, ) 1(0, 5)

along the length of the line, of dimensian x 1 each. Next, D= [ 0 _R} E— [ 0 _L} (85)
define a transformation as -G 0]’ — 0

Z(z, s) = u(x) x 2(s) (81) whered is the length of the line. The matrix& is approxi-
mated using matrix-rational function as

where Z
Py m(Z)e” = Qy y(Z) (86)

wherePy, y(Z) and@Q y (%) are polynomial matrices ex-

w(@)amsn = [”i(@'mxn} _ [um---um(x)

Ti"g;'mx" i (z) - Uon(2) pressed in terms of closed-form Padé rational functions [39]
1
as
A= | - |- (82) N
Zu(s) P (M + N — §)IN! Y
~,m(Z ZO (M + NN j)!( )

Note that the transformation matri(z) is a function ofz o
only, and not dependent an Substituting (81) in (79), pre- Qn u( Z (M + N —j)'\M! V2 (87)
7=0

multiplying by the transpose ai(z) and integrating them (M + N)IGY(M — j)!
with respect to the normalized variabie(from 0 to 1), we

get With some mathematical manipulations, (86) can be trans-
N lated into a macromodel represented by a set of ordinary dif-
(SP +Q + T) 2(s)=0 (83) ferential equations, in a closed form. Since all the coefficients

in the macromodel are knowanpriori, in terms of the p.u.l.
parameters, the macromodel can be easily stenciled into a cir-
cuit simulator as the stamp of the transmission line. The fact

where

= / z)P(x)u(z) dx that the coefficientd’y r(Z) andQy »,(Z) are knowna
priori in closed form, provides substantial computational ad-
_ / Yu() dx vantage for this algorithm.
It can be proved that the matrix-rational function-based ap-
) proximation preserves the passivity of reduced model [39].
/ () dx. (84) Also, the extension of the above matrix-rational approxima-

tion-based technique to handle frequency-dependent param-

The transformation defined by the set of equations €ters can be found in [40].
(81)—(84) is called the integrated congruence transform
[86]. Expanding the expressions B @, 7 and with some ~ VI. M ODEL-REDUCTION BASED SIMULATION ALGORITHMS
mathematical manipulations, (83) can be translated into |nterconnect networks generally tend to have a large
a set of ordinary differential equations. It can be proved number of poles, spread over a wide-frequency range. Even
that integrated congruence transform-based approximationthough the majority of these poles would normally have
preserves the passivity [86]. very little effect on simulation results, however, they make

the simulation to be CPU extensive by forcing the simulator

F. Exponential Padé-based Matrix-Rational Approximation . iske smaller step sizes.

This algorithm directly converts partial differential equa- Dominant Poles: Dominant poles are those that are close
tions into time-domain macromodels based on Padé rationalto the imaginary axis and significantly influence the time as
approximations of exponential matrices [39], [40], [87]. In well as the frequency characteristics of the system. The mo-
this technique, coefficients describing the macromodel are ment-matching techniquesMTs) [59]-[75] capitalize on
computeda priori and analytically, using closed-form Padé the fact that irrespective of the presence of a large number of
approximant of exponential matrices. Since closed-form re- poles in a system, only the dominant poles are sufficient to
lations are used, this technique does not suffer from the usualaccurately characterize a given system. This effect is demon-
ill-conditioning experienced with the direct application of strated in Fig. 16, where itis clear that pdtewill have little
Padé approximations. Hence, it allows a higher order of ap- effect on the final transient result.
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Jw V(1)

A 4
Dominant pole _ _ -
P\ v(t) = kle t+k2e 1000tzk18 t
Responsa\_Response due to
P, =v-1000) Py=-1) *due top,

Real >1
Fig. 16. lllustration of dominant poles.
A brief mathematical description of the underlying con- where the superscrigi:) denotes theuth derivative. Using

cepts of MMTs is given below. Consider a single input/single a simpler notation, we can rewrite (93) as
output system and I (s) be the transfer functiod (s) can

be represented in a rational form as H(s)~H(s)
P(s) =mo +mis+mas® 4+ +mys"
H(s) = (88) no H(0)®D
Q) =Y om, m= T
where P(s) and Q(s) are polynomials ins. Equivalently,
(88) can be written as The coefficients of Taylor series expansiom;] are also

identical to thetime-domain momentsf the impulse re-
sponseh(t). This can be easily seen by using the Laplace

s)=c+ 2 s —p; (89) transform ofh(t) [77]
wherep; andk; are theith pole—residue paity, is the total H(s) = /OO h(#)e—t dt
number of system poles, anrdis the direct coupling con- 0

stant. The time-domain impulse response can be computed [z h(t) |1 — st + ﬁ —ow
in a closed form using inverse Laplace transform as o 2!
Np / h(t) dt + s/ (=1)th(t)dt
) =cét+ kel (90) 2]
‘ t
s / u
In case of large networks),, the total number of poles can 00 yiop
be of the order of thousands. Computing &ll, the poles Z < / th(t) dt) . (95)
will be highly CPU intensive even for a small network and i—0

for large networks it is completely impractical. Model-re-

duction techniques address the above issue by deriving a rePue to this analogy, the coefficients of Taylor series expan-
duced-order approximatiafi (s) in terms of dominant poles, ~ Sion, ¢n:), are generally referred to asoments o
instead of trying to compute all the poles of a system. As- It has been shown that the moments provide an estimation
suming that onlyZ dominant poles were extracted, (88) can Of delay and rise times [57], [58]. Elmore delay [57], which
be rewritten to obtain approximate frequency/time responses,aPProximates the midpoint of the monotonic step response

as waveform by the mean of the impulse response, essentially
matches the first moment of the response. This can be con-

N If) (s) . L E sidered as one of the basic forms of approximation. However,

H(s) = H(s) = Q s =¢ Z (91) in order to get accurate prediction of interconnect effects, it

is essential that the reduced-order model must match (or pre-
serve) as many moments as possible.

Several algorithms can be found in the literature for re-
duction of large interconnect subnetworks [59]-[94]. They
Moments of the Respons€onsider the Taylor series ex- can be broadly classified into two categories: 1) approaches

L
h(t) mh(t) = est+ Y ki, (92)

pansion of a given transfer-functioH,(s), at point,s = 0 based on explicitly matching the moments to a reduced-order
) model and 2) approaches based on implicitly matching the
H(s) ~ H(s) moments. The techniques such as AWE belong to the first
(H0)®  ,(H(0)® category and are discussed in Section VII. Techniques such
=H(0) +s T o1 as PVL, PRIMA, which are based on Krylov subspace for-
L (H(0)™ mulation, belong to the second category and are discussed in
T st (93)  section Vil

n!
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VII. M ODEL-REDUCTION BASED ON EXPLICIT ComparingH, from (94) and (100), we note that

MOMENT-MATCHING I 2
These techniques employ Padé approximation, based on mo =C— = —Z
explicit moment-matching to extract the dominant poles and -1 D
residues of a given system [8], [59]-[63]. Lot
A. Padé Approximation mi =— Z PR (101)
i=1

Consider a system-transfer functiéf(s) that is approxi-

; g Residues can be evaluated by writing the equations in (101
mated by a rational functioH (s) as y g q (101)

in a matrix form as

2 L " " A T
H(S)%I:I(S)Iao—i_als—i_a?s oo tans = Pr(s) pll p21 le -1 ky
1+bis+---+ b]wsjw Q]w(s) A2 a2 a2 0 o
(96) Py Py pr k2
whereayg, ..., ar, b1, ..., by are the unknowns (total of Z
L + M + 1 variables). Consider the Taylor series expansion R 1 L
of H(s) at(s = 0), in terms of its moments. Matching (s) P Dy rr 0 ¢
to the rational function approximation given in (96) (hence, mo
the name moment-matching techniques, which is also known my
as Padé approximation), we get _ (102)
a0+a13+a232+~~~+aLsL mp_1
1+0bis+---+bysM
mr,

=1mg+ mis+mas®+ -+ m(L+M)3L+M. 97)

L ) o ] In the above equationsrepresents the direct coupling be-

Cross multiplying and equating the coefficients of sim- yyeen input and output. More accurate ways to compute
ilar powers ofs starting froms“*! to s£*™ on both sides  an be found in [8].

of (97), we can evaluate the denominator polynomial coeffi-

cients as B. Computation of Moments
ML—M+1 MIL—M+42 - mr, by Having outlined the concept of MMTs, we need to
ML— M2 R bar—1 evaluate the moments of the system, which are required by

(98)-(102). Consider the simple case of lumped circuits
and the corresponding MNA equations represented by (50).

mr, mr41 v MppM-1 by Expanding the vectaK (s) using the Taylor series, we have
m
. [G+ sW|[Mo+ Mys+Mas>+--]=[]  (103)
mr+2
- . (98) where M; represents théth moment-vector. Equating co-
efficients of similar powers of on both sides of (103), we
Mr+M obtain the following relationships:

The numerator coefficients can be found by equating the re-

- GMy=b
maining powers of (from s° to s¥) as 0

GM; =-WM;_,, i>0. (104)

apg =1,
0 0 The above equations give a closed form relationship for the

computation of moments. The moments of a particular output
of interest [which are represented in (96)—(102)] are picked
from moment-vectordf;. As seen, (104) requires only one
ar =mp + Z bimp—i. (99) LU decomposition and few forward—backward substitutions
=1 during the recursive computation of higher order moments.
Equations (98) and (99) yield an approximate transfer func- Since the major cost involved in linear circuit simulation is
tion in terms of rational polynomials. due to LU decomposition, MMTSs yield very high-speed ad-
Alternatively, an equivalent pole—residue model can be vantage (100 to 1000 times) compared to conventional sim-
found as follows. Poleg; are obtained by applying a root- ulators.

a; =my +bimg

min(L, M)

solving algorithm on denominator polynom'@(s). In order Generalized Computation of Momentk the case of net-
to obtaink;, the approximate transfer function given by (91) works containing transmission lines, moment-computation
is expanded using Maclaurin series as is not straightforward. A generalized relation for recursive
oo L o~ computation of higher order moments can be derived as fol-
H(s)=é— Z e <Z A/fi ) (100) lows [62], [63], [67], [69], [72]. Considering the MNA equa-
= pr pintt tions containing MTL stamps (54) and expandifig:) and
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X(s) in Taylor series at an expansion point= «, we get
[72]

From the property of matrix exponentiation of an arbitrary
matrix A, we have

A A2 A"

=1 — —. 110
(o) + b(s—a)Jr- b(s_a)n T T Tt (110)
1! n!
Let
‘(Mo +Mi(s— o)+ -+ Mp(s —a)"] = [b] (105)
A= (D+sE)d. (111)
wherey)("™) denotes thevth derivative ofy(s) and M, de- _
notes thenth moment ofX(s) ats = «. Equating coeffi- Hence, (110) can be rewritten as
cients of similar powers of — « on both sides of (105), we (DFsE)M 1 (D+sE)d ((D+sE)d)?
have 1 2!
((D+ sE)d)"
1Mo =b L (12
H(L)
)M, + P M, =0 Expanding the RHS of (112) further, and collecting the terms
1! in powers ofs, we have
ey
== [IM, = _¥ M, c(PHeE)d
1! I Dd 1 ooy
Ay e + — + D d +
[Y|M2 + —— 1 M, + TMO =0
ey ey +s [&l + l(DE + ED)d*
:>:>[1/)]M2:—< 1 1 o Mo) 2!

1
+ §(D2E +DED + ED*)d® + - }

2 ")
(67) M,
o W M

r=1

= [IM2 =— ) )
2\~ E*’ + —(DE® + EDE?
(106) te [2! DB+

2 3
Generalizing (106), a recursive relation for arti higher + E’DE+ E°D)d’ + - } :

order moment can be obtained as

(113)
[¥(c)]Mo =b Equating (109) with (113) gives
n (z/}(1’)|5=a) Mn—r _ I Dd 1 2 2
[P()Mp == - . o7) Fo=g+ 7+ D7+
r=t —F0,0+F0,1+F0,2+"'
It can be seen that the coefficient on the left-hand side of = Ed 1 (DE + ED) &
(107) does not change during higher order moment compu- 2
tation. Hence, it requires qnly one LU decomposition and + l(D2E+DED+ED2)d3 +
n forward—backward substitutions to computenoments. 3!
Also, it is easy to note that the lumped networks are a special =F1 o+ P 1+ Fya+---
case of (107) [whera(_”) = 0forr > 2, inwhich case (107) Fy— E2d2 L
reduces to the form given by (104)]. Next, (107) requires the 2!
derivatives of(¢)). These can be obtained using (53) as =Fo o+ Fa1+Foo+--- (114)

and so on. From the above results, a recursive relationship

1 — W. 0 () — 0 0 for generating transmission line moments can be obtained as
[”(/}] (1) yt [”(/)] (r) yt
1(/:>L2d) 0 Yy 'Ly ?108) P . _ (DFi 1 +EF;y;)d
) = v it
Thg dgrivativesz[) can be obtained as a function of the i>0, j>0, (i+5)#0
derivatives of the entries on the RHS of (46) and proper ap- Fi ;=0 (i <0orj < 0), Foo=1 (115)

plication of Leibnitz’s theorem. However, this requires the
derivatives of the exponential stamp represented by (45). A Convergence of (115), in practice requires 20-30 terms.
brief review of computation of these derivatives [72] is given It is to be noted that the convergence of the series repre-
below. sented by (110) can suffer, if for the first few ter®8 grows
Transmission Line MomentsConsider the exponential — quicker thann!. In order to control this problem, note that
stamp represented by (45). We wish to expand the exponenthe growth ofA™ depends on its eigenvalues. If all the eigen-
tial matrix in Taylor series, as follows: values ofA are within the unit circle in the complex plane,
then A™ will decay with increasing:, leading to fast con-

ePHsB — Fo 4 Fis+ -+ Fos™. (109) vergence. From (110) one can see that the eigenvaluds of
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Circuit equations
v |[X| = | /

Cost = 0" Moments of the MNA matrix

2
Y(s) = Yo+ Ws+y,s +...
System Moments

(Moments of the output vector)

Cost=1L/U

6(5) = M0+Mls+M2s2+ )

N Rational transfer function
Padé | Cost=0 / approximation for a particular

element of X(s) (corresponding
to the output node)

ki
Xou$) = X
i p;
* Cost negligible compared to L/U.
Fig. 17. Summary of the steps involved in the MMT algorithm.
can be controlled by varying the leng#h By restrictingd A summary of the steps involved in the Padé-based circuit

to be small enough, such that the eigenvalugdgb# sE) d reduction is given in Fig. 17.
will also be small (over a given frequency range), so as not
to cause truncation errors or slow convergence. This can beC- Limitations of Single Expansion MMT Algorithms
achieved efficiently, by noting that Obtaining a lower order approximation of the network
transfer function using a single Padé expansion is commonly
referred asasymptotic waveform evaluation (AWH) the
literature. However, due to the inherent limitations of Padé
approximants, MMTs based on single expansion often give
inaccurate results. The following is a list of those properties
that have the most impact on MMTSs.
ePHsEY o4 Fis+ -+ Fs" + The matrix in (98) (known as Toeplitz matrix) becomes
=(Pg+ P15+ -+ D,5™) @ncrle_zasinhgly iII-conditionIed as its sizde increa_lses. 'I_'hri]s
" implies that one can only expect to detect six to eight
(ot Pusteet Bus”)  (117) accurate poles from a single expansion.
which will give + Padé often produces unstable poles on the right-hand
side of the complex plane.
- » Padé accuracy deteriorates as we move away from the
F, = Z ©;®r—;. (118) expansion point.
=0 » Padé provides no estimates for error bounds.

The line can be subdivided by power of 2 (i.e., two sec- In addition, there is no guarantee that the reduced-model ob-
tions, four sections, eight sections) and the moments of  tained as above is passive. Passivity implies that a network
the smallest section that meets the convergence requirementsannot generate more energy than it absorbs, and no pas-
are calculated. From these, the moments of the entire line carsive termination of the network will cause the system to go
be recursively calculated with the help of (118). unstable [83]-[92]. The loss of passivity can be a serious

(DHsE)d _ (D+5E)d)/2) (D+sE)d)/2) (116)
In other words, moments of a line can be generated by

squaring half-line moments. Lak represent the half-line
moments, then
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Radius of convergence 0 Insignificant pole
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(a) Dominant poles from AWE (b) Dominant poles from CFH

Fig. 18. lllustration of CFH.
problem because transient simulations of reduced networks A jw (Imaginary axis)
may encounter artificial oscillations.

In systems containing distributed elements the number of = Fuas s—
dominant poles will be significantly higher, and it is very dif- H.o(5) — (2" hop)
ficult to capture all of them with a single Padé expansion. H CAHR DN,

This lead to the development of multipoint expansiontech- (| 77Tt idpoints
nigues such asomplex frequency hopping (CFHyhich are H, () Fmid §+———— (3% hop) _
summarized in the next secton. |} | e

(fmid)z e -~ "7
D. Complex Frequency Hopping Hy(s) (1* hop)

CFH extends the process of moment matching to multiple
expansion pointshppg in the complex plane near or on the
imaginary axis using a binary search algorithm [72]. With Fig. 19. Graphical illustration of transfer-function-based search
a minimized number of frequency point expansions, enough algorithm.
information is obtained to enable the generation of an ap-
proximate transfer function that matches the original func- 1) Transfer-Function-Based Approachn this approach
tion up to a predefined highest frequency of interest. Using the transfer functions obtained at various hops (expansions)
the information from all the expansion points, CFH extracts are used to ensure the accuracy of the reduced-order model
a dominant pole-set as illustrated in Fig. 18(b). In addition, up to the highest frequency of interest. Steps involved in the
CFH provides an error criterion for the selection of accurate algorithm are given in Figs. 19 and 20. It is to be noted that
poles and transfer functions. the computational effort needed for a comparison as required

Selection and Minimization of Hops in CFHA Padé ap- by Step 5is trivial as the responses can be computed in a
proximation is accurate only near the point of expansion and closed-form using the transfer functions generate8teps
its accuracy decreases as we move away fronptiet of 2 and3. Here,syy, is a predefined threshold for the relative
expansion (hop)in order to validate the accuracy of such error in the transfer functions. At the completion of the bi-
an approximation, at least two expansion points are neces-nary search algorithm, a set of transfer functions are gener-
sary. Accuracies of these two expansions can be verified byated. When evaluating the frequency response at a frequency
matching the poles generated at these two hops [72] (re-point «, only the transfer function that is valid in the region
ferred agpole-matching-based approactilternatively, the containinga is used. This is repeated for all other frequency
two hops can be verified for their accuracy by comparing points to obtain the frequency response of the system.
the value of the transfer functions due to both these hops 2) Pole-Matching-Based Approachn this approach,
at a point intermediate to them (referred tesnsfer-func- poles of the transfer function are explicitly evaluated at
tion-based approagt73]. CFH relies on a binary search al- each hop and the hops are verified for their accuracy by
gorithm to determine the expansion points and to minimize comparing the poles from two adjacent hops using a binary
the number of expansions. The steps involved in the binary search algorithm. If a matching pole is found between two
search algorithm for both the above approaches are summaadjacent expansions, then the binary search is stopped. The
rized as follows. distance between the matching pole and the expansion point

Real axis
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o Stepl: Set f; =0and fgy=f (Fig. 19).

max

* Step 2: Expand system’s response at frequency f; = 0. Determine the coeffi-
cients of the corresponding transfer function H,(s) using (98) and (99).

* Step 3: Expand system’s response at  fy = f Determine the coefficients of

max*

the corresponding transfer function Hy(s).

* Step4: Set f,;4= %(fL+fH). Calculate H,(j2rf,,;,) and Hy(j2nf, ;) using
the transfer function coefficients obtained in Steps 2 and 3.

e Step 5: If |HH(j2nfmid)—HL(j2nfmid)| <&,,, Go To Step 6. Otherwise expand
at f,..q and obtain H, (s).

e Step 6: If the threshold condition specified by step 5 is satisfied, STOP. ELSE
repeat steps 2-5 between every two consecutive frequency points (e.g.,
between f; & f,.q and f.. & fy).

Fig. 20. Transfer-function-based binary search algorithm.

f
max\O A Frequenc
pole match (Ppay> Pria1) A q y Expand at(f,;q+f 022
O 0 mid" ‘max
Proigr
pole match (pig1> Pmia) T
Expand at f,;4
pole match (pig» Po) ijd
Expand atf, ..
® Accurate poles Prnax
O Inaccurate poles
& Expansion points
Expand at the origin
Py

Fig. 21. Pole-matching-based binary search algorithm.

under consideration defines the radius of accuracy for the E. Reduced-Order Models of Multiport Linear Networks
corresponding expansion. All the poles that are within the g5 tar we looked into the model-reduction of single
radius of accuracy are treated as accurate poles and arg,nt-single output systems. In this section, a discussion
retained in the final pole-set. The poles that are outside thepertaining to the multiport networks is given. Consider the

radius of accuracy are considered as inaccurate poles angyeneral multiport interconnect linear subnetwork shown
are discarded. Fig. 21 illustrates the idea of the pole search.jn Fig. 22 [this corresponds to the linear subnetwark

Steps involved in this approach are identical to the one giventhat is described during the general formulation (56) in
in Fig. 20, except for the matching criterion, which is based Section V]. Such a network can be characterized in terms of
on poles here. Once a set of dominant poles are obtainedy, (admittance)z (impedance)f (hybrid) or s (scattering)
residues of the system are obtained using (102). Furtherparameters. For the purpose of simplicity of presentation,
details of CFH and its search algorithms can be found in only the discussion with respect toparameters is consid-
[72] and [73]. ered in this paper (the idea presented here can be easily
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2) CFH accurately computes the dominant poles of a
system. Generally in a system with a large humber
of dominant poles (20-40), pole-sets belonging to
different driving point admittancesYf;) obtained
using CFH contain mostly identical poles and with
only a very small number of poles differing among
these sets.

Residue Computation Algorithm: Residue computa-
tion algorithm [76], which combines the merits of two
different approaches of CFH, namelyransfer-func-
tion-based approactand pole-matching-based approach
Fig. 22. Multiport linear subnetworkr. The transfer-function-based approach collects a set of

transfer functions thakccurately matches the frequency
extended to other types of characterization). The network response up to the highest frequency of inter€ the
can be characterized usipgparameters as other hand, pole-matching-based approachects all the
dominant poles accurately up to the highest frequency of in-

Yu Yoo Ve Vi L terest In this algorithm, the relationship between frequency
=11 response and pole-residue model of the system is used to
Y1 Yoo oo Y, . Vi L. compute the residues (this idea is illustrated in Fig. 23) as
(119)
q k‘
Using model-reduction techniques, each efitgyin (119) e+ . —— = H(s) (121)
can be approximated by@pole lower order model having i=0 pi
a general form as follows: ) )
whereg is the total number of dominant poles ) extracted
o L using CFH and¥;) are the corresponding unknown residues,
Yi(s)=c"7 + Z — 1<(4, ) < ne (120) cis the direct coupling constant, aif{ s) represents the fre-
a=1 %~ Pa guency response obtained using the transfer-function-based

approach.

In order to compute the unknown residues, a set of linear
equations can be formulated using (121), spanning many fre-
guency points in the region of interest as shown below:

wherep’: andk’:7 are thesth dominant pole—residue pair at
a portj due to an input excitation at paitc’ 7 is the direct
coupling constant, ang 7 is the number of dominant poles
used for approximating; .

There are two main approaches available in the literature

q
to obtain the matrix-transfer function represented by (119) ki
, + =H 122
and (120). In the first approach, a common set of poles ob- ¢ ; s —p; () (122)
tained for any one of the entri@$; are used for the compu- ki ks E
tation of residues of all other entries [64], [66]. However, this ¢+ + +ot I — =H(sp)

. . . . Sm — P1 Sm — P2 Sm —
can lead to inaccurate results, since the residue computation m =P m =P m = Pq

using (102) is very sensitive to the location of poles of each
Y. In the second approach, separate set of poles are used

for the computation of residues of each entry [68]. This ap- wheres;, represents theth frequency po_int. In Fhe case of
proach can lead to a macromodel with a very large r]umbercomplex poles, both the pole as well as its conjugate should

of poles. However, it is to be noted that the nonlinear simu- °€ uséd while formulating (123). Lég,,, be the total number
lation time using general purpose simulators is superlinearly ©f freguency points matched. Next, equating both the real and
proportional to the number of states involved (the number Imaginary parts of (123) separately, we obtain a new set of
of states is generally given bYotal number of states = linear equations as

Total number of poles x Total number of ports). Hence, AK — H (124)

the second approach can become inefficient in the presence

of a large number of ports. Both these difficulties can be ad- where K € %7*! is a vector containing the unknowns cor-

dressed using the Block CFH technique [76], which provides responding to the real and imaginary parts of residies,
schemes to minimize the number of p0|eS, as well as to im- §R2Nm><1 is a vector Containing real and imaginary parts of

prove the accuracy of residues. the frequency responses representeddiy,,, ), and A ¢
Selection of Dominant Pole-Setn order to minimize the R2Nm x4 consists of entries contributed by the LHS of (123).

number of poles inthe matrix-transferfunction, the fO”OWing In case the direct Coup"ng constantis Computed by addmg it

(123)

two propositions can be used. as one more variable in (124), then the order of matrix/vec-
1) In general, the pole-set corresponding to any indi- tors indicated above will change frogto ¢ + 1.

vidual transfer impedances’y) is a subset of the Next, the solution of (124) is needed to evaluate unknown

union of all driving point impedance&%;) [158]. residuesK. In order to improve the accuracy of residues, it
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Poles Approach TF Approach

H4(S) { :
Hys) {

Hy(s) 1
Hy(s)

Poles Frequency Response

~ ( Residues ) «

Fig. 23. lllustration of the new residue computation algorithm.

is necessary to match as many frequency points as possibld- Interface to Circuit Simulators
using (123). However, in the case of choosing a number |, his section, a review of techniques to link re-

of frequency points higher than the number of unknown ced-order models to nonlinear SPICE-like simulators is

residues, matrixA will not be square. To overcome this  jescried. The reduced-order model for the linear subnet-
d|ff|CL_JIty, (124) is solveql us_lng_the least mean square error work is obtained as shown in (127) at the bottom of the
aIgothm and the solution is given by a new set of normal page, where is the number of poles in the common pole-set
equations P. k%3 and ¢t represent residue and the direct coupling
constant for the parametey;;, respectively. Derivation

of differential equations from reduced-order interconnect
models is referred amacromodel synthesighe differential
equations can be easily linked to nonlinear simulators as they
are described in time-domain. This process is illustrated in
Fig. 24. In general, a set of first-order differential equations
in the state—space domain can be described as

AK = A'H (125)

where

A, = A'A (126)

is a square matrix of order x ¢. A" represents the trans- [X} = [A]lX] + [B][U]
pose ofA. Formulating the residue equations in the form Y] =[ClX] + [D][U] (128)
given by (125) leads to additional computational savings as
the number of equations to be solved remains equal to the whereA € R"*" is a state-matrixB € R"*"~ is a matrix
number of unknown residues despite the increase in matchedhat relates the inputs to state-variabt@ss R~ =" is a ma-
frequency points trix relating state variables to the outpui§)( D € R"~*"~

In the multiport CFH algorithm, an accurate frequency-re- is a matrix relating inputs directly to the outpW; is the
sponse for each of the entries in tiiematrix is obtained state vector of length, andU is the input vector of length
using complex frequency hopping based on transfer-function n,. (wheren is the number of ports).
approach. Next, an accurate pole-set is obtained as the union Given a matrix-transfer function described by (127),
of driving point impedances. Using these accurate poles several forms of time-domain realization can be obtained.
and frequency responses, residues for egghis obtained For the purpose of illustration, macromodel synthesis using

through the residue computation algorithm. Jordan-canonical [152], [153] form of realization is given
q 1,1 q 1,2 q 1,n

Cl’l—|— i Cl,2+z % Cl,n,r_’_ i

= TP =1 5T b =1 5 TP

Y.(s) = 127

q N, L q Ny, 2 q Ny, T

k‘ T k T k 7wy T
Cn’”l—i- 7 Cn"’l—i- 7 cn,‘.,n,\._’_ 7
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where A4, is a diagonal matrix constructed using poles and
A7 is complex conjugate ol; . Next, introducing an equiv-
alence transformation defined by

. (1 I
[#] = [T][z], T= i —u} (130)
7 (129) can now be easily transformed into
3-;5 = Ax 3 By .
¥y = Cr+Du |:$i'1:| |: Re(Al) |m(A1):| —Ii'l:| |:2R€(b1):|
. = + u
Zo —|m(A1) Re(Al) L Zo 0
Fig. 24. lllustration of macromodel synthesis for nonlinear z
simulation. y=[Re(C1) Im(Cy)] [A } . (131)
L2
below. Consider a two-port network containing two common  An jllustrative example of the above steps is given below.
poles, whose transfer function is described by Consider a two-port network containing one pair of complex
polesi; » = w £ ¢z. Let the corresponding residues at dif-
1,1 22: kgt 1,2 22: kl:2 ferent ports be; ; = (r £ 4v);, ;. The original Gilbert's
ctt 4+ -2 b + a . . . 7 ?
s —pa 5 —pa |:V1:| [h} realization will yield
2 2 o ) ;
Ay ko 2243 il I ] rwtiz 0 0 0 o
am1 S — Pa a1 S — Pa T2 _ 0 w1tz 0 0 X2
il 0 w— 1z 0 T3
A Jordan-canonical [152], [153] form of realization for this | . 0 0 0 w— iz -
case would need four state variables, and it can be repre- 1 0
sented as
0 1 U1
+
.’t T 1 0 (%)
& rp1 0 0 0 ! 10 0 1
T2 |0 p O O xz+01[v1} i
AR M
T4 - p2 T4 _ |:(7 + iU)ll (7’ + iU)lg (7’ — iU)ll (7’ — iU)lg
y = Ll} (r+iw)a (r4+w)ee (r—iv)a (F—iv)a
L 42 1
X1 o
B 'ki‘:l k]]:72 k;;l k;,2:| Zo . 5
= ;21 ;22 ;21 ;22
L&y k] ky ™ k3 T3 4
X4 .
Al b2 Ty Define
+ 21 22 s 1 0 1 0
0 1 0 1
T 0 —i 0
If the matrix-transfer functior¥ (s) contains complex (L) X 6 X
(3 —1

poles, then they need to be treated differently as they do not
have a direct meaning in the time-domain. However, since  Next, the realization represented by (131) can be obtained

all the coefficients of the denominator polynomialof( s) as
(which are obtained through Padé approximation) are real, . .
if a complex numben is a root ofY . (s) then its complex 1 - oW 0 2 0 1 2 0
conjugate)* is also a root ofY . (s). Hence, a Jordan-form Zo 0 w 0 2z To 0 2| [wn
of state—space realization for a complex pole-pair would be s = =z 0 w 0] |z, 1o o s
[153] : L 0 -2 0 wl]|. L0 0
X4 T4
.’i‘l Al 0 Tl bl _.%1
2] L0 Al * T2 Tlo)™ L1:| [7’11 T2 V11 U12:| T2
y=1. 1= .
«1 | 1 L22 T21 722 V21 V22 T3
v=lcr 1" (129) A
T2 LT4
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Port #1 Port #2

, i
e r «—?
v V2
Ry -1 Ciivm CraVn2 dipvy dyv, €1V CoVma R 1

7 a7
11 22

(a) Realization of (137) (b) Realization of (138)

Ynl Va2

C, =IR 1 a12Vn2 byv, byavy C,a =IR i a1V byyvy byv,
nl = a_ n2

11

(c) Realization of(135) (d) Realization of (136)

Fig. 25. lllustration of equivalent subcircuit generation from macromodels.

Unified Transient Simulation'Once a matrix-transfer  purpose of illustration, consider a simple case of two-port
function describing the multiport interconnect network is ob- network with two states represented in the form of (132)

tained, a time-domain realization in the form of state—space
{3‘71} [an a12:| {371} _'_{511 512} |:U1:|
T2 az  az | Lz ba1 b2z ] Lve

equations can be obtained as
0 diy d
|:L1:| [011 012} {$1}+[ 11 12} [Ull (134)
=0 (132 () Co1 Ca2] LZ2 do doal Lv2

wherei,. andw,. are the vector of terminal currents and volt- ~ Next, (134) can be rearranged as
ages of the linear subnetwork{described by (56)]. The dif-
ferential equations represented by the macromodel (132) can
be combined with (55) using the relation = (L. )'v,, as

d
dt

[2r(B)] = [Ax][z=(8)] = [Bx]lix(?)

[ (1)] = [Cxllz ()] + [Dx][Ex ()

]
]

1 =anx1 + a1222 + bi1v1 + biavo (135)
T2 =a21%1 + a22%2 + bo1v1 + bos v (136)
d i1 = 1121 + c12%2 + divy + diave (137)

dt #x(t) = Axzr(t) — Brix(t) =0 19 = Co1T1 + Co2T2 + do1v1 + daova. (138)
(L)'wg(t) — Crzr(t) — Dyig(t) =0
d .
C¢% V() + Gyuy(t) + L (t) + F(uy(t)) — by(t) =0. In the above equations, the port voltages and currents are
(133) represented by , v andiy, i, respectively. An equivalent

network representing (135)—(138) can be constructed as

shown in Fig. 25. Each state in the macromodel requires a
Using standard nonlinear solvers or any of the general-pur- separate node in the equivalent circuit and are represented by
pose circuit simulators, the unified set of differential equa- nodesni, n.. The state variables;, x> can be represented
tions represented by (133) can be solved to yield transientby the capacitor voltages. These capacitors are denoted by
solution for the entire nonlinear circuit containing intercon- C,, 1, C,2 and the corresponding voltages#yi , v,2. Next,
nect subnetworks. For those simulators (such as HSPICE)the terms such ag;;z; in (135)—-(138) can be represented
that do not directly accept the differential equations as input, by voltage controlled current sources. Equations (135) and
the macromodel represented by (133) can be converted to ar{136) are fully represented by Fig. 25(c) and (d). Output
equivalent subcircuit and is described in the next section.  equations represented by (137) and (138) are realized

Conversion of Macromodels to Equivalent Subcir- through equivalent circuits shown in Fig. 25(a) and (b).

cuits: Conversion of differential equations to equivalent Generalization of the above discussion in the presence of
subcircuits can be accomplished in several ways. For themore number of states or ports is straightforward.
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VIIl. M ODEL-REDUCTION BASED ON KRYLOV-SUBSPACE system, as represented by (142). Expanding it in terms of
TECHNIQUES Taylor series, we have

Direct MMTs such as AWE, discussed in Section VII, have
some disadvantages associated with them. First one among Y (s) = LT (I + sA+ s°A% + $*A° + ... + sPAT)R
them is the ill-conditioning associated with the moment-ma-
trix. Due to this difficulty, the number of good poles that
could be extracted from any expansion point is generally
fewer than ten poles. The second major difficulty is that they
do not guarantee the passivity of reduced models. In order
to address these difficulties, a parallel class of algorithms,
which can be classified a@adirect moment-matching tech-
nigueswere developed [77]-[90].

s*(LTA*R)

[l
[M]=

k=0

s*mi  wherem;, = LYA*R.  (143)

[l
[M]=

=~
Il
=

Ideally, increasing the order of the Padé approximation

3 . (which is equivalent to matching more number of moments)
These algorithms are based on what is knowkKggov- should have given us better approximation results. How-
subspace formulatioandCongruent transformatiarOne of ever, in practice, this is true only up to very limited order,

the main features of these algorithms i; that t.hey gonstructbeyond which Padé approximation will not yield any better
the reduced-model based on the extractioleafling eigen- results [77], [160]. This can be explained by examining

values (those with the largest magnitudé)a given system o nature of higher order moments, which are given by
(onthe contrary, the reduced models from the CFH techniquemk — ITA*R. As can be seen. when successive moments
discussed in Section VII-D is based on extracting the dom- .4 explicitly calculated, they are obtained as powers of

inant poles of a given system). In the rest of this section, 4 ith the increasing values of", this processquickly
we w_iII describe the concept and important features of these converges to an eigenvector corresponding to an eigenvalue
algorithms. of A with the largest magnitudeAs a result, for relatively
large values of k", the explicitly calculated moments
My, Mpt1, Met2, - - -, Will Not add any extra information

Recall from Section IV, the time-domain MNA and the to the moment-matrix, as all of them contain information
corresponding output equations can be represented in thedonly about the largest eigenvalue. In other words, the rows
form beyond ‘%" of moment-matrix are almost identical (or
parallel to each other), making the matrix ill-conditioned.

2) Relationship Between Eigenvalues and Poles of the
System:In this section we will show the correspondence

Beqvt zeqmt between the leading eigenvalues and poles of the system. It

w =L x(t), L eyt (139) is important to understand this concept as the Krylov-sub-
space-based techniques obtain the reduced-models by
extracting the leading eigenvalues of a given system.
Consider (140), and assume that the matAxcan be
diagonalized in the form

A. Preliminaries

Ci(t) + Gz(t) = Bu(t), C,Ge R

wheren represents the total number of MNA variables. Pre-
multiplying both sides of (139) b@& !, we can write

Ai(t) ==(t)— Ru(t), A=-G'C, R=G'B A=F)\F™ (144)

w =L x(t). (140)
where A = diagh; Az ---A,] is a diagonal matrix whose
diagonal elements represent the eigenvalues of matrthe
matrix I’ contains the eigenvectors of matex Using (144),
the transfer-function represented by (142) can be rewritten as

Taking the Laplace transform of (140), we can write

sAX(s) =X(s) — RU(s)

W(s) =L"X(s). (141) Y(s)=L"(I-sFA\F"')™'R
=L'F(I-s)\"'F'R
1
Rearranging (141), we can write the transfer functiofs) Y
of the given system as =I"F S | F 'R (145)
1-—sA,
vis)= WO _prir_sair (142) _ o
U(s) which can be simplified as
wherel is an identity matrix. Y(s) = Z o _ Z — (/) _ Z ki
1) Why Direct Padé-Based Approximation (Moment-Ma- — 1—sA; s—(1/X\) s—p;
trix) is lll-Conditioned: Consider the transfer-function of a (146)
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where; is a function of the eigenvectors of matek andk; Next, consider the circuit equations (140) and a simple
represent the residues. From (146), we can draw following similarity transformation as follows:

inferences. 1) Poleg; are the reciprocal of eigenvalues of

matrix A; the leading eigenvalues (those with largest mag- AK = KH, (150)
nitudes) correspond to the poles closer to the origin. 2) The where the transformation matri is defined as
transfer function oft"(s) can be easily obtained in terms of 1

poles and residues, once the eigenvalues and eigenvectors of K=[RAR --- A" R] (151)

A are available. _ o _ and H,, has theupper-Hessenberg companion forais-
However, for large interconnect circuits, it would be im-  cyssed above. Obviously, siné&, is related to the matrix
practical to compute all the eigenvalues and eigenvectors. 4 through a similarity transformation, its eigenvalues are

Hence, in the following sections, we will review some of the the same as that of. Although it looks straightforward,

efficient techniques to extract leading eigenvalues. this approach has the following limitations.
Computation of Eigenvalues of Matrix4”: In general, Computation of H, using the relation (150)
the numerical computation of all the eigenvalues and eigen- (g, = K~1AK) requires the inverse of the matrix

vectors of a given matrixd becomes exceedingly expensive k. However,K is a dense matrix and, hence, computation
as its size gets above a few hundred. The general approachy its inverse will be expensive. Alsd is likely to be

in such cases is to approximatewith a smaller matrixA, ill-conditioned since the columns d& are formed based
such that the eigenvalues df are reasonable approxima-  on the sequencd’R which quickly converges to the eigen-
tion of the leading eigenvalues of. Due to the relatively  yector corresponding to the largest eigenvalue. In the next
small size ofA, finding its eigenvalues will be a much sim-  gection, we will describe general techniques to overcome

pler problem than finding the eigenvalueshfNext, we will these problems. These algorithms belong to a class of
review some of the basic matrix forms [160], which would  methods known akrylov-subspacéechniques.

be helpful in understanding the eigenvalue computation al-

gorithms presented in this section. B. Krylov-Subspace Methods for Iterative Computation of
Orthogonal Matrices: A real matrix@ is orthogonal if Eigenvalues
Q=1 (247 We will start by replacing the matri¥ in (150) with

an orthogonal matrixQ such that for alln, the leadingn
columns of K and @ span the same space. This space is
called Krylov-subspace and is denoted byA, R, n). In
other words, any vector that is a linear combination of the
leadingn columns of K can be expressed also as a linear
combination of the leading columns of. Mathematically,

we will express this as

All columns, g; of orthogonal matrices have unit two norms
or ||g;|]2 = 1 (which implies thag! ¢, = 1) and are orthog-
onal to one another (which means thﬁ'qj = 0). For the
special case whe@ is a square matrix, the above definition
impliesQ ! = Q7.

QR Decomposition:Let K be arm xn matrix withm >
n. Suppose thak has full column rank. Then there exists a
uniguem x n orthogonal matrixQ and a unique upper-tri-

. _ n—1
angular matrixR, with positive diagonals{; > 0) such (4, R, n) = ColumnSpace([R AR --- A" "R])

thatK = QR,,. There are several techniques (suchmesi- = ColumnSpace|Q)]. (152)
ified Gram—Schmidt orthogonalizatiggrocess) available in
the literature for performing this decomposition [160]. In contrast to matri¥(’, the matrix@ has the following ad-
Upper-Hessenberg MatrixA matrix H is called vantages.
Upper-Hessenberij H;; = 0 for (¢ > j +1). For example, @ is well conditioned.
consider an upper Hessenberg matrix of orgenaving the « Itis easy to invert sinc@* = Q*.
following form (which is known agompanion forgt * Most importantly, we can compute only as many
0 0 0 -+ 0 —c¢p1 leading columns of as needed to get accurate solu-
100 - 0 —c tion (more details about this are covered later in this
section).
H— 0 10 (148) The next question is, how do we get the matg® We can
0 achieve this as follows. Expressing the matkixusing QR
0o decomposition aK = QR,, (where@ is an orthogonal ma-
Co trix and R,, is an upper-triangular matrix), we can modify
L: oo 1 —cp (150) as
One of the important advantages of the above companion
form is that its characteristic polynomia(x) can be ana- H, =K 'AK
lytically computed and is glve:l by —(QR,)"“A(QR,)
i=1 or
The roots ofp(x) give the eigenvalues df. Q'AQ=R,H,R;' = H. (154)
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SinceR, andR; ! are both upper triangular ad, is upper _>‘_11_ ________ »a
Hessenberg, it is easy to prove that the new maffiix— l‘ l‘
R,H, R}, is also upper Hessenberg. IRl

Next, let us assume that we will use only the first leading (a) Computation ofy,
columns ¢ < n) of Q. In this case, the matrices under con- A Ag,
sideration will have the following dimension§ € R™*7?, -
andH € R?*1. The implications of (154) is that we can re- q, . :h21
duce the matrixA of dimensionn x n to a smaller upper PR I
Hessenberg matrik of dimensiong x ¢ using orthogonal = kEeedoteo---w-- »a
transformation. In addition, the eigenvalues of the smaller ) h '\
systemH are approximations of the firgt leading eigen- 11
values of the larger system representeddby

Next, we will show that the columns @ can be com- Fig. 26. lllustration of steps in Arnoldi algorithm.
puted one at a time giving us the advantage of computing
only as many leading columns ¢} as needed. One of the
popular approaches used for partial reduction of a large ma-
trix to a smaller upper Hessenberg matrix usihgs known

(b) Computation ofjz, 11, andhsy

Premultiplying both sides by!', we have

asArnoldi’s algorithm[80]-[87], [160]. More details about ¢ Aq; =hug{ qy +hagi e

this are given in the next section. qlTAq1 =hyy. (158)

C. Arnoldi Algorithm for (Partial) Reduction Knowing the value of:;; and using the fact thalig,|| = 1,
Assume® = [¢; ¢, -+ q;], Whereg, represents théth we can computé; from (157) as

column of matrixQ. From (154), we havd@ = QH , which

can be written as o1 = ||Agy — hi1qy]|. (159)

The direction forg, can be obtained using (157) as [illus-

Alla| || |6 |% trated in Fig. 26(b)]
Aq; —hyiqy
=] |e||B] | =", (160)
hun i hag oo ees Similarly, the rest of the columns @@ and H matrices can
hot hay hog --o oo oo be obtained by generalizing the steps as shown in Fig. 27.
0 hs hgz - e ol (155) Note that we did not need to explicitly compute the product

A*R. As aresult, we were able to avoid the ill-conditioning

problem arising due to the quick convergence of the sequence

|R AR A’R AR .| to the eigenvector of the largest

) eigenvalue.
Recall that all columnsy; ofTorthogonaI matrices have The columng; computed by Amnoldi algorithm are called
[lg:1[2 = 1 (which implies thay; ¢; = 1) and are orthogonal  Arnoidi vectors. The loop over updatingz corresponds
to one another (which means thgltg; = 0). Using this 1, the modified Gram—Schmidt algorithni60], which
mformatlon, the flrst few steps in obtaining thi¢ and H subtracts the components in the directigasto ¢; away
matrices are outlined below. o o from z, leaving them orthogonal te. Computing a total of
Since thelg, [|2 = 1, an easy way to compute itistodivide  «1» Aoldi vectors costsk matrix-vector multiplications

the vectorR [from (139), assuming the single-input, single- involving A, plusO(k2n) related cost.
output caseR will be a vector] by its magnitudgR||, (we There are several alternative methods available in the liter-
get a unit vector in the direction df). This step isillustrated  4¢,1e for finding the basis for Krylov-subspace [85]. For ex-
in Fig. 26(a) ample, one can use multiple passes of orthogonalization to
increase the robustness of the modified Gram—Schmidt or-
thogonalization process.

. ) ) To recap, we started with the circuit equatidBis(t) +
To determingy, and the first column off, we multiply A Gz(t) = b(t) andw = LTz(t). We formed the product

by the first column ofp. This gives usdg,, whichisthefirst 4 _ -1 Using orthogonal transformation, we were able
column on LHS of (155). Equating it with the first column  , qetermine the leading eigenvaluestbthat correspond to

0, = B/||Rl|2- (156)

of RHS, we have the dominant poles of the transfer-function. In the following
section, we will show how to use this information to perform
Agq, = h11q1 + h21¢5. (157) circuit reduction.
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/** Arnoldi algorithm for (partial) reduction to Hessenberg form) - simple implementation

Begin function_Arnoldi
g = 2
17 IRl,

for j=11tok /*kis the desired number of columns for @ & H matrices */

/* get the direction for ¢, */

z= qu
Jori=1ltoj
hij = ‘IiTz 4
z = z-hyg;
end for
hj"‘lyj = ”Z",lf hj+1,j =0 rquit
q; = z/hj
end for

end function_Arnoldi

+1,

Fig. 27. Pseudocode for Arnoldi algorithm.

D. Circuit Reduction Using Arnoldi Algorithm An important criterion during the above reduction is the
accuracy of the response of the reduced system given by
(164). The frequency response of the reduced system (164) is
also a good approximation of the frequency-response of the
original transfer function (142). An indicator for the accuracy
of the response of the reduced system is the total number of
z = Q%. (161) moments it can preserve (match), for a given order of reduc-
tion (g). It can be proved that the reduced system (164) of
Using (161), we can rewrite Laplace-domain circuit equa- orderq preserves the first moments of the original network

Finding the reduced-order circuit equations can be ex-
plained by a change of variables in (139) by mapping the
vectorz of dimensiorn into a smaller vectat of dimension
g (¢ < n) using the orthogonal matri [80]-[92]

tions in (140) as [84].
R R In essence, we are able to implicitly match the moments
sAQX(s) =QX(s) — RU(s) and obtain a reduced-model without the need to directly use
W(s) =LTQX(s). (162) the moments as in the AWE algorithm. Hence, we will not

suffer from the same numerical ill-conditioning that is as-
Premultiplying both sides of (162) b®" and using the  sociated with direct moment-matching algorithms. The ac-

relationQ™TQ = I, we have curacy of the Arnoldi approximation gradually increases as
e . - the orderg is increased since more moments of the original

sQ" AQX(s) = X(s) — Q" RU(s) transfer function will be matched.
= X(s)=I-sQTAQ) 'Q"RU(s) A question that may possibly arise here: how are the
W(s) = LTQX(s) accuracies of Arnoldi-based approximation and direct

Padé-based approximation are compared? It was shown in
Section VIl that a Padé approximation of orgenatches the
Hence, the transfer-function of the reduced system can befirst 2¢ moments. However, an Arnoldi-based reduction of
written as orderq matches only firsty moments [84]. Essentially, this
means that, for a comparable accuracy, the reduced-model
V() = W(s) _LTQ(I - 50" AQ)" Q"R from Arnoldi will have double the size of the reduced
U(s) model from direct Padé-based approximation (in other
f/(s) :LTQ(I — sH)_lQTR. (164) words, direct Padé-based models are more optimal). On the
other hand, due to the ill-conditioning, direct Padé-based
Comparing the original transfer-functiol’(s) repre- approximation cannot achieve higher order approximation,
sented by (142) with the transfer—functiofi(s) of the whereas Arnoldi-based approximation can.
reduced system represented by (164), we can draw the Inan alternative approach, the reduction based on Lanczos
following conclusions. The eigenvalues fﬁ(s) are given algorithm can preserve the firgy moments [77]-[79] (like
by the eigenvalues dif. However, since the eigenvalues of direct Padé-based approximation). The difference between
H are good approximation of the leading eigenvaluedof  Arnoldi and Lanczos algorithms is that in Lanczos algorithm
we can conclude that the eigenvalues of the transfer functionwe transform the matrid to a tridiagonal matrig’, . In addi-
of the reduced system are good approximation of the polestion, Lanczos algorithm uses two biorthogonal Krylov space,
of the original transfer function. to recursively computé’, [77]. However, the macromodels

= W(s)=L"QU - sQ" AQ)' Q" RU(s). (163)
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using the above Lanczos-based reduction scheme does not

guarantee the passivity of the macromodel.

E. Multiport Reduction using Arnoldi Algorithm

Consider anV-port characterization of a system based on
the admittance parameters. The multiport circuit equations
for this can be written as [80], [84]

Ci(t) + Gz(t) =Bu(t), C,Ge®R", BeRRN
z e Rt
w=LYz(t), LeR*N u wecRRV*!

(165)

where the inputu [v1---vn]T and the output
w [i1---ix]¥ are vectors of port voltages and
currents, respectively, instead of scalars. In this case,
R c N = G@™'B = [rry---rx] becomes a matrix,
instead of a vector:; represents thgth column of R (an
example of multiport formulation is given in Section VIII-F).

In the case of multiport characterizatidripck moments
are used, instead of moments of a particular output. Block
moments are defined as

Y(s)=My+ M5+ Mys® +---

M; e RV*N = LTA'R (166)

where an entry in thgth row andkth column of M repre-
sents theth moment of the current (output) that flows into
port ;7 due to a voltage source (only nonzero source) at port
k.

Block Krylov-subspace spanningcolumns can be con-
structed using the block moments (166) as

K(A, R, q)
ColumnSpace[R AR A’R --- A*"'R A*R]
ColumnSpace[Q)]
R=[rr2 - 7],

k=|g/N]20, l=qg—kN

(167)

where the operatdr | represents the truncation to the nearest
integer, toward zero.

For example, assume a three-port characterization in-
volving A € R#%°°%%° and letg = 14. In this case, we have
k=114/3] = 4;1 = 14 — 4 x 3 = 2 and (167) can be
written as

K(A, R, q)
= ColumnSpace|R AR A’R A’R A*ry A4r2].

Using the block Arnoldi algorithm [80], matri4 can be re-
duced to a smablock upper Hessenberg matyid € ¢ x q.
The multiport admittance matrix of the reduced-system is
given by

1 vy

=L7QI -sH)'Q"R (168)

i/\r UN
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Fig. 28. Transient response of a nonpassive macromodel with
passive terminations.

whereY = LYQ(I — sH) Q" R. In this case, it can be
proved that the reduced system (168) of orgereserves
the first| ¢/N| block moments of the original network [84].
This implies that for a desired predefined accuracy, the order
of the reduced system should be increased with the increase
in the number of ports.

In the next section, the review of an important property of
macromodels, passivity, and extension of Krylov-subspace
techniques for passivity preservation are provided.

F. Passivity Preservation

Passivity implies that a network cannot generate more en-
ergy than it absorbs, and no passive termination of the net-
work will make the system unstable. Passivity is an impor-
tant property, because stable but not passive macromodels
can lead to unstable systems when connected to other pas-
sive systems. The loss of passivity can be a serious problem
because transient simulations of nonpassive networks may
encounter artificial oscillations. This is illustrated in Fig. 28,
which represents the transient response of a reduced-order
macromodel of a large linedgk LC circuit, when connected
to an external load of 50¢k In this section, we will review
important algorithms that are available in the literature, for
preservation of passivity during the reduction of interconnect
networks [83]-92].

1) Review of Passivity PropertiesA passive network
cannot generate power on its own. It is essential that the
reduced-order model must be passive. A network with
admittance matrix represented Bys) is passive iff [83],

[84], [154]-[157]:

a) Y(s*) = Y"(s) where %" is the complex conjugate

operator;

b) Y (s) is a positive real (PR) matrix, that is the product

2 Y (s*) + Y (s)]z > 0 for all complex values of
with Re(s) > 0 and any arbitrary vector.

2) Passive ReductionThe algorithm discussed here
is based on the PRIMA technique [84]. Recall from Sec-
tion VII-D, where circuit reduction was achieved by
applying Arnoldi on the set of equations represented by
(162) (we refer this approach as classical Arnoldi). However,
this approach does not preserve the passivity of the reduced
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Fig. 29. Example circuit for MNA formulation compatible with passive reduction algorithms.

system. Instead, if the Arnoldi is applied on the original 3) MNA Formulation Compatible with Passive Reduction
set of circuit equations represented by (165), reducing the Algorithms: Consider the lumped circuit equations (162).
C and G directly, passivity can be preserved (with certain The matrice”, G € R"*™ can be formulated, such that
conditions, which is discussed later in this section). A brief

description of this process is given below. C— C, O G- F FE
Using (161), we can rewrite (165) in the Laplace-domain 0 Gy’ -E" 0
as v
= [ ; } 174)
sCQX(s) + GQX(s) = BU(s)

T wherew, i represent the MNA variable&;, C represent the

Wi(s) =L QX(s). (169) conductance and susceptance matrices, with an important

o _ _ ’ note that the rows corresponding to current variables are
Premultiplying both sides MNA equations of (169) @y, negated (such that the diagonal entriesCbimatrix con-

we have tributed by inductor elements remain positiv€},, Cy, I
are the matrices containing the stamps of resistors, capac-
sQTCQX(s) + QTGQX (s) =QTBU(s) itors and inductors, respectively. Matri® € (1, —1, 0)
X(s) = (G + sC)"LBU(s) corresponds to the current variables in a KCL formulation.
T Provided that the original network is composed of passive
W(s) =L (X(s)) (170)  elements onlyC,, Cy, F lead to symmetric nonnegative
definite matrices. With this MNA formulation, it can be
where proved that the resulting’ is also symmetric nonnegative
definite [84]. An illustration of the above formulation is
b —QTcQ a— TGQ given at the bottom of the next page in (175) for the circuit
. o - in Fig. 29.
B=Q"B, L=¢Q"L. (171)

IX. RELATED TOPICS AND FURTHER READING
The above type of transformations are known as congruence

transformations. Using (170) and (171), the output equation
in (169) can be rewritten as

In addition to the interconnection simulation algorithms
discussed in the previous sections, there are several related
topics that may be of interest to the readers of this paper.
T o Full-Wave Models: At further subnanosecond rise times,
W(s)=[L (G+sC)"'BJU(s). 172) the line cross section dimensions become a significant frac-
tion of the wavelength and field components in the direction
From (172), it can be easily noted that the admittance matrix Of propagation can no longer be neglected. Consequently,
of the reduced system is given by full-wave models that take into account all possible field
components and satisfy all boundary conditions are required
N LT Sn_1 2 to accurately estimate high-frequency effects. However, cir-
Y(s) = [ (G+sC)7"B]. (173) cuit simulation of full-wave models is highly involved. The
information that is obtained through a full-wave analysis is in
It can be proved that the reduced model, given by (173) terms of electromagnetic field parameters such as propaga-
is passive [84]. In addition, like the block Arnoldi algorithm tion constant, characteristic impedance, etc. However, a cir-
also preserves the firsg /N | block moments of the original  cuit simulator requires the information in terms of currents,
network). One of the conditions required to prove the pas- voltages, and circuit impedances. This demands a general-
sivity of the reduced model is that the origiaimatrix must ized method to combine modal results into circuit simula-
be a symmetric and nonnegative definite matrix. This condi- tors in terms of a full-wave stamps. References [26]-[29],
tion can be satisfied with a slight change during the MNA [56], [74] provide solution techniques and moment genera-
formulation step, as follows. tion schemes for such cases.
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Measured Data:In practice, it may not be possible to quire high order to capture high-frequency effects such as
obtain accurate analytical models for interconnects becauseskin effect. This can make the transient simulation expen-
of the geometric inhomogeneity and associated disconti- sive as the reduced model becomes expensive to evaluate and
nuities. To handle such situations, modeling techniques post-processing of macromodels to further reduce the order
based on measured data have been proposed in the litermay become necessary [94], [95].
ature [102]-[113]. In general, the behavior of high-speed
interconnects can easily be represented by measured freACKNOWLEDGMENT
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