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With the rapid developments in very large-scale integration
(VLSI) technology, design and computer-aided design (CAD)
techniques, at both the chip and package level, the operating fre-
quencies are fast reaching the vicinity of gigahertz and switching
times are getting to the subnanosecond levels. The ever increasing
quest for high-speed applications is placing higher demands
on interconnect performance and highlighted the previously
negligible effects of interconnects, such as ringing, signal delay,
distortion, reflections, and crosstalk. In this review paper, various
high-speed interconnect effects are briefly discussed. In addition,
recent advances in transmission line macromodeling techniques
are presented. Also, simulation of high-speed interconnects using
model-reduction-based algorithms is discussed in detail.
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I. INTRODUCTION

The recent trend in the VLSI industry toward miniature
designs, low power consumption, and increased integration
of analog circuits with digital blocks has made the signal in-
tegrity analysis a challenging task. The quest for high-speed
applications has highlighted the previously negligible effects
of interconnects (Fig. 1), such as ringing, signal delay, distor-
tion, reflections, and crosstalk. Interconnects can exist at var-
ious levels of design hierarchy (Fig. 2) such as on-chip, pack-
aging structures, multichip modules, printed circuit boards,
and backplanes. It is predicted that interconnects will be re-
sponsible for majority of signal degradation in high-speed
systems [1]–[22].

Manuscript received July 31, 2000; revised February 16, 2001. This work
was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC), by Micronet, a Canadian Network of Centers
of Excellence on Microelectronics, Communication and Information Tech-
nology Ontario (CITO), by Canadian Microelectronics Corporation (CMC),
by Nortel Networks, Ottawa, and by Gennum Corporation, Toronto.

The authors are with the Department of Electronics, Carleton Uni-
versity, Ottawa, ON K1S 5B6, Canada (e-mail: msn@doe.carleton.ca;
achar@doe.carleton.ca).

Publisher Item Identifier S 0018-9219(01)03967-6.

High-speed interconnect problems are not always handled
appropriately by conventional circuit simulators, such as
SPICE [23]. If not considered during the design stage, these
interconnect effects can cause logic glitches that render a
fabricated digital circuit inoperable or they can distort an
analog signal such that it fails to meet specifications. Since
extra iterations in the design cycle are costly, accurate pre-
diction of these effects is a necessity in high-speed designs.
Hence, it becomes extremely important for designers to sim-
ulate the entire design along with interconnect subcircuits
as efficiently as possible while retaining the accuracy of
simulation [23]–[139].

A. What is High-Speed?

Speaking on a broader perspective, a “high-speed inter-
connect” is the one in which the time taken by the propa-
gating signal to travel between its end points cannot be ne-
glected. An obvious factor that influences this definition is
the physical extent of the interconnect; the longer the inter-
connect, the more time the signal takes to travel between its
end points. Smoothness of signal propagation suffers once
the line becomes long enough for the signal’s rise/fall times
to roughly match its propagation time through the line. Then
the interconnect electrically isolates the driver from the re-
ceivers, which no longer function directly as loads to the
driver. Instead, within the time of the signal’s transition be-
tween its high and low voltage levels, the impedance of in-
terconnect becomes the load for the driver and also the input
impedance to the receivers [1]–[12]. This leads to various
transmission line effects, such as reflections, overshoot, un-
dershoot, crosstalk, and modeling of these needs the blending
of EM and circuit theory.

Alternatively, the term “high-speed” can be defined in
terms of the frequency content of the signal. At low frequen-
cies an ordinary wire, in other words, an interconnect, will
effectively short two connected circuits. However, this is not
the case at higher frequencies. The same wire, which is so
effective at lower frequencies for connection purposes, has
too much inductive/capacitive effects to function as a short
at higher frequencies. Faster clock speeds and sharper slew
rates tend to add more and more high-frequency contents.
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Fig. 1. High-speed interconnect effects.

Fig. 2. Interconnect hierarchy.

An important criterion used for classifying interconnects
is theelectrical lengthof an interconnect. An interconnect
is considered to be “electrically short” if, at the highest
operating frequency of interest, the interconnect length
is physically shorter than approximately one-tenth of
the wavelength (i.e.,length of the interconnect/ ,

). Otherwise, the interconnect is referred to as
“electrically long” [1], [12]. In most digital applications,
the desired highest operating frequency (which corresponds
to the minimum wavelength) of interest is governed by
the rise/fall time of the propagating signal. For example,
the energy spectrum of a trapezoidal pulse is spread over
an infinite frequency range; however, most of the signal
energy is concentrated near the low-frequency region and
decreases rapidly with the increase in frequency. Hence,
ignoring the high-frequency components of the spectrum
above a maximum frequency, , will not seriously alter
the overall signal shape. Consequently, for all practical
purposes, the width of the spectrum can be assumed to be
finite. A practically used relationship between the desired

and the (rise/fall time of the signal) can be expressed
as [2], [4], [36], [66], [90]

(1)

This implies that, for example, for a rise time of 0.1 ns, the
maximum of frequency of interest is approximately 3 GHz or
the minimum wavelength of interest is 10 cm. In some cases,
the limit can be more conservatively set [90] as .

In summary, the primary factors that influence the decision
“whether high-speed signal distortion effects should be con-

sidered” are interconnect length, cross-sectional dimensions,
signal slew rate, and the clock-speed. Other factors that also
should be considered are logic levels, dielectric material, and
conductor resistance. Electrically short interconnects can be
represented by lumped models whereas electrically long in-
terconnects need distributed or full-wave models.

The rest of the paper is organized as follows. In Section II,
a brief description of high-speed effects and interconnect
models is provided. Section III provides a detailed analysis of
transmission line equations and derivation of a generic mul-
ticonductor transmission line stamp, suitable for inclusion in
an MNA analysis. Section IV provides a review of circuit
equations in the presence of distributed elements. Review of
efficient techniques for discretization of Telegrapher’s equa-
tions is given in Section V. Sections VI–VIII give a detailed
account of simulation of interconnects using model-reduc-
tion techniques. Section IX provides references to related ad-
vanced topics.

II. HIGH-SPEEDINTERCONNECTEFFECTS

High-speed effects influencing a signal propagating on
an interconnect could be multifold, such as delay, rise time
degradation, attenuation, crosstalk, skin effect, overshoots,
undershoots, ringing, and reflection. In this section, we give
a detailed account of each of these high-speed effects (which
are also known as transmission line effects).

A. Propagation Delay

A signal traversing from one end of a transmission line to
the other end takes a finite amount of time; in other words, it
experiences a certain amount ofdelay . Fig. 3 illustrates
the case of an ideal delay line. In addition, the signal may
encounter rise time degradation as shown in Fig. 4, where
the rise time at the receiver end is larger than the rise
time at the source end [2], [4]. Rise-time degradation
further adds to the overall delay experienced by the signal,
as it influences the maximum and minimum attainable logic
levels between the switching intervals.

B. Attenuation

The signal through an interconnect may suffer attenua-
tion, due to ohmic or conductance losses. This is illustrated
in Fig. 4. Ohmic losses are more pronounced at higher fre-
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Fig. 3. Illustration of propagation delay.

quencies due to the uneven current distributions. Conduc-
tance losses are proportional to the dielectric loss factor of the
dielectric material and are also a function of the frequency.
If the losses are high, the signals may not retain the spec-
ified logic levels during the transit through an interconnect
and may result in false switching of digital circuitry.

C. Signal Reflection and Ringing

Signal reflection and the associated ringing can severely
distort signal propagation at higher frequencies. The prime
cause of reflection-related signal degradation is the discon-
tinuity in characteristic impedance of the transmitting line.
Such a discontinuity can be either distributed or lumped in
nature. In the case of distributed discontinuity, the impedance
variation on a line takes place over a certain length. For ex-
ample, this can occur due to the change in the medium along
the length of the signal trace, which may have to traverse
several layers on a printed circuit board (impedance may
not be well controlled from layer to layer). Following are
some common causes of discontinuities: connectors between
card-to-board, cable-to-card, leads between chip and chip
carriers, or between card wiring and chip carriers, long vias,
orthogonal wiring, flip-chip soldier balls, wire bonds, and re-
distribution lines, etc.

Another major contributor to the reflection related signal
degradation is the impedance mismatch between the line
characteristic impedance and source/terminating imped-
ances. Fig. 5 illustrates these effects for the case of a lossless
line. Fig. 5(b) and (c) shows the undershoots for relatively
small and large delay lines. In general, undershoots occur
when the terminating impedance is less than the character-
istic impedance of the interconnect. Fig. 5(d) and (e) shows

Fig. 4. Illustration of attenuation and rise-time degradation.

the phenomenon of overshoots, which occur when the termi-
nating impedance is larger than the characteristic impedance
of the line. As seen, the undershoots, overshoots, and the
ringing experienced by the signal increases with the delay
of the interconnect. Fig. 6 illustrates the ringing associated
with a lossy line, for various cases of terminations.

1) Mechanism of Reflections:Consider the interconnect
system shown in Fig. 7, which shows the simplest case of
impedance variation from to . Such a variation re-
sults in part of the onward propagating signal getting
reflected . The coefficient of reflection is given by

. As seen, the reflection
will vanish when there is no mismatch . Care must
be taken in high-speed designs to minimize the reflections,
which otherwise may result in false switching.

D. Crosstalk

Crosstalk refers to the interaction between signals that are
propagating on various lines in the system. An analogy of
crosstalk could be the “the interference from other lines while
talking on the phone.” Crosstalk is mainly due to the dense
wiring required by compact and high-performance systems.
High-density and closely laid interconnects result in electro-
magnetic coupling between signal lines. The active signal
energy is coupled to the quiet line through both mutual ca-
pacitance and inductances, resulting in noise voltage–cur-
rents. This may lead to inadvertent switching and system
malfunctioning. Crosstalk is a major constraint while routing
in high-speed designs. An example of crosstalk is given in
Fig. 8. By its very nature, crosstalk analysis involves systems
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Fig. 5. Illustration of undershoots, overshoots, and ringing in lossless interconnects.

Fig. 6. Illustration of ringing in lossy interconnects.

of two or more conductors. Such systems are studied on the
basis of dominant propagating modes. System behavior in re-
sponse to any general excitation is then a linear combination
of modal responses.

E. High-Speed Interconnect Models

Depending on the operating frequency, signal rise times,
and nature of the structure, the interconnects can be mod-
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Fig. 7. Reflection due to impedance mismatch.

eled as lumped, distributed (frequency independent/depen-
dent RLCG parameters, lossy, coupled), or full-wave models.

1) Lumped Models:At lower frequencies, the intercon-
nect circuits could be modeled using lumped or
circuit models. circuit responses are monotonic in na-
ture. However, in order to account for ringing in signal wave-
forms, circuit models may be required. Usually lumped
interconnect circuits extracted from layouts contain a large
number of nodes that make the simulation highly CPU inten-
sive (more details about lumped circuit modeling are given
in Section V).

2) Distributed Transmission Line Models:At relatively
higher signal-speeds, electrical length of interconnects
becomes a significant fraction of the operating wavelength,
giving rise to signal distorting effects that do not exist at
lower frequencies. Consequently, the conventional lumped
impedance interconnect models become inadequate and
transmission line models based on quasi-transverse electro-
magnetic mode (TEM) assumptions are needed. The TEM
approximation represents the ideal case, where bothand

fields are perpendicular to the direction of propagation
and it is valid under the condition that the line cross section
is much smaller than the wavelength. However, the inho-
mogeneties in practical wiring configurations give rise to

or fields in the direction of propagation. If the line
cross section or the extent of these nonuniformities remain
a small fraction of the wavelength in the frequency range of
interest, the solution to Maxwell’s equations are given by
the so-called quasi-TEM modes and are characterized by
distributed , , , per unit length (p.u.l.) parameters
[12] (discussed in detail in Section III).

In practical situations, owing to complex interconnect ge-
ometries and varying cross-sectional areas, the interconnects
may need to be modeled as nonuniform lines. In this case,
the p.u.l. parameters are functions of the distance, along the
length of the transmission line [96]–[98].

3) Distributed Models with Frequency-Dependent Pa-
rameters: At low frequencies, the current in a conductor is
distributed uniformly throughout its cross section. However,
as the operating frequency increases, the current distribution
gets uneven and starts getting concentrated more and more
near the surface or edges of the conductor. This phenomenon
can be categorized as follows: skin, edge, and proximity
effects [12], [30], [99], [100]. The skin effect causes the
current to concentrate in a thin layer near the conductor sur-
face and this reduces the effective cross section available for
signal propagation. This leads to an increase in the resistance
to signal propagation and other related effects [9]. The edge
effect causes the current to concentrate near the sharp edges
of the conductor. The proximity effect causes the current to
concentrate in the sections of ground plane that are close to

the signal conductor. To account for these effects, modeling
based on frequency-dependent p.u.l. parameters may be
necessary. An illustration of frequency-dependent variation
of and parameters for an example microstrip are given
in Fig. 9.

4) PEEC and rPEEC Models:As switching speeds
extend into the gigahertz range, two-dimensional (2-D)
transmission line models become inadequate due to the
spatial EM effects of three-dimensional structures. The mod-
eling of these structures has been successfully accomplished
using partial element equivalent circuit (PEEC) models.
PEEC models are circuits where individual resistances
and capacitances are extracted from the geometry using a
quasi-static (nonretarded) solution of Maxwell’s equations.
The rPEEC models include the retardation and provide
full-wave solution. Simulation of these models is relatively
CPU intensive as they involve large resultant networks
[15]–[22].

III. D ISTRIBUTED TRANSMISSIONLINE EQUATIONS

Transmission line characteristics are in general described
by Telegrapher’s equations. Consider the transmission line
system shown in Fig. 10(a). Telegrapher’s equations for such
a structure can be derived by discretizing the line into infin-
itesimal sections of length and assuming uniform p.u.l.
parameters of resistance , inductance , conductance

, and capacitance . Each section then includes a re-
sistance , inductance , conductance , and ca-
pacitance [Fig. 10(b)]. Using Kirchhoff’s current and
voltage laws, one can write [12]

(2)
or

(3)

Taking the limit , one gets

(4)

Similarly, we can obtain the second transmission line
equation

(5)

Substituting (2) in (5), we have

(6)
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Fig. 8. Illustration of crosstalk.

Fig. 9. An example of frequency-dependent variation of resistance and inductance.

Fig. 10. Transmission line system.

or

(7)

Taking the limit , one gets

(8)

Taking the Laplace transform of (4) and (8), one can write

(9)

(10)

where and represent the p.u.l. impedance and admit-
tances of the transmission line, given by

(11)

The set of equations represented by (9) and (10) can be solved
if they can be written in terms of one of the unknowns [either

or ] as follows:

(12)

(13)

where is the complex propagation constant, given by

(14)
where represents the real part of the propagation constant
and is known as theattenuation constant, whose units are
expressed in nepers/m. represents the imaginary part of
the propagation constant and is known as thephase constant,
whose units are expressed in radians/m. The solution of (12)
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Fig. 11. Multiconductor transmission line system.

and (13) can be obtained as a combination of forward-re-
flected waves traveling on the line as

(15)

(16)

The phase shift and attenuation experienced by the traveling
waves are given by and , respectively. If
the lines are lossless, the propagation constant is given by

. The line in this case rep-
resents apure-delayelement.

A. Multiconductor Transmission Line System

Consider the multiconductor transmission line (MTL)
system, with coupled conductors, shown in Fig. 11.

Using steps similar to the case of single transmission line,
we can derive the multiconductor transmission line equa-
tions. Per-unit-length parameters (, , , and ) in this
case become matrices and voltage–current variables become
vectors represented by and , respectively. Noting these
changes, we can rewrite (4) and (8) as

(17)

(18)

The MTL equations represented by (17) and (18) are a set of
coupled first-order partial differential equations (PDE)

and they can be put in a more concise form as

(19)

For the case of multiconductors, (9)–(11) are modified as

(20)

(21)

where and represent the impedance and admittance ma-
trices, given by

(22)

The , , , and matrices are obtained by a 2-D solution
of Maxwell’s equations at appropriate positions, along the
propagation axis. For this purpose, depending on the nature
and geometry of the structure, and the desired accuracy, tech-
niques based on quasi-static or full-wave approaches can be
used. The , , , and matrices are symmetric and posi-
tive definite [12], [90].

B. Multiconductor Transmission Line Stamp

In this section, we derive a stamp relating the terminal cur-
rents and voltages of MTL structures, suitable for inclusion
in SPICE-like simulators. The transmission line stamp [63]
is derived throughdecoupling of MTL equations.

Differentiating the partial differential equations given in
(20) and (21) with respect to, we have

(23)

(24)

Substituting (21) in (23) and (20) in (24), we get the fol-
lowing two sets of coupled wave equations:

(25)

(26)

Decoupling of equations in (25) or (26) can be achieved
through the use of suitable modal transformation matrices
[11]. For this purpose, introduce a transformationrelating
the circuit voltages and modal voltages as

(27)

Hence, (25) can be rewritten as [for simplicity, we omit the
accompanying term ]

(28)

or

(29)

For effective decoupling of equations to take place, the ma-
trix product in parenthesis must lead to a diagonal matrix as

(30)

where the diagonal matrix contains the eigenvalues of the
product , which corresponds to the roots of the charac-
teristic equation

(31)

where represents the unity matrix (we assume the general
case that there exist distinct eigenvalues). Next, as is evi-
dent, the transformation matrix , which relates the circuit
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voltages and modal voltages, consists oflinearly indepen-
dent column vectors , corresponding to the eigenvectors
of product , given by

(32)

[Similarly, we can write a transformation relating the cir-
cuit currents and modal currents as . Hence,
(26) can be rewritten as . The di-
agonalization of leads to the same diagonal matrix ,
represented by (30). (This can be easily proved by noting that

. In other
words, matrices and are similar or they have the
same eigenvalues.) The transformation matrixconsists of
the eigenvectors corresponding to the product.]

Having obtained the propagation constants, the solution of
(29) can be written in the standard form as

(33)

where represents theth modal voltage and ,
are the corresponding constants, pertaining to incident and
reflected waves, respectively. Equation (33) can be written
in the matrix form as

(34)

Defining and premulti-
plying both sides of (34) by the modal transformation matrix

[from (27)], we can write (34) in terms of circuit voltages
as

(35)

where and are constant vectors, which can be deter-
mined from the terminal currents and voltages (i.e., at
and ).

A relationship between the near-end and far-end
voltages can be derived using (35) as

(36)

Next, substituting (35) in (20), we have

(37)

or

(38)

Fig. 12. Example circuit for MNA formulation.

A relationship between the near-end and far-end
can be derived using (38) as

(39)

Using (36) and (39) and eliminating the constants and
, we get

(40)

Assume that the-parameter-based stamp of multiconductor
stamp is required in the standard form, where current
flows inwards. In this case, the expression for in (40)
must be multiplied by 1. Noting this and simplifying (40),
we can write the MTL stamp in terms of-parameters as

(41)

where

(42)

Matrix Exponential Stamp:An alternative form of the
MTL stamp is also quite popular and it has the matrix
exponential form [72], which is explained below. Equations
(20) and (21) can be written in the hybrid form as

(43)

Using the terminal conditions, the solution of (43) can be
written as

(44)

A relationship between the forms represented by (41) and
(44) can be obtained as follows: Define as

(45)
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Using some algebraic manipulations, we can express the re-
lationships between the hybrid parameters (44) and the-pa-
rameters (41) as

(46)

(47)

Similarly, another useful representation of the MTL stamp is
in terms of ABCD parameters, which can be written as

(48)
In the next section, we will review a generic formulation of
distributed interconnect circuit equations, suitable for gen-
eral purpose circuit simulators.

IV. FORMULATION OF CIRCUIT EQUATIONS

Prior to introducing interconnect simulation algorithms,
it would be useful to review a generic formulation of cir-
cuit equations. For both frequency or time-domain analysis,
the first step is to set up themodified nodal analysis matrix
(MNA)[140]. For example, consider the circuit in Fig. 12. Let

be the desired output. Using Kirchhoff’s current law, the
time-domain MNA and the output equations can be written
as

The above equation, representing a simple three-node cir-
cuit, has the same form as any other MNA matrix repre-
senting a large linear lumped network. Hence, MNA and
output equations for lumped linear networks can be written
using a generic notation as

(49)

where and are selector matrices, with entries (0 or 1),
and the superscript “” denotes the transpose. Let

. From (49), MNA equations in the frequency-domain
can be written as

(50)

For the case of nonlinear elements, MNA equations in (49)
can be modified as

(51)

where is a nonlinear function of .
1) Formulation of Linear Subnetworks Containing

Distributed Elements:Consider a linear subnetwork
containing distributed elements. Using (41), the fre-

quency-domain equations of a distributed subnetwork
containing coupled conductors can be written as [63]

(52)

where and represent the Laplace-domain
terminal voltages and currents of the distributed element,
respectively, represents the admittance matrix having
complex dependency on frequency, which are described in
terms of line parameters. Equation (50) representing the
lumped linear network can be combined with (52) as

(53)

where

• are constant matrices describing
the lumped memory and memoryless elements of sub-
network , respectively, and is the node-space of
subnetwork ;

• is the selector matrix that maps the terminal currents
of the distributed subnetwork to the nodal space of the
linear subnetwork , and is the unity matrix;

• is a constant vector with entries determined
by independent voltage–current sources of subnetwork

, and is the vector of node voltage
waveforms appended by independent voltage source
currents, linear inductor current waveforms of linear
subnetwork .

Equation (53) can be concisely written as

(54)

2) Generic Formulation of Nonlinear Circuits with Dis-
tributed Elements:Consider a general network containing
an arbitrary number of nonlinear and linear (lumped and dis-
tributed) components. For simplicity, let the linear compo-
nents be grouped into a single linear subnetworkas shown
in Fig. 13.
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Fig. 13. Nonlinear network� containing linear subnetwork� with distributed elements.

Fig. 14. Example circuit with lumped/distributed/measured and nonlinear devices.

Using (51), without loss of generality, the circuit equations
[140] for the network can be written as

(55)

where

• are constant matrices describing
the lumped memory and memoryless elements of net-
work , respectively, and is a constant vector
with entries determined by the independent voltage and
current sources;

• is a function describing the nonlinear elements
of the circuit, is the vector of node
voltage waveforms appended by independent voltage
source current, linear inductor current, nonlinear ca-
pacitor charge, and nonlinear inductor flux waveforms,

is the total number of variables in the MNA for-
mulation, and is the total number of ports in linear
subnetwork ;

• with elements where
, with a maximum of

one nonzero in each row or column, is a selector matrix
that maps the vector of currents entering
the linear subnetwork , into the node space of
the network .

The linear multiterminal subnetwork can be character-
ized in the frequency-domain by its terminal behavior as

(56)

where is the -parameter matrix of subnetwork,
is the vector of terminal voltage nodes that connect

the subnetwork to the network, and is the Laplace
transform of .

3) Example: To illustrate the formulation scheme de-
scribed in this section, consider the circuit shown in Fig. 14.
The network equations can be written as follows.

The entities in (55) with respect to the given nonlinear net-
work can be obtained as
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The entities in (53), (54), and (56) characterizing the given
linear subnetwork can be obtained as

A. Interconnect Simulation Issues

Simulation of large interconnect networks is associated
with two major bottlenecks: mixed frequency/time problem
and CPU expense.

Mixed Frequency/Time Problem:The major difficulty in
simulating high-frequency models such as distributed trans-
mission lines is due to the fact that, while described in terms
of partial differential equations, they are best represented in
the frequency-domain (56). As seen, they do not have a di-
rect representation in the time-domain. On the other hand,
nonlinear devices can only be described in the time-domain
(55). These simultaneous formulations are difficult to handle

using a traditional ordinary differential equation solver such
as SPICE [23], [140]–[151].

CPU Expense:Frequency-domain simulation of large
linear networks is conventionally done by solving (50) or
(53) at each frequency point using LU decomposition and
forward–backward substitution. For time-domain simu-
lation, integration techniques are used to convert a set of
time-domain differential equations into a set of difference
equations. For example, application of the trapezoidal rule
to (51) leads to a nonlinear set of difference equation [151]

(57)

To solve (57) at each time point, Newton iterations are
required, which may need several LU decompositions. This
causes the CPU cost of a time-domain analysis to be expen-
sive (note that and matrices for interconnect networks
are usually very large).

The objectives of interconnect simulation algorithms are
to address both mixed frequency/time problem as well as
to handle large linear circuits without too much of CPU
expense. There have been several algorithms proposed for
this purpose, which are broadly classified into two main cat-
egories, as follows. 1) Approaches based on macromodeling
each individual transmission line set. Techniques such as
“method of characteristics” are grouped in this category and
are discussed in detail in Section V. 2) Approaches based
on model-order reduction (such as AWE, CFH, PRIMA)
of the entire linear subnetwork containing lumped as well
as distributed subnetworks and are discussed in detail in
Sections VI–VIII. It is to be noted that the second approach
can also be used in conjunction with the first approach.

V. SIMULATION TECHNIQUES BASED ON

TRANSMISSION-LINE MACROMODELS

In this approach, transmission-line networks described by
Telegrapher’s equations (partial differential equations) are
translated into a set of ordinary differential equations (known
as the macromodel), through some kind of discretization.

The conventional approach [12], [36] for discrete mod-
eling of distributed interconnects is to divide the line into
segments of length , chosen to be small fraction of the
wavelength. If each of these segments (assume that the line
is discretized into “ ” segments) is electrically small at the
frequencies of interest (i.e., ), then each
segment can be replaced by lumped models. Generally the
lumped structures used to discretize transmission lines con-
tain the series elements and , and shunt elements

and . The parameters ( are the p.u.l.
inductance, resistance, conductance, and capacitance of the
line, respectively (Fig. 10).

Distributed versus Lumped: Number of Lumped Segments
Required: It is often of practical interest to know how many
lumped segments are required to reasonably approximate a
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Fig. 15. Macromodel using Method of Characteristics.

distributed model. For illustration, consider segments,
which can be viewed as low-pass filters. For a reasonable
approximation, this filter must pass at least some multiples
of the highest frequency of the propagating signal (say
ten times, ). In order to relate these parameters,
we make use of the 3-dB passband frequency of the LC filter
given by [2], [4]

(58)

where is the length of the line and represents
the delay p.u.l. From (1), we have and using
(58), we can express the relation in terms of the
delay of the line and the rise time as ,
or

(59)

In other words, the delay allowed per segment is approx-
imately . Hence, the total number of segments ()
needed to accurately represent a total delay ofis given by

(60)

In the case of segments, in addition to satisfying (59),
the series resistance of each segment must also be accounted.

Example: Consider a digital signal with rise time of 0.2
ns propagating on a lossless wire of length 10 cm, with a
p.u.l. delay of 70.7 ps (this can be represented by a distributed
model with p.u.l. parameters of nh/cm and
pF/cm). If the same circuit were to be represented by lumped
segments, one needs
35 sections. It is to be noted that using more sections does not
clean up ripples completely but helps to reduce the first over-
shoot (Gibb’s phenomenon). Ripples can be reduced when
losses are properly taken into account.

One of the major drawbacks of the above conventional
discretization is that it requires a large number of sec-
tions, especially for circuits with high operating speeds
and sharper rise times. This leads to large circuit sizes
and the simulation becomes CPU inefficient. In order to
overcome these difficulties, several techniques for effi-
cient discretization were proposed in the literature. These
methods can be broadly classified, based on the passivity
property (details concerning passivity of macromodels can
be found in Section VIII-F) as follows. 1) Macromodels
with no guarantee of passivity: A sample of such techniques
are method of characteristics, transfer function approxi-
mation and Chebyshev polynomial-based approximation,
and are discussed in Section V-A–V-C. 2) Macromodels
with guaranteed passivity by construction of macromodels:

A sample of such techniques arecompact finite differ-
ences, integrated congruent transform, and exponential
Padé-based matrix-rational approximation, and are dis-
cussed in Section V-D–V-F.

A. Method of Characteristics

The method of characteristics (MC) [43]–[45] transforms
partial differential equations of a transmission line into or-
dinary differential equations containing time-delayed con-
trolled sources.

Consider the case of two conductor transmission lines, as
shown in Fig. 15(a). An analytical solution, in terms of-pa-
rameters for (9) or (10) can be derived [43] as

(61)

where is the propagation constant, is the characteristic
impedance, and are the terminal voltage and current
at the near end of the line, and and are the terminal
voltage and current at the far end of the line. The-parame-
ters of the transmission line are complex functions of, and
in most cases cannot be directly transformed into an ordinary
differential equation in the time domain. The MC succeeded
in doing such a transformation, but only for lossless transmis-
sion lines. Although this method was originally developed in
the time domain using what was referred to as characteristic
curves (hence, the name), a short alternative derivation in the
frequency domain will be presented here. By rearranging the
terms in (61), we can write

(62)

Next, (62) can be rewritten as

(63)

where

(64)

Using (62) and (64), a recursive relation for and can
be obtained as

(65)

A lumped model of the transmission line can then be de-
duced from (62) and (65), as in Fig. 15(b).
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If the lines were lossless (in which case the propagation
constant is purely imaginary; ), the frequency domain
expression (65) could be analytically converted into time-
domain using the inverse Laplace transform as

(66)

where is replaced by a time shift (or delay). Each trans-
mission line can, therefore, be modeled by two impedances
and two voltage controlled voltage sources with time delay.
Since this transmission line model is in the time domain, it
can be easily linked to transient simulators.

For lossy lines, the propagation constant is not purely
imaginary and, hence, cannot be replaced by a pure delay.
In that case analytical expressions for and cannot be
found in the time domain. To handle such cases, classical
MC can be extended through Padé synthesis of character-
istic impedance and complex propagation constant [44]. In
the case of multiconductor transmission lines, MC can be
applied through decoupling of MTL equations [12].

B. Transfer Function Approximation

Least square approximation-based techniques [111] de-
rive a transfer-function representation for the frequency re-
sponse of transmission line subnetworks. The method fits
data from sample frequency points, to a complex rational
function , where

(67)

where and are the th pole–residue pair, is the total
number system poles, andis quotient. In order to obtain a
stable-model (poles restricted to the left-half plane), the real
part [even part of ] is fitted to the real part of data
samples. Let the real part of (67) be approximated as

Re (68)

Writing (68) at several frequency points, ,
and expressing it in a matrix form, we get the matrices in
(69) at the bottom of the page. Expressing (69) in a simple
notation

(70)

The least square solution of (70) is given by

(71)

Poles of the system are obtained by computing the roots
of the denominator polynomial and they belong to the
LHS plane only, since they are obtained from an even func-
tion (68). If any poles are purely imaginary, they are rejected.
Next, the residues are obtained by matching the real and
imaginary parts of (67) to the sampled data, as follows:

...
...

...

...
...

...
...

...

Re

Re

...

Re

Im

...

Im

(72)

Here, the solution for the residues are obtained by solving the
least square approximation, similar to the equations in (71).
Once the pole–residue model is obtained, it can be easily
converted to a time-domain macromodel described in terms
of ordinary-differential equations.

Least square approximation provides higher flexibility in
modeling all types of interconnect models. However, the so-

Re Re

...
...

...
...

...

Re Re

...

...

Re

Re

...

Re

(69)
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lution of (71) can be ill-conditioned. Also, the algorithm does
not guarantee a passive macromodel.

C. Chebyshev Polynomials

One of the efficient approaches for discretization is to ex-
press the variations in space for voltages and currents of
a transmission line system in terms ofknown basis func-
tions, such as Chebyshev, [91], [37] or Wavelet polynomials.
For example, consider the single transmission line equations
(4) and (8). Assume that the voltage and the current

can be expanded in the form

(73)

where is the th degree Chebyshev polynomial;
and are the unknown variables. The derivatives

of and with respect to are also expanded
using Chebyshev polynomials as

(74)

where , are related to and as

(75)

Using (73) and (74) and the orthogonal properties Cheby-
shev polynomials, the Telegrapher’s equations (4), (8) can be
converted to a set of ordinary differential equations in terms
of the unknown coefficients and .

One of the advantages of the algorithm is that it can also be
applied for interconnects with nonuniform line parameters
by expanding line parameters as Chebyshev polynomials
with respect to position . Chebyshev approximations are
able to achieve better accuracy with fewer variables when
compared to direct lumped segmentation. However,
the algorithm does not guarantee the passivity of the re-
sulting macromodel. Similarly, an alternative approximation
strategy can be adopted based on expansions of and

in terms ofwavelet basis functions[88], [89].

D. Compact Finite-Differences-Based Approximation

Compact finite-differences (CFD) [150]-based ap-
proximations were suggested in the literature to convert
Telegrapher’s equations into ordinary differential equations
[90]. For the purpose of simplicity, consider the case of
a single transmission line system, represented by (9) and

(10). The variations in space for voltages and currents of a
transmission line system can be expressed as

(76)

where and are the degrees of freedom of approxima-
tion, while and are the known expansion func-
tions. Assume that the line is divided into equal segments
of length . The unknown voltages are represented
in terms of values at nodes corresponding to ;

. The current distribution is described
in terms of its values at the centers of thesegments,

; . Next, spatial derivatives
of and can be approximated using compact
central difference operator as

(77)

where denotes the node where the operator is centered,
represents either or or . The unknown coefficients

and are computed such that the desired truncation error
criteria is satisfied. For example, fourth order approximation
is achieved when , . Performing dis-
cretization operation on TL equations (9), (10) results in a
discrete form [90]

(78)

where and .
Using suitable corrections for end-points, the set of equations
represented by (78) can be converted to the standard MNA
form.

One of the advantages of the algorithm is that it can
achieve better accuracy with fewer variables when com-
pared to direct lumped segmentation. Also, the
algorithm guarantees the passivity of the macromodel by
construction [90].

E. Integrated Congruence Transform

Consider an -conductor system and the TL equations
represented by (19), which can be expressed after slight mod-
ification, in the Laplace-domain as

(79)
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where

(80)

and are , the vector of currents and voltages
along the length of the line, of dimension each. Next,
define a transformation as

(81)

where

(82)

Note that the transformation matrix is a function of
only, and not dependent on. Substituting (81) in (79), pre-
multiplying by the transpose of and integrating them
with respect to the normalized variable(from 0 to 1), we
get

(83)

where

(84)

The transformation defined by the set of equations
(81)–(84) is called the integrated congruence transform
[86]. Expanding the expressions for and with some
mathematical manipulations, (83) can be translated into
a set of ordinary differential equations. It can be proved
that integrated congruence transform-based approximation
preserves the passivity [86].

F. Exponential Padé-based Matrix-Rational Approximation

This algorithm directly converts partial differential equa-
tions into time-domain macromodels based on Padé rational
approximations of exponential matrices [39], [40], [87]. In
this technique, coefficients describing the macromodel are
computeda priori and analytically, using closed-form Padé
approximant of exponential matrices. Since closed-form re-
lations are used, this technique does not suffer from the usual
ill-conditioning experienced with the direct application of
Padé approximations. Hence, it allows a higher order of ap-

proximation. Also, it guarantees the passivity of the resulting
macromodel.

Matrix-Rational Approximation:Consider the exponen-
tial form of Telegrapher’s equations describing the multicon-
ductor transmission lines, given by (44)

(85)

where is the length of the line. The matrix is approxi-
mated using matrix-rational function as

(86)

where and are polynomial matrices ex-
pressed in terms of closed-form Padé rational functions [39]
as

(87)

With some mathematical manipulations, (86) can be trans-
lated into a macromodel represented by a set of ordinary dif-
ferential equations, in a closed form. Since all the coefficients
in the macromodel are knowna priori, in terms of the p.u.l.
parameters, the macromodel can be easily stenciled into a cir-
cuit simulator as the stamp of the transmission line. The fact
that the coefficients and are knowna
priori in closed form, provides substantial computational ad-
vantage for this algorithm.

It can be proved that the matrix-rational function-based ap-
proximation preserves the passivity of reduced model [39].
Also, the extension of the above matrix-rational approxima-
tion-based technique to handle frequency-dependent param-
eters can be found in [40].

VI. M ODEL-REDUCTION BASED SIMULATION ALGORITHMS

Interconnect networks generally tend to have a large
number of poles, spread over a wide-frequency range. Even
though the majority of these poles would normally have
very little effect on simulation results, however, they make
the simulation to be CPU extensive by forcing the simulator
to take smaller step sizes.

Dominant Poles:Dominant poles are those that are close
to the imaginary axis and significantly influence the time as
well as the frequency characteristics of the system. The mo-
ment-matching techniques (MMTs) [59]–[75] capitalize on
the fact that irrespective of the presence of a large number of
poles in a system, only the dominant poles are sufficient to
accurately characterize a given system. This effect is demon-
strated in Fig. 16, where it is clear that polewill have little
effect on the final transient result.
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Fig. 16. Illustration of dominant poles.

A brief mathematical description of the underlying con-
cepts of MMTs is given below. Consider a single input/single
output system and let be the transfer function. can
be represented in a rational form as

(88)

where and are polynomials in . Equivalently,
(88) can be written as

(89)

where and are the th pole–residue pair, is the total
number of system poles, andis the direct coupling con-
stant. The time-domain impulse response can be computed
in a closed form using inverse Laplace transform as

(90)

In case of large networks , the total number of poles can
be of the order of thousands. Computing all, the poles
will be highly CPU intensive even for a small network and
for large networks it is completely impractical. Model-re-
duction techniques address the above issue by deriving a re-
duced-order approximation in terms of dominant poles,
instead of trying to compute all the poles of a system. As-
suming that only dominant poles were extracted, (88) can
be rewritten to obtain approximate frequency/time responses,
as

(91)

(92)

Moments of the Response:Consider the Taylor series ex-
pansion of a given transfer-function, , at point,

(93)

where the superscript denotes the th derivative. Using
a simpler notation, we can rewrite (93) as

(94)

The coefficients of Taylor series expansion () are also
identical to thetime-domain momentsof the impulse re-
sponse . This can be easily seen by using the Laplace
transform of [77]

(95)

Due to this analogy, the coefficients of Taylor series expan-
sion, ( ), are generally referred to asmoments.

It has been shown that the moments provide an estimation
of delay and rise times [57], [58]. Elmore delay [57], which
approximates the midpoint of the monotonic step response
waveform by the mean of the impulse response, essentially
matches the first moment of the response. This can be con-
sidered as one of the basic forms of approximation. However,
in order to get accurate prediction of interconnect effects, it
is essential that the reduced-order model must match (or pre-
serve) as many moments as possible.

Several algorithms can be found in the literature for re-
duction of large interconnect subnetworks [59]–[94]. They
can be broadly classified into two categories: 1) approaches
based on explicitly matching the moments to a reduced-order
model and 2) approaches based on implicitly matching the
moments. The techniques such as AWE belong to the first
category and are discussed in Section VII. Techniques such
as PVL, PRIMA, which are based on Krylov subspace for-
mulation, belong to the second category and are discussed in
Section VIII.
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VII. M ODEL-REDUCTION BASED ON EXPLICIT

MOMENT-MATCHING

These techniques employ Padé approximation, based on
explicit moment-matching to extract the dominant poles and
residues of a given system [8], [59]–[63].

A. Padé Approximation

Consider a system-transfer function that is approxi-
mated by a rational function as

(96)

where , are the unknowns (total of
variables). Consider the Taylor series expansion

of at , in terms of its moments. Matching
to the rational function approximation given in (96) (hence,
the name moment-matching techniques, which is also known
as Padé approximation), we get

(97)

Cross multiplying and equating the coefficients of sim-
ilar powers of starting from to on both sides
of (97), we can evaluate the denominator polynomial coeffi-
cients as

(98)

The numerator coefficients can be found by equating the re-
maining powers of (from to ) as

(99)

Equations (98) and (99) yield an approximate transfer func-
tion in terms of rational polynomials.

Alternatively, an equivalent pole–residue model can be
found as follows. Poles are obtained by applying a root-
solving algorithm on denominator polynomial . In order
to obtain , the approximate transfer function given by (91)
is expanded using Maclaurin series as

(100)

Comparing from (94) and (100), we note that

(101)

Residues can be evaluated by writing the equations in (101)
in a matrix form as

(102)

In the above equationsrepresents the direct coupling be-
tween input and output. More accurate ways to compute
can be found in [8].

B. Computation of Moments

Having outlined the concept of MMTs, we need to
evaluate the moments of the system, which are required by
(98)–(102). Consider the simple case of lumped circuits
and the corresponding MNA equations represented by (50).
Expanding the vector using the Taylor series, we have

(103)

where represents theth moment-vector. Equating co-
efficients of similar powers of on both sides of (103), we
obtain the following relationships:

(104)

The above equations give a closed form relationship for the
computation of moments. The moments of a particular output
of interest [which are represented in (96)–(102)] are picked
from moment-vectors . As seen, (104) requires only one
LU decomposition and few forward–backward substitutions
during the recursive computation of higher order moments.
Since the major cost involved in linear circuit simulation is
due to LU decomposition, MMTs yield very high-speed ad-
vantage (100 to 1000 times) compared to conventional sim-
ulators.

Generalized Computation of Moments:In the case of net-
works containing transmission lines, moment-computation
is not straightforward. A generalized relation for recursive
computation of higher order moments can be derived as fol-
lows [62], [63], [67], [69], [72]. Considering the MNA equa-
tions containing MTL stamps (54) and expanding and
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in Taylor series at an expansion point , we get
[72]

(105)

where denotes the th derivative of and de-
notes the th moment of at . Equating coeffi-
cients of similar powers of on both sides of (105), we
have

(106)

Generalizing (106), a recursive relation for anyth higher
order moment can be obtained as

(107)

It can be seen that the coefficient on the left-hand side of
(107) does not change during higher order moment compu-
tation. Hence, it requires only one LU decomposition and

forward–backward substitutions to computemoments.
Also, it is easy to note that the lumped networks are a special
case of (107) [where for , in which case (107)
reduces to the form given by (104)]. Next, (107) requires the
derivatives of . These can be obtained using (53) as

(108)

The derivatives can be obtained as a function of the
derivatives of the entries on the RHS of (46) and proper ap-
plication of Leibnitz’s theorem. However, this requires the
derivatives of the exponential stamp represented by (45). A
brief review of computation of these derivatives [72] is given
below.

Transmission Line Moments:Consider the exponential
stamp represented by (45). We wish to expand the exponen-
tial matrix in Taylor series, as follows:

(109)

From the property of matrix exponentiation of an arbitrary
matrix , we have

(110)

Let

(111)

Hence, (110) can be rewritten as

(112)

Expanding the RHS of (112) further, and collecting the terms
in powers of , we have

(113)

Equating (109) with (113) gives

(114)

and so on. From the above results, a recursive relationship
for generating transmission line moments can be obtained as

or (115)

Convergence of (115), in practice requires 20–30 terms.
It is to be noted that the convergence of the series repre-
sented by (110) can suffer, if for the first few terms grows
quicker than . In order to control this problem, note that
the growth of depends on its eigenvalues. If all the eigen-
values of are within the unit circle in the complex plane,
then will decay with increasing , leading to fast con-
vergence. From (110) one can see that the eigenvalues of
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Fig. 17. Summary of the steps involved in the MMT algorithm.

can be controlled by varying the length. By restricting
to be small enough, such that the eigenvalues of
will also be small (over a given frequency range), so as not
to cause truncation errors or slow convergence. This can be
achieved efficiently, by noting that

(116)

In other words, moments of a line can be generated by
squaring half-line moments. Let represent the half-line
moments, then

(117)

which will give

(118)

The line can be subdivided by power of 2 (i.e., two sec-
tions, four sections, eight sections ) and the moments of
the smallest section that meets the convergence requirements
are calculated. From these, the moments of the entire line can
be recursively calculated with the help of (118).

A summary of the steps involved in the Padé-based circuit
reduction is given in Fig. 17.

C. Limitations of Single Expansion MMT Algorithms

Obtaining a lower order approximation of the network
transfer function using a single Padé expansion is commonly
referred asasymptotic waveform evaluation (AWE)in the
literature. However, due to the inherent limitations of Padé
approximants, MMTs based on single expansion often give
inaccurate results. The following is a list of those properties
that have the most impact on MMTs.

• The matrix in (98) (known as Toeplitz matrix) becomes
increasingly ill-conditioned as its size increases. This
implies that one can only expect to detect six to eight
accurate poles from a single expansion.

• Padé often produces unstable poles on the right-hand
side of the complex plane.

• Padé accuracy deteriorates as we move away from the
expansion point.

• Padé provides no estimates for error bounds.
In addition, there is no guarantee that the reduced-model ob-
tained as above is passive. Passivity implies that a network
cannot generate more energy than it absorbs, and no pas-
sive termination of the network will cause the system to go
unstable [83]–[92]. The loss of passivity can be a serious
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Fig. 18. Illustration of CFH.

problem because transient simulations of reduced networks
may encounter artificial oscillations.

In systems containing distributed elements the number of
dominant poles will be significantly higher, and it is very dif-
ficult to capture all of them with a single Padé expansion.
This lead to the development of multipoint expansion tech-
niques such ascomplex frequency hopping (CFH), which are
summarized in the next section.

D. Complex Frequency Hopping

CFH extends the process of moment matching to multiple
expansion points (hops) in the complex plane near or on the
imaginary axis using a binary search algorithm [72]. With
a minimized number of frequency point expansions, enough
information is obtained to enable the generation of an ap-
proximate transfer function that matches the original func-
tion up to a predefined highest frequency of interest. Using
the information from all the expansion points, CFH extracts
a dominant pole-set as illustrated in Fig. 18(b). In addition,
CFH provides an error criterion for the selection of accurate
poles and transfer functions.

Selection and Minimization of Hops in CFH:A Padé ap-
proximation is accurate only near the point of expansion and
its accuracy decreases as we move away from thepoint of
expansion (hop). In order to validate the accuracy of such
an approximation, at least two expansion points are neces-
sary. Accuracies of these two expansions can be verified by
matching the poles generated at these two hops [72] (re-
ferred aspole-matching-based approach). Alternatively, the
two hops can be verified for their accuracy by comparing
the value of the transfer functions due to both these hops
at a point intermediate to them (referred astransfer-func-
tion-based approach) [73]. CFH relies on a binary search al-
gorithm to determine the expansion points and to minimize
the number of expansions. The steps involved in the binary
search algorithm for both the above approaches are summa-
rized as follows.

Fig. 19. Graphical illustration of transfer-function-based search
algorithm.

1) Transfer-Function-Based Approach:In this approach
the transfer functions obtained at various hops (expansions)
are used to ensure the accuracy of the reduced-order model
up to the highest frequency of interest. Steps involved in the
algorithm are given in Figs. 19 and 20. It is to be noted that
the computational effort needed for a comparison as required
by Step 5is trivial as the responses can be computed in a
closed-form using the transfer functions generated inSteps
2 and3. Here, is a predefined threshold for the relative
error in the transfer functions. At the completion of the bi-
nary search algorithm, a set of transfer functions are gener-
ated. When evaluating the frequency response at a frequency
point , only the transfer function that is valid in the region
containing is used. This is repeated for all other frequency
points to obtain the frequency response of the system.

2) Pole-Matching-Based Approach:In this approach,
poles of the transfer function are explicitly evaluated at
each hop and the hops are verified for their accuracy by
comparing the poles from two adjacent hops using a binary
search algorithm. If a matching pole is found between two
adjacent expansions, then the binary search is stopped. The
distance between the matching pole and the expansion point
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Fig. 20. Transfer-function-based binary search algorithm.

Fig. 21. Pole-matching-based binary search algorithm.

under consideration defines the radius of accuracy for the
corresponding expansion. All the poles that are within the
radius of accuracy are treated as accurate poles and are
retained in the final pole-set. The poles that are outside the
radius of accuracy are considered as inaccurate poles and
are discarded. Fig. 21 illustrates the idea of the pole search.
Steps involved in this approach are identical to the one given
in Fig. 20, except for the matching criterion, which is based
on poles here. Once a set of dominant poles are obtained,
residues of the system are obtained using (102). Further
details of CFH and its search algorithms can be found in
[72] and [73].

E. Reduced-Order Models of Multiport Linear Networks

So far we looked into the model-reduction of single
input-single output systems. In this section, a discussion
pertaining to the multiport networks is given. Consider the
general multiport interconnect linear subnetwork shown
in Fig. 22 [this corresponds to the linear subnetwork
that is described during the general formulation (56) in
Section V]. Such a network can be characterized in terms of

(admittance), (impedance), (hybrid) or (scattering)
parameters. For the purpose of simplicity of presentation,
only the discussion with respect toparameters is consid-
ered in this paper (the idea presented here can be easily
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Fig. 22. Multiport linear subnetwork�.

extended to other types of characterization). The network
can be characterized using-parameters as

(119)

Using model-reduction techniques, each entryin (119)
can be approximated by a-pole lower order model having
a general form as follows:

(120)

where and are the th dominant pole–residue pair at
a port due to an input excitation at port, is the direct
coupling constant, and is the number of dominant poles
used for approximating .

There are two main approaches available in the literature
to obtain the matrix-transfer function represented by (119)
and (120). In the first approach, a common set of poles ob-
tained for any one of the entries are used for the compu-
tation of residues of all other entries [64], [66]. However, this
can lead to inaccurate results, since the residue computation
using (102) is very sensitive to the location of poles of each

. In the second approach, separate set of poles are used
for the computation of residues of each entry [68]. This ap-
proach can lead to a macromodel with a very large number
of poles. However, it is to be noted that the nonlinear simu-
lation time using general purpose simulators is superlinearly
proportional to the number of states involved (the number
of states is generally given byTotal number of states

Total number of poles Total number of ports). Hence,
the second approach can become inefficient in the presence
of a large number of ports. Both these difficulties can be ad-
dressed using the Block CFH technique [76], which provides
schemes to minimize the number of poles, as well as to im-
prove the accuracy of residues.

Selection of Dominant Pole-Set:In order to minimize the
number of poles in the matrix-transfer function, the following
two propositions can be used.

1) In general, the pole-set corresponding to any indi-
vidual transfer impedances ( ) is a subset of the
union of all driving point impedances ( ) [158].

2) CFH accurately computes the dominant poles of a
system. Generally in a system with a large number
of dominant poles (20–40), pole-sets belonging to
different driving point admittances ( ) obtained
using CFH contain mostly identical poles and with
only a very small number of poles differing among
these sets.

Residue Computation Algorithm: Residue computa-
tion algorithm [76], which combines the merits of two
different approaches of CFH, namely,transfer-func-
tion-based approachand pole-matching-based approach.
The transfer-function-based approach collects a set of
transfer functions thataccurately matches the frequency
response up to the highest frequency of interest. On the
other hand, pole-matching-based approachcollects all the
dominant poles accurately up to the highest frequency of in-
terest. In this algorithm, the relationship between frequency
response and pole–residue model of the system is used to
compute the residues (this idea is illustrated in Fig. 23) as

(121)

where is the total number of dominant poles () extracted
using CFH and ( ) are the corresponding unknown residues,

is the direct coupling constant, and represents the fre-
quency response obtained using the transfer-function-based
approach.

In order to compute the unknown residues, a set of linear
equations can be formulated using (121), spanning many fre-
quency points in the region of interest as shown below:

(122)

(123)

where represents the th frequency point. In the case of
complex poles, both the pole as well as its conjugate should
be used while formulating (123). Let be the total number
of frequency points matched. Next, equating both the real and
imaginary parts of (123) separately, we obtain a new set of
linear equations as

(124)

where is a vector containing the unknowns cor-
responding to the real and imaginary parts of residues,

is a vector containing real and imaginary parts of
the frequency responses represented by , and

consists of entries contributed by the LHS of (123).
In case the direct coupling constant is computed by adding it
as one more variable in (124), then the order of matrix/vec-
tors indicated above will change fromto .

Next, the solution of (124) is needed to evaluate unknown
residues . In order to improve the accuracy of residues, it
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Fig. 23. Illustration of the new residue computation algorithm.

is necessary to match as many frequency points as possible
using (123). However, in the case of choosing a number
of frequency points higher than the number of unknown
residues, matrix will not be square. To overcome this
difficulty, (124) is solved using the least mean square error
algorithm and the solution is given by a new set of normal
equations

(125)

where

(126)

is a square matrix of order . represents the trans-
pose of . Formulating the residue equations in the form
given by (125) leads to additional computational savings as
the number of equations to be solved remains equal to the
number of unknown residues despite the increase in matched
frequency points.

In the multiport CFH algorithm, an accurate frequency-re-
sponse for each of the entries in thematrix is obtained
using complex frequency hopping based on transfer-function
approach. Next, an accurate pole-set is obtained as the union
of driving point impedances. Using these accurate poles
and frequency responses, residues for eachis obtained
through the residue computation algorithm.

F. Interface to Circuit Simulators

In this section, a review of techniques to link re-
duced-order models to nonlinear SPICE-like simulators is
described. The reduced-order model for the linear subnet-
work is obtained as shown in (127) at the bottom of the
page, where is the number of poles in the common pole-set

. and represent residue and the direct coupling
constant for the parameter , respectively. Derivation
of differential equations from reduced-order interconnect
models is referred asmacromodel synthesis. The differential
equations can be easily linked to nonlinear simulators as they
are described in time-domain. This process is illustrated in
Fig. 24. In general, a set of first-order differential equations
in the state–space domain can be described as

(128)

where is a state-matrix, is a matrix
that relates the inputs to state-variables, is a ma-
trix relating state variables to the outputs (),
is a matrix relating inputs directly to the output, is the
state vector of length , and is the input vector of length

(where is the number of ports).
Given a matrix-transfer function described by (127),

several forms of time-domain realization can be obtained.
For the purpose of illustration, macromodel synthesis using
Jordan-canonical [152], [153] form of realization is given

(127)
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Fig. 24. Illustration of macromodel synthesis for nonlinear
simulation.

below. Consider a two-port network containing two common
poles, whose transfer function is described by

A Jordan-canonical [152], [153] form of realization for this
case would need four state variables, and it can be repre-
sented as

If the matrix-transfer function contains complex
poles, then they need to be treated differently as they do not
have a direct meaning in the time-domain. However, since
all the coefficients of the denominator polynomials of
(which are obtained through Padé approximation) are real,
if a complex number is a root of then its complex
conjugate is also a root of . Hence, a Jordan-form
of state–space realization for a complex pole-pair would be
[153]

(129)

where is a diagonal matrix constructed using poles and
is complex conjugate of . Next, introducing an equiv-

alence transformation defined by

(130)

(129) can now be easily transformed into

Re Im

Im Re

Re

Re Im (131)

An illustrative example of the above steps is given below.
Consider a two-port network containing one pair of complex
poles . Let the corresponding residues at dif-
ferent ports be . The original Gilbert’s
realization will yield

Define

Next, the realization represented by (131) can be obtained
as
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Fig. 25. Illustration of equivalent subcircuit generation from macromodels.

Unified Transient Simulation:Once a matrix-transfer
function describing the multiport interconnect network is ob-
tained, a time-domain realization in the form of state–space
equations can be obtained as

(132)

where and are the vector of terminal currents and volt-
ages of the linear subnetwork[described by (56)]. The dif-
ferential equations represented by the macromodel (132) can
be combined with (55) using the relation as

(133)

Using standard nonlinear solvers or any of the general-pur-
pose circuit simulators, the unified set of differential equa-
tions represented by (133) can be solved to yield transient
solution for the entire nonlinear circuit containing intercon-
nect subnetworks. For those simulators (such as HSPICE)
that do not directly accept the differential equations as input,
the macromodel represented by (133) can be converted to an
equivalent subcircuit and is described in the next section.

Conversion of Macromodels to Equivalent Subcir-
cuits: Conversion of differential equations to equivalent
subcircuits can be accomplished in several ways. For the

purpose of illustration, consider a simple case of two-port
network with two states represented in the form of (132)

(134)

Next, (134) can be rearranged as

(135)

(136)

(137)

(138)

In the above equations, the port voltages and currents are
represented by and , respectively. An equivalent
network representing (135)–(138) can be constructed as
shown in Fig. 25. Each state in the macromodel requires a
separate node in the equivalent circuit and are represented by
nodes . The state variables can be represented
by the capacitor voltages. These capacitors are denoted by

and the corresponding voltages by . Next,
the terms such as in (135)–(138) can be represented
by voltage controlled current sources. Equations (135) and
(136) are fully represented by Fig. 25(c) and (d). Output
equations represented by (137) and (138) are realized
through equivalent circuits shown in Fig. 25(a) and (b).
Generalization of the above discussion in the presence of
more number of states or ports is straightforward.
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VIII. M ODEL-REDUCTION BASED ON KRYLOV-SUBSPACE

TECHNIQUES

Direct MMTs such as AWE, discussed in Section VII, have
some disadvantages associated with them. First one among
them is the ill-conditioning associated with the moment-ma-
trix. Due to this difficulty, the number of good poles that
could be extracted from any expansion point is generally
fewer than ten poles. The second major difficulty is that they
do not guarantee the passivity of reduced models. In order
to address these difficulties, a parallel class of algorithms,
which can be classified asindirect moment-matching tech-
niqueswere developed [77]–[90].

These algorithms are based on what is known asKrylov-
subspace formulationandCongruent transformation. One of
the main features of these algorithms is that they construct
the reduced-model based on the extraction ofleading eigen-
values (those with the largest magnitude)of a given system
(on the contrary, the reduced models from the CFH technique
discussed in Section VII-D is based on extracting the dom-
inant poles of a given system). In the rest of this section,
we will describe the concept and important features of these
algorithms.

A. Preliminaries

Recall from Section IV, the time-domain MNA and the
corresponding output equations can be represented in the
form

(139)

where represents the total number of MNA variables. Pre-
multiplying both sides of (139) by , we can write

(140)

Taking the Laplace transform of (140), we can write

(141)

Rearranging (141), we can write the transfer function
of the given system as

(142)

where is an identity matrix.
1) Why Direct Padé-Based Approximation (Moment-Ma-

trix) is Ill-Conditioned: Consider the transfer-function of a

system, as represented by (142). Expanding it in terms of
Taylor series, we have

where (143)

Ideally, increasing the order of the Padé approximation
(which is equivalent to matching more number of moments)
should have given us better approximation results. How-
ever, in practice, this is true only up to very limited order,
beyond which Padé approximation will not yield any better
results [77], [160]. This can be explained by examining
the nature of higher order moments, which are given by

. As can be seen, when successive moments
are explicitly calculated, they are obtained as powers of

. With the increasing values of “”, this processquickly
converges to an eigenvector corresponding to an eigenvalue
of with the largest magnitude. As a result, for relatively
large values of “ ”, the explicitly calculated moments

, will not add any extra information
to the moment-matrix, as all of them contain information
only about the largest eigenvalue. In other words, the rows
beyond “ ” of moment-matrix are almost identical (or
parallel to each other), making the matrix ill-conditioned.

2) Relationship Between Eigenvalues and Poles of the
System: In this section we will show the correspondence
between the leading eigenvalues and poles of the system. It
is important to understand this concept as the Krylov-sub-
space-based techniques obtain the reduced-models by
extracting the leading eigenvalues of a given system.
Consider (140), and assume that the matrixcan be
diagonalized in the form

(144)

where diag is a diagonal matrix whose
diagonal elements represent the eigenvalues of matrix. The
matrix contains the eigenvectors of matrix. Using (144),
the transfer-function represented by (142) can be rewritten as

(145)

which can be simplified as

(146)
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where is a function of the eigenvectors of matrix, and
represent the residues. From (146), we can draw following
inferences. 1) Poles are the reciprocal of eigenvalues of
matrix ; the leading eigenvalues (those with largest mag-
nitudes) correspond to the poles closer to the origin. 2) The
transfer function of can be easily obtained in terms of
poles and residues, once the eigenvalues and eigenvectors of

are available.
However, for large interconnect circuits, it would be im-

practical to compute all the eigenvalues and eigenvectors.
Hence, in the following sections, we will review some of the
efficient techniques to extract leading eigenvalues.

Computation of Eigenvalues of Matrix “”: In general,
the numerical computation of all the eigenvalues and eigen-
vectors of a given matrix becomes exceedingly expensive
as its size gets above a few hundred. The general approach
in such cases is to approximatewith a smaller matrix ,
such that the eigenvalues of are reasonable approxima-
tion of the leading eigenvalues of. Due to the relatively
small size of , finding its eigenvalues will be a much sim-
pler problem than finding the eigenvalues of. Next, we will
review some of the basic matrix forms [160], which would
be helpful in understanding the eigenvalue computation al-
gorithms presented in this section.

Orthogonal Matrices: A real matrix is orthogonal if

(147)

All columns, of orthogonal matrices have unit two norms
or (which implies that ) and are orthog-
onal to one another (which means that ). For the
special case where is a square matrix, the above definition
implies .

QR Decomposition:Let be a matrix with
. Suppose that has full column rank. Then there exists a

unique orthogonal matrix and a unique upper-tri-
angular matrix with positive diagonals ( ) such
that . There are several techniques (such asmod-
ified Gram–Schmidt orthogonalizationprocess) available in
the literature for performing this decomposition [160].

Upper-Hessenberg Matrix:A matrix is called
Upper-Hessenbergif for . For example,
consider an upper Hessenberg matrix of order, having the
following form (which is known ascompanion form):

...
...

...
...

...
...

...
...

...
...

(148)

One of the important advantages of the above companion
form is that its characteristic polynomial can be ana-
lytically computed and is given by

(149)

The roots of give the eigenvalues of .

Next, consider the circuit equations (140) and a simple
similarity transformation as follows:

(150)

where the transformation matrix is defined as

(151)

and has theupper-Hessenberg companion formdis-
cussed above. Obviously, since is related to the matrix

through a similarity transformation, its eigenvalues are
the same as that of . Although it looks straightforward,
this approach has the following limitations.

Computation of using the relation (150)
( ) requires the inverse of the matrix

. However, is a dense matrix and, hence, computation
of its inverse will be expensive. Also, is likely to be
ill-conditioned since the columns of are formed based
on the sequence which quickly converges to the eigen-
vector corresponding to the largest eigenvalue. In the next
section, we will describe general techniques to overcome
these problems. These algorithms belong to a class of
methods known asKrylov-subspacetechniques.

B. Krylov-Subspace Methods for Iterative Computation of
Eigenvalues

We will start by replacing the matrix in (150) with
an orthogonal matrix such that for all , the leading
columns of and span the same space. This space is
called Krylov-subspace and is denoted by . In
other words, any vector that is a linear combination of the
leading columns of can be expressed also as a linear
combination of the leading columns of . Mathematically,
we will express this as

(152)

In contrast to matrix , the matrix has the following ad-
vantages.

• is well conditioned.
• It is easy to invert since .
• Most importantly, we can compute only as many

leading columns of as needed to get accurate solu-
tion (more details about this are covered later in this
section).

The next question is, how do we get the matrix? We can
achieve this as follows. Expressing the matrixusing QR
decomposition as (where is an orthogonal ma-
trix and is an upper-triangular matrix), we can modify
(150) as

(153)

or

(154)
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Since and are both upper triangular and is upper
Hessenberg, it is easy to prove that the new matrix,

, is also upper Hessenberg.
Next, let us assume that we will use only the first leading

columns ( ) of . In this case, the matrices under con-
sideration will have the following dimensions: ,
and . The implications of (154) is that we can re-
duce the matrix of dimension to a smaller upper
Hessenberg matrix of dimension using orthogonal
transformation. In addition, the eigenvalues of the smaller
system are approximations of the first leading eigen-
values of the larger system represented by.

Next, we will show that the columns of can be com-
puted one at a time giving us the advantage of computing
only as many leading columns of as needed. One of the
popular approaches used for partial reduction of a large ma-
trix to a smaller upper Hessenberg matrix using, is known
asArnoldi’s algorithm[80]–[87], [160]. More details about
this are given in the next section.

C. Arnoldi Algorithm for (Partial) Reduction

Assume , where represents theth
column of matrix . From (154), we have , which
can be written as

...
...

...
...

...
...

...
...

...
...

(155)

Recall that all columns of orthogonal matrices have
(which implies that ) and are orthogonal

to one another (which means that ). Using this
information, the first few steps in obtaining the and
matrices are outlined below.

Since the , an easy way to compute it is to divide
the vector [from (139), assuming the single-input, single-
output case, will be a vector] by its magnitude (we
get a unit vector in the direction of). This step is illustrated
in Fig. 26(a)

(156)

To determine and the first column of , we multiply
by the first column of . This gives us , which is the first
column on LHS of (155). Equating it with the first column
of RHS, we have

(157)

(a) Computation ofq

(b) Computation ofq ; h ; andh

Fig. 26. Illustration of steps in Arnoldi algorithm.

Premultiplying both sides by , we have

(158)

Knowing the value of and using the fact that ,
we can compute from (157) as

(159)

The direction for can be obtained using (157) as [illus-
trated in Fig. 26(b)]

(160)

Similarly, the rest of the columns of and matrices can
be obtained by generalizing the steps as shown in Fig. 27.

Note that we did not need to explicitly compute the product
. As a result, we were able to avoid the ill-conditioning

problem arising due to the quick convergence of the sequence
to the eigenvector of the largest

eigenvalue.
The columns computed by Arnoldi algorithm are called

Arnoldi vectors. The loop over updating corresponds
to the modified Gram–Schmidt algorithm[160], which
subtracts the components in the directionsto away
from , leaving them orthogonal to. Computing a total of
“ ” Arnoldi vectors costs matrix–vector multiplications
involving , plus related cost.

There are several alternative methods available in the liter-
ature for finding the basis for Krylov-subspace [85]. For ex-
ample, one can use multiple passes of orthogonalization to
increase the robustness of the modified Gram–Schmidt or-
thogonalization process.

To recap, we started with the circuit equations
and . We formed the product

. Using orthogonal transformation, we were able
to determine the leading eigenvalues ofthat correspond to
the dominant poles of the transfer-function. In the following
section, we will show how to use this information to perform
circuit reduction.
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Fig. 27. Pseudocode for Arnoldi algorithm.

D. Circuit Reduction Using Arnoldi Algorithm

Finding the reduced-order circuit equations can be ex-
plained by a change of variables in (139) by mapping the
vector of dimension into a smaller vector of dimension

( ) using the orthogonal matrix [80]–[92]

(161)

Using (161), we can rewrite Laplace-domain circuit equa-
tions in (140) as

(162)

Premultiplying both sides of (162) by and using the
relation , we have

(163)

Hence, the transfer-function of the reduced system can be
written as

(164)

Comparing the original transfer-function repre-
sented by (142) with the transfer-function of the
reduced system represented by (164), we can draw the
following conclusions. The eigenvalues of are given
by the eigenvalues of . However, since the eigenvalues of

are good approximation of the leading eigenvalues of,
we can conclude that the eigenvalues of the transfer function
of the reduced system are good approximation of the poles
of the original transfer function.

An important criterion during the above reduction is the
accuracy of the response of the reduced system given by
(164). The frequency response of the reduced system (164) is
also a good approximation of the frequency-response of the
original transfer function (142). An indicator for the accuracy
of the response of the reduced system is the total number of
moments it can preserve (match), for a given order of reduc-
tion ( ). It can be proved that the reduced system (164) of
order preserves the first moments of the original network
[84].

In essence, we are able to implicitly match the moments
and obtain a reduced-model without the need to directly use
the moments as in the AWE algorithm. Hence, we will not
suffer from the same numerical ill-conditioning that is as-
sociated with direct moment-matching algorithms. The ac-
curacy of the Arnoldi approximation gradually increases as
the order is increased since more moments of the original
transfer function will be matched.

A question that may possibly arise here: how are the
accuracies of Arnoldi-based approximation and direct
Padé-based approximation are compared? It was shown in
Section VII that a Padé approximation of ordermatches the
first moments. However, an Arnoldi-based reduction of
order matches only first moments [84]. Essentially, this
means that, for a comparable accuracy, the reduced-model
from Arnoldi will have double the size of the reduced
model from direct Padé-based approximation (in other
words, direct Padé-based models are more optimal). On the
other hand, due to the ill-conditioning, direct Padé-based
approximation cannot achieve higher order approximation,
whereas Arnoldi-based approximation can.

In an alternative approach, the reduction based on Lanczos
algorithm can preserve the first moments [77]–[79] (like
direct Padé-based approximation). The difference between
Arnoldi and Lanczos algorithms is that in Lanczos algorithm
we transform the matrix to a tridiagonal matrix . In addi-
tion, Lanczos algorithm uses two biorthogonal Krylov space,
to recursively compute [77]. However, the macromodels
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using the above Lanczos-based reduction scheme does not
guarantee the passivity of the macromodel.

E. Multiport Reduction using Arnoldi Algorithm

Consider an -port characterization of a system based on
the admittance parameters. The multiport circuit equations
for this can be written as [80], [84]

(165)

where the input and the output
are vectors of port voltages and

currents, respectively, instead of scalars. In this case,
becomes a matrix,

instead of a vector. represents theth column of (an
example of multiport formulation is given in Section VIII-F).

In the case of multiport characterization,block moments
are used, instead of moments of a particular output. Block
moments are defined as

(166)

where an entry in theth row and th column of repre-
sents theth moment of the current (output) that flows into
port due to a voltage source (only nonzero source) at port

.
Block Krylov-subspace spanningcolumns can be con-

structed using the block moments (166) as

(167)

where the operator represents the truncation to the nearest
integer, toward zero.

For example, assume a three-port characterization in-
volving , and let . In this case, we have

; and (167) can be
written as

Using the block Arnoldi algorithm [80], matrix can be re-
duced to a smallblock upper Hessenberg matrix, .
The multiport admittance matrix of the reduced-system is
given by

...
... (168)

Fig. 28. Transient response of a nonpassive macromodel with
passive terminations.

where . In this case, it can be
proved that the reduced system (168) of orderpreserves
the first block moments of the original network [84].
This implies that for a desired predefined accuracy, the order
of the reduced system should be increased with the increase
in the number of ports.

In the next section, the review of an important property of
macromodels, passivity, and extension of Krylov-subspace
techniques for passivity preservation are provided.

F. Passivity Preservation

Passivity implies that a network cannot generate more en-
ergy than it absorbs, and no passive termination of the net-
work will make the system unstable. Passivity is an impor-
tant property, because stable but not passive macromodels
can lead to unstable systems when connected to other pas-
sive systems. The loss of passivity can be a serious problem
because transient simulations of nonpassive networks may
encounter artificial oscillations. This is illustrated in Fig. 28,
which represents the transient response of a reduced-order
macromodel of a large linear circuit, when connected
to an external load of 50 k. In this section, we will review
important algorithms that are available in the literature, for
preservation of passivity during the reduction of interconnect
networks [83]–[92].

1) Review of Passivity Properties:A passive network
cannot generate power on its own. It is essential that the
reduced-order model must be passive. A network with
admittance matrix represented by is passive iff [83],
[84], [154]–[157]:

a) where “ ” is the complex conjugate
operator;

b) is a positive real (PR) matrix, that is the product
for all complex values of

with and any arbitrary vector.
2) Passive Reduction:The algorithm discussed here

is based on the PRIMA technique [84]. Recall from Sec-
tion VIII-D, where circuit reduction was achieved by
applying Arnoldi on the set of equations represented by
(162) (we refer this approach as classical Arnoldi). However,
this approach does not preserve the passivity of the reduced
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Fig. 29. Example circuit for MNA formulation compatible with passive reduction algorithms.

system. Instead, if the Arnoldi is applied on the original
set of circuit equations represented by (165), reducing the

and directly, passivity can be preserved (with certain
conditions, which is discussed later in this section). A brief
description of this process is given below.

Using (161), we can rewrite (165) in the Laplace-domain
as

(169)

Premultiplying both sides MNA equations of (169) by,
we have

(170)

where

(171)

The above type of transformations are known as congruence
transformations. Using (170) and (171), the output equation
in (169) can be rewritten as

(172)

From (172), it can be easily noted that the admittance matrix
of the reduced system is given by

(173)

It can be proved that the reduced model, given by (173)
is passive [84]. In addition, like the block Arnoldi algorithm
also preserves the first block moments of the original
network). One of the conditions required to prove the pas-
sivity of the reduced model is that the originalmatrix must
be a symmetric and nonnegative definite matrix. This condi-
tion can be satisfied with a slight change during the MNA
formulation step, as follows.

3) MNA Formulation Compatible with Passive Reduction
Algorithms: Consider the lumped circuit equations (162).
The matrices , can be formulated, such that

(174)

where represent the MNA variables, represent the
conductance and susceptance matrices, with an important
note that the rows corresponding to current variables are
negated (such that the diagonal entries ofmatrix con-
tributed by inductor elements remain positive).
are the matrices containing the stamps of resistors, capac-
itors and inductors, respectively. Matrix
corresponds to the current variables in a KCL formulation.
Provided that the original network is composed of passive
elements only, lead to symmetric nonnegative
definite matrices. With this MNA formulation, it can be
proved that the resulting is also symmetric nonnegative
definite [84]. An illustration of the above formulation is
given at the bottom of the next page in (175) for the circuit
in Fig. 29.

IX. RELATED TOPICS ANDFURTHER READING

In addition to the interconnection simulation algorithms
discussed in the previous sections, there are several related
topics that may be of interest to the readers of this paper.

Full-Wave Models:At further subnanosecond rise times,
the line cross section dimensions become a significant frac-
tion of the wavelength and field components in the direction
of propagation can no longer be neglected. Consequently,
full-wave models that take into account all possible field
components and satisfy all boundary conditions are required
to accurately estimate high-frequency effects. However, cir-
cuit simulation of full-wave models is highly involved. The
information that is obtained through a full-wave analysis is in
terms of electromagnetic field parameters such as propaga-
tion constant, characteristic impedance, etc. However, a cir-
cuit simulator requires the information in terms of currents,
voltages, and circuit impedances. This demands a general-
ized method to combine modal results into circuit simula-
tors in terms of a full-wave stamps. References [26]–[29],
[56], [74] provide solution techniques and moment genera-
tion schemes for such cases.
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Measured Data: In practice, it may not be possible to
obtain accurate analytical models for interconnects because
of the geometric inhomogeneity and associated disconti-
nuities. To handle such situations, modeling techniques
based on measured data have been proposed in the liter-
ature [102]–[113]. In general, the behavior of high-speed
interconnects can easily be represented by measured fre-
quency-dependent scattering parameters or time-domain
terminal measurements. However, handling measured data
in circuit simulation is a tedious and a computationally
expensive process. References [102]–[113] address such
cases.

EMI Subnetworks:Electrically long interconnects func-
tion as spurious antennas to pick up emissions from other
nearby electronic systems. This makes susceptibility to
emissions a major concern to current system designers of
high-frequency product. Hence, the availability of intercon-
nect simulation tools including the effect of incident fields
is becoming an important design requirement. References
[119]–[139] provide analysis techniques for interconnects
subjected to external EM interferences and also for radiation
analysis of interconnects.

Sensitivity Analysis:Sensitivity analysis involving large
interconnect subnetworks can be highly CPU intensive.
Model-reduction-based approaches provide an efficient
means for this purpose [114]–[118].

Minimum Realization of Reduced-Order Models:It is ev-
ident from the discussions in Sections VII and VIII that the
size of the reduced-order model increases with the increase in
the number of ports. In such cases, it may become essential to
realize the macromodels with a minimum possible number of
states, so as to achieve fast transient simulations [93]. Also, it
is observed that Krylov-subspace-based reduced models re-

quire high order to capture high-frequency effects such as
skin effect. This can make the transient simulation expen-
sive as the reduced model becomes expensive to evaluate and
post-processing of macromodels to further reduce the order
may become necessary [94], [95].
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