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The Montecito[1] processor contains two Itanium-family cores
with Foxton[2] technology on a 1.7B-transistor die.  The variable-
frequency clock system (Fig 16.2.1) consists of a single PLL [3]
that generates a multiple 6≤M≤20 of the system clock frequency
distributed to 14 digital frequency dividers (DFDs) for division to
the proper zone frequency.  Each DFD (Fig. 16.2.2) consists of a
DLL and a state machine that dynamically selects among 64 DLL
phases generated from the PLL clock.  This allows the DFD out-
put frequency to vary according to FDFD=FPLL/(1+D/64) where
0≤D≤63, yielding a range of 1.0 to 0.504FPLL in 1/64th increments.  

Clock zones consist of 2 cores each with 3 DFDs; one 1GHz DFD
for Foxton technology control; one DFD for each of 6 front-side
bus (FSB) stripes; one DFD for bus logic.  Each DFD output clock
is distributed to second level clock buffers (SLCBs) for delay tun-
ing to 1ps resolution via active deskew.  35 regional active deskew
(RAD) phase comparators are distributed in each core to actively
deskew neighboring SLCBs, yielding <10ps of skew across the
21.5mm by 27.7mm die [4].  SLCB clocks are distributed to 7536
clock vernier devices (CVDs) per core for local delay fine-tuning
via scan.  Gaters provide a final gain stage, power-saving enables,
and pulse shaping for low latching overhead and skew compen-
sation through transparency [5].

To configure the clock-system components, a “translation table”
determines PLL, DFD, and aligner divisors from pin-selected sys-
tem clock frequencies (200, 266, 333, 400MHz) and fuse-selected
bus-logic and core clock frequencies.  Fuses determine the core
startup (“safe”) and limit frequencies. The clock system has two
frequency modes: fixed and variable (FFM and VFM, respective-
ly). The clock system starts in FFM and is then placed into VFM
by firmware.

In FFM, 13 of 14 DFDs are frequency and phase aligned; the 14th

is always a fixed 1GHz for Foxton-technology power-management
algorithms.  The 13 aligned DFDs have identical fixed divisors: 0
for maximum FFM frequency, and > 0 to achieve a “safe” startup
frequency before entering VFM. On power-up or reset, DFD DLLs
start and lock on the PLL clock autonomously.  Once all 13 DLLs
lock, DFD dividers start synchronously and remain phase/fre-
quency locked to the PLL clock.

In FFM, the core, FSB, and bus logic clocks align to the external
system clock by a phase aligner system.  This aligner adjusts
DFD phase selection using up/down controls, sliding the phase
around without changing frequency. At startup the aligner elimi-
nates built-in core/FSB route mismatch [4] and aligns both to the
system clock to within 20ps across PVT.  DFD clock synthesis
allows phase adjustment in uniform 1/64 cycle steps with virtu-
ally infinite range. In fact, an inversion error on first silicon in
the bus logic clock tree (due to logic equivalence escape) is trans-
parently corrected by the aligner at startup with no added skew
or functional impact due to the adaptive design. 

In VFM, core DFD frequency (FCORE) dynamically tracks core
voltage (VCORE) via a programmed regional voltage detector (RVD)
voltage-frequency (V-F) response in the voltage-to-frequency con-
verter (VFC) loop.  The RVD consists of a one-cycle delay-line
with a programmable mix of RC and FET delay.  This delay-line
output is applied to a phase comparator to produce TCORE  adjust
signals UP, DN (down) and DZ (deadzone). The DZ capability con-
trols VFC loop stability.  The RVD delay, its RC composition and
the DZ width are all scan programmed at startup by hardware
and system software.

High VFC bandwidth can track power-managed VCORE modula-
tion as well as high-frequency switching transients. A new fre-
quency is selected with 1.5 cycle average response to a local volt-
age change event.  This frequency change is distributed to latch-
es in ~700ps [4] (Fig. 16.2.3). In each VFC cycle, a DFD utility
clock edge: 1) propagates 2400µm to an RVD; 2) a comparator pro-
duces an UP, DN, or DZ request; 3) routes 2400µm back to DFD;
4) PCSM arbitrates and resolves comparator meta-stability, and
5) produces a divisor adjust set up to next clock edge at the DFD.
The high bandwidth greatly reduces CPU exposure to voltage-
transient-induced timing issues enabling FCORE to track a voltage
transient of up to 30mV/ns with 700ps of lead time on average.

In VFM, DFDs synthesize an FCORE range of FPLL to FPLL /2 in 1.6%
steps over a VCORE range of 0.8V to 1.2V.  DFDs receive inputs
from 4 local RVDs and from other same-core DFDs.  The DFD
phase compensator state machine (PCSM) arbitrates RVD
requests and same-core DFD inputs to derive local DFD divisor
adjusts which (a) preserve intra-core DFD phase lock and (b)
track programmed V-F  response.  All DFDs start synchronously
in safe mode using phase 0, and same-core DFD phase lock is
maintained in VFM by PCSM arbitration.

Test features include: on-die clock shrink (ODCS) [6], clock-edge
manipulation in the DFD;  4 self-calibrated salmon ladders for
deterministic test trigger transport between clock domains; a 
2-pin clock-observation test port.

Figure 16.2.4 shows simulated VFC response to a VCORE tran-
sient.  The fast VFC response allows reduction of frequency
guard-banding normally used to insure critical path timing dur-
ing supply transients.  This increases VFM performance over
FFM as a function of on-die supply noise (Fig. 16.2.5) which has
been observed using an on-die power-measurement circuit [9] to
be about 70mVpp.  Figure 16.2.6 shows silicon waveforms of core
and bus-logic clocks at startup in FFM and later in VFM: the bus
logic voltage and frequency remain fixed at 1.2V/1.6GHz while in
this case the cores are running at 1.2V/2.14GHz.

Clock-system results on first silicon included full functionality of
FFM, VFM, and all units described above. The clock system has
been shown to operate at up to 2.5GHz at 1.2V, and enabled first
silicon boot of Linux, HPUX, and Windows on multiple platforms
with Foxton technology.
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Figure 16.2.1: Montecito clock system topology. Figure 16.2.2:  DFD / PCSM block diagram.

Figure 16.2.3: Voltage-to-frequency converter loop (VFC).

Figure 16.2.5:  VFM performance versus supply noise. Figure 16.2.6: FFM/VFM core/bus clock oscilloscope traces.

Figure 16.2.4: VFM supply transient tracking response (simulated).
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Figure 16.2.7: Die micrograph.
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