Lower-Complexity Layered Belief-Propagation Decoding of LDPC codes

Yuan-Mao Chang
Andres I. Vila Casado
Advisor: Prof. Wesel
8/11/2008

Outline
- Introduction
- Efficient computation of the check-to-variable messages
- Variable-node-centric LBP (V-LBP)
- Zigzag LBP (Z-LBP)
- High-Rate LDPC codes
 - Check-node-centric LBP (C-LBP) implementation issues
 - Partially-parallel Z-LBP implementation
- Conclusion
- Further work
- Reference
Introduction

- The original message-passing schedule: Flooding scheduling
- Sequential scheduling:
 - improves the convergence speed in terms of number of iterations
 - outperforms the traditional flooding scheduling for a large number of iterations.
- Different types of sequential schedules:
 - a sequence of check-node updates [3]
 - a sequence of variable-node updates [7] [8]
 - Layered Belief Propagation (LBP) [9]
 - Others [10], [11], and [12]

Quasi-Cyclic LDPC codes

- QC-LDPC codes are represented as
 \[
 H_{\text{QC}} = \begin{bmatrix}
 A_{1,1} & \cdots & A_{1,j} \\
 \vdots & \ddots & \vdots \\
 A_{i,1} & \cdots & A_{i,j}
 \end{bmatrix}
 \]
 where each sub-matrix \(A_{i,j} \) is a pxp circulant matrix.
- A circulant matrix is a square matrix in which each row is a one-step cyclic shift of the previous row, and the first row is a one-step cyclic shift of the last row.
- The QC-LDPC structure guarantees that at least messages can be computed in a parallel fashion at all times if flooding schedule is used [3].
- QC-LDPC decoders have a significantly higher throughput than the decoders of random sparse matrices [13].
- Well designed QC-LDPC codes perform as well as random sparse matrices [14].
The check-to-variable messages

- The message from check node c_i to variable node v_j

$$m_{c_i \rightarrow v_j} = \prod_{v_b \in N(c_i) \setminus v_j} \text{sgn}(m_{v_b \rightarrow c_i}) \times \phi\left(\sum_{v_b \in N(c_i) \setminus v_j} \phi\left(|m_{v_b \rightarrow c_i}| \right) \right)$$

where $N(c_i) \setminus v_j$ denotes the neighbors c_i of excluding v_j

$$\phi(x) = -\log\left(\tanh\left(\frac{x}{2} \right) \right)$$

Soft-XOR

- A good property of the $\phi(x)$ function [1]
 $$\phi(x) = \phi^{-1}(x)$$
- Consider a binary operator: Soft XOR
 $$x \oplus y \equiv \phi(\phi(x) + \phi(y))$$
- Apply the Jacobian algorithm [2]
 $$\log(e^x + e^y) = \max(x, y) + \log(1 + e^{-|x-y|})$$
 $$= \max(x, y) + \delta(|x - y|)$$
 $$\delta(|x - y|) \approx \max\left(\frac{5 - 2|x - y|}{8}, 0 \right)$$ [3]
Implementation of Soft-XOR

- Soft-XOR can be implemented in practice [4]

\[x \oplus y = \phi(\phi(x) + \phi(y)) \]
\[= \log(1 + e^{-x+y}) - \log(e^{-x} + e^{-y}) \]
\[= \max((x+y),0) + \delta(x+y) - \max((x+y),0) + \delta(x-y) \]
\[= \min(x, y) + \delta(x+y) - \delta(x-y) \]
\[\approx \min(x, y) + \max\left(\frac{5 - 2|y|}{8}, 0\right) - \max\left(\frac{5 - 2|x|}{8}, 0\right) \]

Simulation result
Simulation result

![Graph](image)

IEEE 802.11n (N=1944, K=972) Iteration=50

<table>
<thead>
<tr>
<th>Eb/No (dB)</th>
<th>FER</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-1</td>
<td>10^-2</td>
</tr>
<tr>
<td>10^-2</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Floating Approximation (7 bits) Look-Up Table (7 bits) Min-Sum (7 bits)

The check-to-variable messages

- By applying Soft-XOR, the message from c_i to v_j becomes

$$m_{c_i \rightarrow v_j} = \prod_{v_k \in N(c_i) \setminus v_j} \text{sgn}(m_{v_k \rightarrow c_i}) \times \sum_{v_k \in N(c_i) \setminus v_j} m_{v_k \rightarrow c_i}$$

- $d_e - 2$ Soft-XORs are required to compute each $m_{c_i \rightarrow v_j}$
- $d_e (d_e - 2)$ Soft-XORs are required to separately compute all the $m_{v_i \rightarrow v_j}$ from the same check node c_i
Efficient implementation

- If a message-passing schedule requires the decoder to compute all the $m_{c_i \rightarrow v_j}$ from the same c_i simultaneously, there is an efficient implementation \[5\].

- This method uses $3(d_c - 2)$ Soft-XORs to correctly compute all the $m_{c_i \rightarrow v_j}$ from the same c_i at the same time.

- This check-node update is equivalent to the BCJR algorithm \[6\] over the trellis representation of the check-node equation in the log-likelihood domain.

Variable-node-centric LBP

- The V-LBP solutions proposed in \[7\] and \[8\] have a higher complexity per iteration than flooding and C-LBP.

- The V-LBP algorithm sequentially updates variable nodes, it does not allow computing all the $m_{c_i \rightarrow v_j}$ from the same c_i at the same time.

- Hence, the efficient implementation technique can not be applied here.

- V-LBP requires $d_c(d_c - 2)$ Soft-XORs to compute all the $m_{c_i \rightarrow v_j}$ from the same c_i.
Zigzag LBP

- Zigzag LBP (Z-LBP) is a V-LBP strategy that performs variable-node updates in a zigzag pattern over the parity-check matrix.

- Z-LBP schedule that requires fewer number of operations per iteration than flooding, C-LBP, and V-LBP to compute all the $m_{v_i \rightarrow v_j}$.

- Zigzag updating guarantees that all the $m_{v_i \rightarrow v_j}$ can be generated by using the technique presented before.

Z-LBP

1. Initialize all $f_{c_i,j}$ of the every check node.
2. All the odd iterations, consists of the sequential update of variable nodes, in a backward fashion. All the $m_{c_i \rightarrow v_j}$ are generated using $f_{c_i, j-1} \bigoplus b_{c_i, j+1}$.
3. Generate all the $m_{v_j \rightarrow c_i}$ from the same v_j.
4. Calculate all the $b_{c_i,j}$ for every c_i that is a neighbor of v_j using $m_{v_j \rightarrow c_i} \bigoplus b_{c_i, j+1}$.

Z-LBP

- Z-LBP requires $2(d_c - 2)$ Soft-XORs in order to update a check node.
- Flooding and C-LBP require $3(d_c - 2)$ Soft-XORs to update a check node.
- V-LBP needs $d_c(d_c - 2)$ Soft-XORs to update a check node.
- Assume the complexity of computing check-to-variable messages is much higher than the complexity of computing variable-to-check messages [3] [5].
- Z-LBP is 1.5 times simpler than flooding and C-LBP and $d_c/2$ times simpler than V-LBP per iteration.

Memory Size

- Denote the number of the edges of the bi-partite graph as N_E.
- There are $N_E f_{c,j}$ values and $N_E b_{c,j}$ values. Hence, this suggests that the Z-LBP decoder needs a memory of size $2N_E$.
- However, in the case of an odd iteration, the decoder computes a new $b_{c,j}$ after updating $m_{v_j \rightarrow c}$. Thus, the new $b_{c,j}$ can be written in the same memory address of $f_{c,j}$.
- Therefore, the required memory size is only N_E.
- This is the same memory size required for a C-LBP decoder which is half the memory required for a flooding decoder.
Simulation result

- IEEE 802.11n, Rate-1/2, Blocklength-1944, QC-LDPC code
- FER at different iterations for a fixed SNR 1.75 dB

Simulation result

- IEEE 802.11n, Rate-1/2, Blocklength-1944, QC-LDPC code
- FER v.s. number of Soft-XOR operation for a fixed SNR 1.75 dB
Simulation result

- IEEE 802.11n, Rate-1/2, Blocklength-1944, QC-LDPC code
- FER v.s. SNR

High-Rate LDPC codes

- Small-to-medium blocklength high-rate QC-LDPC codes generally need more than one diagonal per sub-matrix and only allow one row of sub-matrices.
- The single row of sub-matrices is necessary because multiple rows would require the sub-matrix size to be too small to provide the necessary throughput.
Check-node-centric LBP implementation issues

- Partially-parallel C-LBP implementation
- Step 3 and 4 become the variable-node update and check-node update of the flooding scheduling respectively.
- Therefore, partially-parallel C-LBP becomes exactly the same as flooding in complexity, convergence speed, and decoding capability.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initialize all $m_{c_i \rightarrow v_j} = 0$</td>
</tr>
<tr>
<td>2</td>
<td>for every row of sub-matrix l do</td>
</tr>
<tr>
<td>3</td>
<td>Generate and propagate $m_{v \rightarrow c_l}$</td>
</tr>
<tr>
<td>4</td>
<td>Generate and propagate $m_{c_l \rightarrow v}$</td>
</tr>
<tr>
<td>5</td>
<td>end for</td>
</tr>
<tr>
<td>6</td>
<td>if Stopping rule is not satisfied then</td>
</tr>
<tr>
<td>7</td>
<td>Position = 2;</td>
</tr>
<tr>
<td>8</td>
<td>end if</td>
</tr>
</tbody>
</table>

Partially-parallel Z-LBP implementation

- Z-LBP can perform in a partially-parallel fashion by updating a column of sub-matrices.
- First, label the cyclic-shift diagonals in each sub-matrix. This labeling prevents memory access conflicts when all processors process p variable nodes at the same time.
- The other steps are still the same.
- However, the decoder requires extra $d_c - N_{\text{mat}}$ Soft-XORs in order to compute $f_{c,i}$ or $b_{c,i}$ in advance.
Simulation result

- IEEE 802.15.3c, Rate-14/15, Blocklength-1440, QC-LDPC code
- FER at different iterations for a fixed SNR 6.0 dB

![Simulation result graph 1]

Simulation result

- IEEE 802.15.3c, Rate-14/15, Blocklength-1440, QC-LDPC code
- FER v.s. number of Soft-XOR operation for a fixed SNR 6.0 dB

![Simulation result graph 2]
Simulation result

- IEEE 802.15.3c, Rate-14/15, Blocklength-1440, QC-LDPC code
- FER v.s. SNR

![Graph showing FER v.s. SNR for different decoding methods: Flooding (Iter=50), V-LBP (Iter=50), V-LBP (Iter=3), Z-LBP (Iter=50), Z-LBP (Iter=50).](image)

Conclusion

- Z-LBP is a low-complexity sequential schedule of variable node updates.
- Z-LBP is $d_c/2$ times simpler than that of V-LBP and also 1.5 times simpler than flooding and C-LBP.
- Z-LBP outperforms flooding with a faster convergence speed and better decoding capability.
- For QC-LDPC codes where the sub-matrices can have at most one “1” per column and one “1” per row, Z-LBP can perform partially-parallel decoding. It provides the same performance as C-LBP.
- For small-to-medium blocklength high-rate QC-LDPC codes, Z-LBP can still perform partially-parallel decoding and maintains a sequential schedule.
Further Work

- FPGA implementation of C-LBP and Z-LBP
- Target code:
 - IEEE 802.11n, Rate-1/2, Blocklength-1944, LDPC code
 - IEEE 802.15.3c, Rate-14/15, Blocklength-1440, LDPC code
- Challenges
 - Place and Route
 - High throughput
 - Memory access
 - Power
- Building universal QC-LDPC decoders

Reference

Reference

Thank you for your attention.