The Need to Take Transformers beyond EPACT 2005

Powersmiths

Power for the Future

- Founded in 1996
- Power Quality & Energy Efficiency
 - ISO 14001 environmental management system
 - First to meet proposed DOE Efficiency Class 3
 - Education for Sustainability Tools
 - Participate in Sustainability Oriented Organizations

International Organization for Standardization

US PARTNERSHIP DECADE OF EDUCATION FOR SUSTAINABLE DEVELOPMENT UNITED NATIONS DECADE (2005-2014)

FACTS: Transformer vs. Life Cycle Cost

- Few Products, if any, will remain functional longer than transformers, 35 – 40+ years
- Lighting Comparison 2 3 X
- HVAC Comparison 1 2 X
- Low Voltage Transformers represent less than ½ of 1% Building Cost

POWersmiths

CTRICAL ROOM

You Never Know What Happens Behind Closed Doors.

The E-SAVER" reduces energy losses up to 60% or more and is manufactured with the lowest environmental interact. (ISO 14001).

2-SALF

Powersmiths

Transformer Loading ????

Cadmus Study documents lightly loaded transformers in many applications

Metered Load Factors for Low-Voltage, Dry-Type Transformers in Commercial, Industrial and Public Buildings

The Cadmus Group Inc. 12/7/99, Prepared for Northeast Energy Efficiency Partnership

Powersmiths

High Performance vs. TP1 (EPACT 2005) transformer (Linear Loading Efficiency)

45kVA Efficiency Comparisons vs. Field Data & TP-1

EPACT & TP1 have single 35% performance point not matched to load profile

Powersmiths

From <u>minimum</u> Efficiency to Life Cycle

- NEMA TP1 as minimum efficiency – to rid market of worst offenders
- Significant losses remain
- 5 efficiency classes

POWersmiths

- Finds low life cycle cost to be proposed Class Level 3
- K-RATED TRANSFORMERS ARE NO LONGER EXEMPT

Thursday, July 29, 2004

Part II

Department of Energy

Office of Energy Efficiency and Renewable Energy

10 CFR Part 430

Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Distribution Transformers; Proposed Rule

Moving to Life Cycle Assessment

1.40%

1.10%

0.91%

98.60%

98.90%

99.09%

Power for the Future

30.0%

45.0%

54.5%

Low

Life

Cycle

Cost

POWersmiths

Class 3

Class 4

Class 5

Powersmiths

Comparing Efficiency Classes

POWersmiths

Comparing Losses

POWersmiths

Detailed data

45kVA Transformer	Original GE	Powersmiths ESAVER-C3L	Square-D K4 (AL) EE45T3H1SNL
Loading (kW)	1.0-4.8 kW	1.0-6.1kW	1.0-4.9 kW
	(1.8kW avg)	(2.0kW avg)	(1.8kW avg)
% loading	2-10%	2-14%	2-10%
	(4% avg)	(5% avg)	(4% avg)
Average Losses	413 W	74 W	223 W

Findings

45kVA Transformer	Original GE	Powersmiths ESAVER-C3L	Square-D K4 (AL) EE45T3H1SNL	
Accumulated Transformer Losses after feeding 295kWh of load (roughly 1 week)	65.7 kWh	10.7 kWh	36.0 kWh	
Performance Comparison	Baseline (existing)	84 % reduction in operating losses	45% reduction in operating losses	
NOTE: Load profile has an average of 40% current distortion, typical of today's connected equipment				

Conclusions

P

- Energy Savings: 3 times lower losses with Powersmiths compared to Square D
- Environmental Benefits of transformer upgrade to Powersmiths:

Annual Reduction in Greenhouse Gases (per EPA)			
3	tons of CO2		
10	Tons of Coal		
23	kgs of SO2		
10	kgs of NOx		

Wersmiths Power for the Future

Things to remember about transformers - electronics are everywhere

Electrical systems deliver optimum performance when feeding continuous "linear" loads:

- motors
- incandescent lighting
- resistive heating

POWersmiths

Electronics are everywhere - computers, lab, diagnostic & operating equipment, & patient care

Variable Speed Drives run Ventilation System

POWersmiths

High Performance vs. TP1 (EPACT 2005)

transformer (Non-Linear Loading Efficiency)

POWersmiths

High Performance Green Buildings

POWersmiths