Overview of IEEE Standard 1015-1997 (IEEE Blue Book)

Recommended Practice for Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems

IEEE/IAS S.F. Chapter September 27, 2005 David D. Roybal, P.E. Eaton Electrical

Chapter 1 - Classifications/Types

Two main classifications of low-voltage circuit breakers:

- Molded-case circuit breakers
- Low-voltage power circuit breakers

Three types of circuit breakers:

- MCCB Molded-case circuit breakers
 ICCB Insulated-case circuit breakers
- LVPCB Low-voltage power circuit breakers

Contents

Chapter 1 Overview

Chapter 2 Definitions and Acronyms

Chapter 3 Rating and Testing

Chapter 4 Specific Applications

Chapter 5 Selective Coordination

Chapter 6 Special-Purpose Circuit Breakers

Chapter 7 Acceptance and Maintenance Requirements

Chapter 1 - Standards

Molded-case circuit breakers

UL 489 - MCCB

UL 1087 - Molded Case Switches (MCS)

NEMA AB1 - MCCB & MCS

NEMA AB3 - MCCB Application

Insulated-case circuit breakers

Same as MCCBs

Low-voltage power circuit breakers

ANSI Std C37.16 - Preferred Ratings

ANSI Std C37.17 - Trip Devices for LVPCB

ANSI Std C37.50 - Test Procedures

IEEE Std C37.13 - LVPCB Used in Enclosures

UL 1066 - LVPCB

Chapter 1 - Description (MCCB)

Molded-case circuit breakers

- Molded case of insulating material
- Over-center toggle
- Quick-make-quick-break mechanism
- Manually operated
- Trip free
- Intermediate trip position
- Field maintenance not intended

Chapter 1 - Description (LVPCB)

Low-voltage power circuit breakers

- Designed for maintenance and parts replacement
- Spring charged stored-energy mechanism
- Two-step closing
- Fixed or drawout
- Connected-test-disconnected positions
- Primary and secondary disconnects

Chapter 1 - Description (ICCB)

Insulated-case circuit breakers

- Case designed for inspection of contacts and arc chutes
- Stationary and drawout construction
- Stored energy mechanism
- Larger frame sizes
- Higher short-time withstand ratings

Chapter 2 – Definitions

Alarm switch	Overcurrent	Series rating
Auxiliary switch	Overload	Setting
Circuit breaker	Panelboard	Short-circuit
Coordination	Peak current	Short-time current
Current-limiting CB	Peak let-through current	Short-time delay
Drawout-mounted	Pickup	Short-time rating
Dynamic impedance	Prospective fault current	Shunt trip device
Instantaneous-trip-only	Rated short-time	Stored-energy mechanism
ICCB	withstand current	Switchboard
Inverse time	Rating plug	Switchgear
LVPCB	RMS sensing	Tripping
MCCB	Selectivity	Transient recovery voltage
Molded-case switch	Sensor	Zone selective interlocking

Chapter 2 – Acronyms

Markings designating circuit breaker ratings:

- 40C Acceptable for use in ambient temperature up to 40°C
- AIR Amperes interrupting rating
- CTL Class CTL circuit breaker prevents more circuit breaker poles from being installed than the number intended
- HACR Heating, Air Conditioning, and Refrigeration. Designates compliance with NEC for group motor installations.
- HID High Intensity Discharge. Indicates construction suitable for switching HID lighting loads.
- SWD Switching Duty. Designates compliance with requirements for circuit breakers used as switches in fluorescent lighting circuits.

Chapter 3 - MCCB

Molded-case circuit breakers

- Tested and rated according to UL 489
- Completely contained within a molded case of insulating material
- 15A 6000A with various interrupting ratings
- Fast interruption short-circuit elements
- With electronic trip units can have limited shortdelay and ground fault sensing capability
- Interrupt fast enough to limit the prospective faultcurrent let-through
- Some are identified as current limiting
- Not designed to be field maintainable

Chapter 3 - Rating and Testing

Selection criteria:

- To carry the required full-load current without overheating
- To switch and isolate or disconnect the load from the source at the given system voltage
- To interrupt any possible abnormally high operating current or short-circuit current likely to be encountered during operation
- To be able to perform these functions over an acceptably long period of time under the operating and environmental conditions that will actually prevail in the application

The role of standards

Chapter 3 - ICCB

Insulated-case circuit breakers

- Tested and rated according to UL 489
- Larger frame sizes
- Fast in interruption
- Can have electronic trip units with short-time ratings and ground-fault current sensing
- Utilize stored-energy operating mechanisms
- Partially field maintainable

Chapter 3 - LVPCB

Low voltage power circuit breakers

- Tested and rated according to ANSI C37 standards
- Used primarily in drawout switchgear
- Short-time ratings
- Designed to be maintainable in the field

Chapter 3 - Endurance Number of Operating Cycles (cycles/hour) UL489 ANSI C37.50 UL489 ANSI C37.50 UL489 ANSI C37.50 ANSI C37.50 UL489 ANSI C37.50

				/ICC				- G-		-6			٠,
Test Number*	Tested In Duty Sequence Cycle	of Rated		(Table 7.1.7.2)									
	Number		Poles	Voltage			F	rame R	ating ((amperes)			
	(Table 7.1.1.2)	(Table 7.1.7.1)	(Table 7.1.7.1)	(Table 7.1.7.1)	225	600	800	1200	1600	2000	2500	3000	40
2	Z	0-00		600	8.6	8.6	8.6	12.1	14	14	20	25	30
	z	o-co		600	8.6	8.6	8.6	12.1	14	14	20	25	30
4	z	o-co		600	8.6	8.6	8.6	12.1	14	14	20	25	30
6	z	0		600	10	10	10	14					
	z	0		600					20	25	30	35	45
9		o-co	3	600	3	6	10	14	20	25	30	35	45
Test Number [†]	Duty Cycle	Number of Trip Actual Test Current Poles Rating (Tables 7.1.11.1.1 and 8.1)											
Α	0-00		Max	imum	Same as maximum interrupting capacity rating								
В	o-co		Max	imum	I/C rating at maximum voltage rating								
	o-co		Max	imum	I/C at	maxim	um kV.	A rating					
D	o-co	3	Mini	Minimum Maximum I/C rating									

Test Number	Tested In Sequence Cycle Poles Rated Voltage	Actual Test Current (rms symmetrical kA)									
			Voltage	Frame Rating (amperes)							
				225	600	800	1600	2000	3000	3200	4000
		0-00	635	14	22	22	42	42	65	65	85
		O-CO	508	22	30	30	50	50	65	65	85
		O-CO	254	25	42	42	65	65	85	85	130
		O-CO	635	12.2	19.1	19.1	36.5	36.5	56.6	56.6	74
		O-CO	508	19.1	26.1	26.1	43.5	43.5	56.6	56.6	74
		O-CO	254	21.8	36.5	36.5	56.6	56.6	74	74	113.1
			635	14	22	22	42	42	65	65	85
		O-CO	635	14	22	22	42	42	65	65	85

Chapter 3 - Voltage Rating Considerations

MCCB/ICCB/LVPCB Circuit breakers

- Nominal system voltages of 600V, 480V, and 240V
- MCCB/ICCB also 120V, 120/240V, 277V, 347V, 480Y/277V, and 600Y/347V
- MCCB/ICCB nominal voltage levels are maximum "not to exceed" voltages
- LVPCB assigned maximum voltages of 254V, 508V, and 635V
- Slash marks
- Insulation testing 2200V ac dielectric withstand voltage test (or equivalent dc) when new

Chapter 3 - Enclosures and Conductors

Enclosures

- Fully rated for operation in free air
- LVPCBs are applied in enclosures and fully rated
- Some MCCBs are also 100% rated. They have a minimum enclosure size. Use 90°C conductors.
- MCCBs in enclosures 80% rated for continuous loads

Cable, wire, and conductor considerations

- Conductors serve as heat sinks 75°C wire required
- Higher temperature wire must be used at the 75°C ampacity
- Welding cable should not be used
- 125A or less marked for 60°C, 75°C, 60°/75°C

Chapter 3 - Frequency and Temperature

Frequency

- Rated for 60 Hz operation
- Other frequency capabilities are marked
- May have to be de-rated

Temperature

- MCCB/ICCB: -5°C to +40°C
- LVPCB: -5°C to +40°C, but IEEE C37.20.1 permits temperature surrounding switchgear to be -30°C to +40°C

Chapter 3 - Ambient, Humidity, Altitude

Ambient

- Should be de-rated in ambients above maximum
- Consult the manufacturer for de-rating information

Altitude

- Reduced insulation and heat transfer properties of less dense air require de-rating of voltage withstand and current carrying capacity
- MCCB/ICCB De-rated above 6000 feet. Consult the manufacturer.
- LVPCB De-rated above 6600 feet
- IEEE C37.13: 8500 feet, .99 current and .95 voltage
- IEEE C37.13: 13000 feet, .96 current and .80 voltage

Chapter 3 - Other Considerations

- National Electrical Code
- Preferred current ratings
- Effect of non-linear loads
- High inrush loads
- Overload testing
- Safety factor for current loading
- Forced-air cooling of LVPCBs
- Short-circuit interrupting rating
- Fault current calculations
- Circuit breaker interrupting ratings
- Single-pole fault interruption testing

Chapter 3 - Other Considerations

- Testing
- Blow-open contact arms
- · Circuit breaker useful life
- Interrupting duty and maintenance
- Integrally fused devices
- Series-connected rating
- · Cascade arrangement
- *Short-time rating*
- X/R ratio short-circuit power factor
- Power system design considerations

Chapter 3 - X/R Ratio (Short-Circuit Power Factor)

Type of Circuit Breaker	Interrupting Rating (kA)	Power Factor Test Range	X/R Test Range
Molded Case	10 or less	0.45 – 0.50	1.98 - 1.73
Molded Case	over 10 to 20	0.25 – 0.30	3.87 - 3.18
Molded Case	over 20	0.15 – 0.20	6.6 - 4.9
Low-Voltage Power	all	0.15 max.	6.6 min.

Chapter 3 - Multiplying Factors

% P.F.	X/R	Interrupting Rati	ating				
		≤ 10 kA	> 10 kA ≤ 20 kA	> 20 kA	All LV PCB		
20	4.8990	0.762	0.899	1.000	1.000		
15	6.5912	0.718	0.847	0.942	1.000		
12	8.2731	0.691	0.815	0.907	0.962		
10	9.9499	0.673	0.794	0.883	0.937		
9	11.7221	0.659	0.778	0.865	0.918		
7	14.2507	0.645	0.761	0.847	0.899		
5	19.9750	0.627	0.740	0.823	0.874		

Chapter 3 - Overload Performance

Frame Size (amps)	Minimum Operation Rate (cycles/hour)		Number of Operating Cycles		
	UL489	ANSI C37.50*	UL489	ANSI C37.50*	
225	300	60	50	50	
400	240	-	50	-	
600	240	60	50	50	
800	60	60	50	50	
1200	60	-	50	-	
1600	60	60	50	38	
2000	60	60	25	38	
2500	60		25	-	
3000	60	N/A	28	N/A	
4000	60	N/A	28	N/A	

Chapter 4 - Selection Considerations

- System Voltage
- System Grounding
- System Frequency
- Continuous Current Rating
- Ambient Temperature and Altitude
- Harmonics
- Interrupting Rating
- Series Connected Rating
- Fully-Rated Versus Series-Connected Rated
- Arcing Ground Fault Protection

Chapter 4 - Modifications and Accessories

- Shunt trip device
- Undervoltage release
- Auxiliary switches
- Mechanism operated cell (MOC) switch
- Truck operated cell (TOC) switch
- Alarm switches
- Motor operators on MCCBs
- Electrical close mechanism on LVPCBs and ICCBs
- Mechanical interlocks
- Moisture, Fungus, and corrosion treatment
- Terminal shields
- Handle locks and handle ties
- Shutters

Chapter 4 - Specific Applications

Normal Environmental and Operating Conditions

- Ambient temperature between $0^{\circ}C$ and $40^{\circ}C$
- Altitude does not exceed 6600 ft (2000 m)
- Seismic zone 0
- Frequency of 60 Hz

Chapter 4 - Specific Applications

Abnormal Environmental and Operating Conditions

- Operation at ambient temperatures below 0°C or above 40°C
- Operation at altitudes above 6600 ft (2000 m)
- Exposure to corrosive materials
- Exposure to explosive fumes or dust
- Exposure to dust or moisture
- Seismic zones 1, 2, 3, or 4
- Abnormal vibrations
- Unusual operating duties
- Harmonics
- Repetitive duty cycle
- Capacitor bank switching
- Frequent switching
- Circuits with high X/R ratios
- Single pole interruption with three-pole breakers
- Frequencies other than 60 Hz
- Occurrence of frequent and/or severe faults

Chapter 4 - Comparison of Features

LVPCB	ICCB	МССВ
Current limiting available only with fuses.	Current limiting not available.	Current limiting available with and without fuses.
Usually most costly.	Usually mid-range cost, but depends on the enclosure selected.	Usually least costly.
Small number of frame sizes available.	Small number of frame sizes available.	Large number of frame sizes available.
Extensive maintenance possible on all frame sizes.	Limited maintenance possible on larger frame sizes.	Limited maintenance possible on larger frame sizes.
Used in enclosures, switchboards, and switchgear.	Used in enclosures, switchboards, and switchgear.	Used in enclosures, panelboards, and switchboards.
Not available in series ratings.	Not available in series ratings.	Available in series ratings.
100% continuous current rated in its enclosure	80% continuous-current rated, unless specifically stated to be rated 100% in an enclosure.	80% continuous-current rated, unless specifically stated to be rated 100% in an enclosure.
IEEE Standard C37.13	UL 489	UL 489

Chapter 4 - Comparison of Features

LVPCB	ІССВ	МССВ
Selective trip over full range of fault currents up to interrupting rating.	Selective trip over partial range of fault currents within interrupting rating.	Selective trip over a smaller range of fault currents within interrupting rating.
Types of operators: mechanically operated, two-step, stored energy, and electrical two-step stored energy.	Types of operators: mechanically operated, two-step, stored energy, and electrical two-step stored energy.	Types of operators: mechanically operated over-center toggle or motor operator.
Available in draw-out construction permitting racking to a distinct "test position" and removal for maintenance.	Available in draw-out construction permitting racking to a distinct "test position" and removal for maintenance.	Some are available in plug-in design allowing removal for inspection and maintenance. Large frame sizes may be available in draw-out construction.
Operation counter is available.	Operation counter is available.	Operation counter is available.
Interrupting duty at 480 Vac: 22-100 kA without fuses and up to 200 kA with fuses.	Interrupting duty at 480 Vac: 22-100 kA	Interrupting duty at 480 Vac: 22-65 kA without fuses and up to 200 kA with integral fuses or for current-limiting type.

Chapter 4 - Service Requirements and Protection

Main circuit breakers

- Disconnecting means
- $\bullet \ Overload, \ short-circuit, \ and \ GF \ protection$
- General application considerations

Tie circuit breakers

- Disconnecting means
- Overload, short-circuit, and GF protection
- General application considerations

Chapter 4 - Service Requirements and Protection

Feeder protection

- Overload protection of cables
- Short-circuit and GF protection
- Protection of busway
- Protection of switchgear bus
- Protection of switchboard bus
- Protection of motor feeders and motors
- Feeder and branch-circuit protection
- Protection of generators
- Protection of capacitors
- Protection of transformers

Chapter 5 - Selective Coordination

LVPCBs

- Electromechanical trip devices
- Electronic trip devices
- Long-time delay protection
- Short-time delay protection
- Instantaneous protection
- Ground-fault protection

MCCBs and ICCBs

- Thermal-magnetic circuit breakers
- Electronic trip devices
- Long-time and short-time delay protection
- Instantaneous protection
- Ground-fault protection

Chapter 5 - Other Coordinating Devices

Low-voltage fuses Medium-voltage fuses Overcurrent relays Coordination Examples

Chapter 7 - Acceptance and Maintenance

Maintenance program
Maintenance of MCCBs
Maintenance of LVPCBs
Documenting maintenance results
Testing program
Failures detected

Chapter 6 - Special-Purpose Circuit Breakers

Instantaneous-trip circuit breakers (MCPs)

- Ratings
- Current-limiting attachments
- Code considerations
- Setting of instantaneous-trip breakers
- Energy-efficient motors

Mine-duty circuit breakers Current-limiting circuit breakers Molded-case switches

Integrally fused circuit breakers

Overview of IEEE Standard 1015-1997 (IEEE Blue Book)

Recommended Practice for Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems

IEEE/IAS S.F. Chapter September 27, 2005 David D. Roybal, P.E. Eaton Electrical