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Challenges To The US 
Electric Infrastructure

Intermittent nature and increasing amounts of 
renewables (e.g., wind & solar) connected to the 
grid
An alarming growth rate in customer-owned DG connections to the 
grid

Increasing demand for improved service quality and reliability 
Future PHEV load

Cost control

Improving use of assets

Improving efficiency (internal & customers)

Aging Infrastructure and lack of investments in 
transmission, distribution and generation equipment
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Utility Generation Dispatch With Storage
(Without Any Renewable Generation)
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Source: EPRI, Schainker
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Energy Storage Is A No-Regret Investment

Energy Storage 
is one of the few

No-Regrets Investments 
regardless of which future 

scenario prevails

Distributed 
Generation

Nuclear 
Generation

Coal
Generation

AMI 
Storage
PHEV

Source: EPRI
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Electric Energy Storage: Value 
Proposition: Multiple Benefits

Types ofTypes of
BenefitsBenefits

Physical SystemPhysical System
Generation           T&DGeneration           T&D

StrategicStrategic
•• Enhance Enhance 

Renewables Renewables 
•• Mitigate Mitigate 

UncertaintyUncertainty
•• COCO22 ReductionReduction

OperationalOperational
•• DynamicDynamic
•• Load LevelingLoad Leveling

CorporateCorporate
PerspectivePerspective

CustomerCustomer
PerspectivePerspective

TimeTime

STRATEGIESSTRATEGIES
RisksRisks
AndAnd

OpportunitiesOpportunities

Source: EPRI, Schainker
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Barriers to Implementation of 
Energy Storage Technologies

• Cost of storage 
Need manufacturing volume 
& competition
Incentives to industry

• Being able to capture multiple 
values in a given application

• How to handle multiple benefits 
across distribution, transmission 
and generation?

• How to handle energy in and out 
in a deregulated environment?

Economic

Regulatory

Source: EPRI, Schainker
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Electric Energy Storage Applications
(All Boundaries Of Regions Displayed Are Approximate)

1.01.0

0.10.1

1010

100100

0.1 Cycle0.1 Cycle 10 Cycle10 Cycle 5 Hour5 Hour

Power QualityPower Quality

TemporaryTemporary
Power Power 
InterruptionsInterruptions

15 Minutes15 Minutes

10001000

SystemSystem
StabilityStability

VAR VAR 
SupportSupport

Peak ShavingPeak Shaving
T&D DeferralT&D Deferral

Load LevelingLoad Leveling
RampingRamping
Energy ArbitrageEnergy Arbitrage

1 Hour1 Hour15 Second15 Second

Spinning Spinning 
ReserveReserve

RenewablesRenewables
-- WindWind
-- SolarSolar

Remote Island Applications
Village Power Applications

PeakPeak
ShavingShaving
and T&D and T&D 
Deferral Transmission Deferral Transmission 
Congestion ManagementCongestion Management

Black
Start needs
1 to 30 MW’s
For a 1 to 2 Hr. 
Duration

FrequencyFrequency
RegulationRegulation

High
Priority High

Priority 

Source: EPRI, Schainker
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Energy Storage Plants: 
Capital Cost Comparisons

This 
column 
determines 
how many 
discharge 
hours one 
can afford 
to build.

Source: EPRI
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Variation of Solar PV System Output

Source: AES
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Wind Generation Varies Widely

The average is smooth, but day-to-day variability is great
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Frequency Regulation:Frequency Regulation:

Ramping:Ramping:

Load LevelingLoad Leveling

Time (Hr)

Load (MW)

0 24
• CAES

• Pumped Hydro

• Battery, Flow Type
• Note: For many utilities, 

ramping and reducing 
part load problems are 
high priority, especially 
due to power fluctuations 
from wind/solar plants

• Battery, Regular or Flow Type

• Super-Capacitor

• Flywheel
• Superconducting 

Magnetic Storage

• CAES

• Pumped Hydro

Str. Chrg Time ~ Hrs

Str. Chrg Time ~ Min’s

Str. Chrg Time: ~ 0.5 Day

Energy Storage Efficiently Resolves Wind/Solar Power 
Fluctuations, Ramping and Load Management Issues

Source: EPRI, Schainker
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Solution:
Deploy Electric Energy Storage Shock Absorber Plant, 
Which Is Sized and Controlled To Reduce Load Leveling, 
Ramping, Frequency Oscillation and/or VAR Problems

Problem: Wind/Renewable Plants Produce Power Output 
Oscillations Or Provide Power When Not Needed, Which 
Limits Their Value

*

*

Inputs
Smart Grid

Extremely Large Amounts of Wind 
& Solar Are Expected In California 
and Almost All Other US Electric 
Utility Regions

Source: EPRI, Schainker
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Typical Benefit to Cost Ratio for Battery 
Plants Versus Hours of Storage and MW Size

Example results from EPRI benefit-cost analyses, which compares 
different types of energy storage plants

Benefit to Cost Ratio

Plant
Size

1.0
2.0

3.0

5.0

4.0

Storage Time

*  Based on 20GW utility that has USA mix.

Note: The capital cost for 
an extra hour of battery 
storage is about $500/kW, 
which drives down the B/C 
ratio so quickly; whereas, 
the capital cost for an extra 
hour of CAES storage is 
about $1/kW, which 
enables CAES to be cost 
effective for storage hours 
much greater than 5.

Source: EPRI, Schainker
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Anticipated Savings with CAES Plant Integrated 
with Wind Generation Resources

Example Results from EPRI Economic Analysis
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Example Utility Results Showing CAES Economic 
Benefits Highlighting Ancillary Service Benefits
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CAES Generation & Compression Cycles 
(for a Typical Week)

MWH’s of Energy In Air Storage System

Compression
Generation

Appendix
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CAES Plants Built, Use and Reliability

• 110 MW – 26 hour Plant: 
McIntosh Alabama
Operational: June 1991

Load Mngmt/Regulation
Buy Low, Sell High
Reliability ~ 95% to 98%

• 290 MW – 4 hour Plant: 
Huntorf, Germany 
Operational: December 1978

Peak Shaving/Regulation
Spinning Reserve
Reliability ~ 95% to 98%

Source: EPRI, Schainker



22© 2010 Electric Power Research Institute, Inc. All rights reserved.

Alabama CAES Plant: 
110 MW Turbomachinery Hall

Expansion Turbines

Motor-Generator

Clutch

Compressors

Clutch

Source: EPRI, Schainker
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Above Ground CAES Plant Using Above Ground Air 
Storage System (58 MW – 4 Hour): 
Preliminary Plant Layout - - Top View

Volume: 630,000 CF

© 2010 Electric Power Research Institute, Inc. All rights reserved. 23

Source: EPRI & B&V
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Advanced CAES Plant: Part Load Heat Rate and 
Energy Ratio (For Overall Plant, Using Chiller Cycle)

Source: ESP, Nakhamkin
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Geologic Formations Potentially Suitable for 
CAES Plants That Use Underground Storage

Alabama CAES PlantSource: EPRI, Schainker
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Underground Natural Gas Storage
Facilities in the Lower 48 United States

Depleted Gas Fields
Porous Rock/Aquifers
Salt Caverns

Source: PB-ESS
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Types of Underground Air Storage Facilities 
(same as those used for natural gas storage)
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Major Bulk Energy Storage Projects In USA

PG&E 300 MW – 10 Hour Adv. CAES Demo Plant
DOE Award to PG&E: $25 M
Total Project Cost: $356 M*
Underground Air Store: Depleted Gas/Porous Rock 
Reservoir

NYSEG 150 MW – 10 Hour Adv. CAES Plant
DOE Award: $30 M
Total Project Cost: $125 M*
Underground Air Store: Solution Mined Salt Cavern

* Note: Some of the above project costs go towards expenses not directly related to
the CAES plant (e.g., transmission line & substation upgrade costs)
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Pumped Hydro Energy Storage Plant

Upper Reservoir of TVA’s Raccoon 
Mountain PH Plant

Operational Date: 1979
Capacity: 1620 MW

Max. Discharge Duration: 22 hrs

Schematic of Generic Pumped 
Hydro Plant

Source: EPRI, Schainker
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Battery Energy Storage

Lead-Acid Battery Energy Storage Is One Of The Proven, Commercial Battery 
Technologies. Of Particular Interest Are NaS and Li-Ion Batteries That Are Less 
Expensive And Should Live Longer Than Lead-Acid Options For Each KW-H Of 
Stored Energy

10 MW – 4 Hr Lead Acid Battery Plant At 
Southern California Edison (1988)

Source: EPRI, Schainker
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1 MW – 15 Minute Beacon Flywheel System

Source: Beacon Power
High-Speed Beacon Flywheels Used For Frequency Regulation 
(Rating of Each FW: 100KW for 15 Min. Discharge)



32© 2010 Electric Power Research Institute, Inc. All rights reserved.

Superconducting Magnetic Energy 
Storage (SMES)

• SMES Is A Viable New 
Technology For PQ and 
Increased Transmission 
Asset Utilization 
Applications

• About 6 Small Plants Are 
in T/D Operation For PQ 
Application (1 to 3 MW, 
with 1 to 3 Seconds of 
Storage)

• High Temperature 
Superconductors Will 
Lower SMES Costs 10 MW – 3 Sec. Coil Tested 

For Transmission Stability

Source: EPRI, Schainker
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HECO SuperCap Demo (April 2006)
Lalamilo Wind Farm

Uses Maxwell SuperCaps and an 
S&C Electric  AC-DC-AC Inverter

Hawaiian Electric Company, Inc. 
(HECO) and S&C Electric Company 
held on Jan. 17 a dedication at 
Lalamilo Wind Farm near Waikoloa on 
the Big Island of Hawaii to mark the 
installation of the first PureWave®
Electronic Shock Absorber (ESA), an 
innovative grid stabilizing device for 
wind farms. 

SuperCap Demo Plant

Nominal voltage 800 V DC
# of Ultracapacitors 640
Max. power / Duration ~ 260 kW / 10 sec.

Note: This demo plant was unfortunately destroyed by a 6.7 magnitude earthquake on 10/15/06

Source: HECO
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One of Edison’s Most Famous Quotes:
“In Periods of  Profound Change, The Most Dangerous 
Thing Is to Incrementalize Yourself Into The Future.”

One of Edison’s Most Famous Quotes:
“In Periods of  Profound Change, The Most Dangerous 
Thing Is to Incrementalize Yourself Into The Future.”

Edison

Tesla

Westinghouse

Steinmetz

Source: EPRI, Schainker
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Conclusions

• The US electric grid today is under great stress
• Renewables, due their intermittency and rapid power fluctuations add de-

stabilizing challenges to the reliable operation of the US electric grid
• Energy Storage plants can provide extensive “shock absorbing” stability 

inputs to the US electric grid
• Depending on the grid application needed, different types of energy storage 

plants need to be deployed
• For bulk energy storage (applicable to the large amounts of new, off-peak wind 

generation being installed), the compressed air energy storage (CAES) 
technology seems to be the most cost effective energy storage technology to 
deploy in the US.

• For short term storage (applicable to the large amounts of solar generation 
being installed), the lithium-ion battery technology seems to be the most cost 
effective technology to deploy in the US

• New regulatory initiatives need to be implemented in the US to take advantage 
of the performance capabilities of energy storage technologies to stabilize the 
ageing electric infrastructure in the US
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Operating Costs Storage Plants

Operation Costs For All Storage Plants, Except CAES:
$/KWH = $/KWH In for Charging x KWH In/KWH Out 

+ Variable O&M
= Incremental Cost for Charging Energy / Efficiency

+ Variable O&M

Operational Costs For CAES Plants:
$/KWH = $/KWH In for Charging x KWH In/KWH Out 

+ Variable O&M
+ Generation Heat Rate (Btu In/KWH out) x 

Fuel Cost ($/Million Btu In)

Appendix
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Expected Operating Costs for CAES  Plant

Expected Operational Costs For CAES Plants:
$/Kwh = Incremental, Off-Peak Cost for Charging Electricity 

x Energy Ratio + Generation Heat Rate (Btu/Kwh)  
x Fuel Cost ($/Million Btu) 
+ Variable Operational & Maintenance Costs

For Example, If :
CAES Heat Rate = 3810 Btu/kWh

Energy Ratio = 0.7

Off-peak electricity cost = $10/MWh

Fuel Cost = $8/MMBtu

Variable O&M = $5/MWh

Then:
CAES Operational Cost = $42.5/MWh 

Appendix
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Example Operating Costs For 
Storage Plants and Combustion Turbines

Parameter Battery CAES CT
KWh Out/KWh In 0.750 1.429 NA
Heat Rate (Btu/KWh Out) NA 3810 11000
Incr Chrg'g Cost ($/MWh) 20.0 20.0 NA
Fuel Cost ($/Mill.Btu) NA 6.00 6.00
Var. O&M (Mills/KWh) 40.0 5.0 10.0
Total Oper. Costs ($/MHh) 66.7 41.9 76.0

IF: Incr Chrg'g Cost ($/MWh) 20.0 20.0 NA
IF: Fuel Cost ($/Mill.Btu) NA 7.00 7.00

Then Total Oper. Costs ($/MWh) 66.7 45.7 87.0
IF: Incr Chrg'g Cost ($/MWh) 40.0 40.0 NA
IF: Fuel Cost ($/Mill.Btu) NA 6.00 6.00

Then Total Oper. Costs ($/MWh) 93.3 55.9 76.0

Source: 

Appendix


