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What’s Hadoop 

• Framework for running applications on large clusters of
commodity hardware
– Scale: petabytes of data on thousands of nodes

• Include
– Storage: HDFS
– Processing: MapReduce

• Support the Map/Reduce programming model

• Requirements
– Economy: use cluster of comodity computers
– Easy to use

• Users: no need to deal with the complexity of distributed computing
– Reliable: can handle node failures automatically
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Open source Apache project

• Implemented in Java
• Apache Top Level Project

– http://hadoop.apache.org/core/
– Core (15 Committers)

• HDFS
• MapReduce

• Community of contributors is growing
– Though mostly Yahoo for HDFS and MapReduce
– You can contribute too!
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Hadoop Characteristics

• Commodity HW
– Add inexpensive servers
– Storage servers and their disks are not assumed to be highly

reliable and available
• Use replication across servers to deal with unreliable

storage/servers
• Metadata-data separation - simple design

– Namenode maintains metadata
– Datanodes manage storage

• Slightly Restricted file semantics
– Focus is mostly sequential access
– Single writers
– No file locking features

• Support for moving computation close to data
– Servers have 2 purposes: data storage and computation
– Single ‘storage + compute’ cluster vs. Separate clusters
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Hadoop Architecture
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HDFS Data Model

• Data is organized into files and directories
• Files are divided into uniform sized blocks and

distributed across cluster nodes
• Blocks are replicated to handle hardware failure
• Filesystem keeps checksums of data for

corruption detection and recovery
• HDFS exposes block placement so that

computation can be migrated to data
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HDFS Data Model
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HDFS Architecture

• Master-Slave architecture
• DFS Master “Namenode”

– Manages the filesystem namespace
– Maintain file name to list blocks + location mapping
– Manages block allocation/replication
– Checkpoints namespace and journals namespace changes

for reliability
– Control access to namespace

• DFS Slaves “Datanodes” handle block storage
– Stores blocks using the underlying OS’s files
– Clients access the blocks directly from datanodes
– Periodically sends block reports to Namenode
– Periodically check block integrity
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HDFS Architecture
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Block Placement And Replication

• A file’s replication factor can be set per file (default 3)
• Block placement is rack aware

– Guarantee placement on two racks
– 1st replica is on local node, 2rd/3rd replicas are on remote rack
– Avoid hot spots: balance I/O traffic

• Writes are pipelined to block replicas
– Minimize bandwidth usage
– Overlapping disk writes and network writes

• Reads are from the nearest replica
• Block under-replication & over-replication is detected by

Namenode
• Balancer application rebalances blocks to balance DN

utilization
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HDFS Future Work: Scalability

• Scale cluster size
• Scale number of clients
• Scale namespace size (total number of files,

amount of data)
• Possible solutions

– Multiple namenodes
• Read-only secondary namenode
• Separate cluster management and namespace management
• Dynamic Partition namespace
• Mounting
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Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:
– cat input | grep |       sort           | uniq -c      |  cat > output

–    Input     | Map  | Shuffle & Sort |   Reduce   | Output
• A simple model but good for a lot of applications

– Log processing
– Web index building
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Word Count Dataflow
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Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines the job
– Submits job to cluster
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Map/Reduce features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when possible
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Documentation

• Hadoop Wiki
– Introduction

• http://hadoop.apache.org/core/
– Getting Started

• http://wiki.apache.org/hadoop/GettingStartedWithHadoop
– Map/Reduce Overview

• http://wiki.apache.org/hadoop/HadoopMapReduce
– DFS

• http://hadoop.apache.org/core/docs/current/hdfs_design.html

• Javadoc
– http://hadoop.apache.org/core/docs/current/api/index.html



17

Questions?

Thank you!


