
Take An Internal Look at
Hadoop

Hairong Kuang
Grid Team, Yahoo! Inc

hairong@yahoo-inc.com



2

What’s Hadoop 

• Framework for running applications on large clusters of
commodity hardware
– Scale: petabytes of data on thousands of nodes

• Include
– Storage: HDFS
– Processing: MapReduce

• Support the Map/Reduce programming model

• Requirements
– Economy: use cluster of comodity computers
– Easy to use

• Users: no need to deal with the complexity of distributed computing
– Reliable: can handle node failures automatically



3

Open source Apache project

• Implemented in Java
• Apache Top Level Project

– http://hadoop.apache.org/core/
– Core (15 Committers)

• HDFS
• MapReduce

• Community of contributors is growing
– Though mostly Yahoo for HDFS and MapReduce
– You can contribute too!



4

Hadoop Characteristics

• Commodity HW
– Add inexpensive servers
– Storage servers and their disks are not assumed to be highly

reliable and available
• Use replication across servers to deal with unreliable

storage/servers
• Metadata-data separation - simple design

– Namenode maintains metadata
– Datanodes manage storage

• Slightly Restricted file semantics
– Focus is mostly sequential access
– Single writers
– No file locking features

• Support for moving computation close to data
– Servers have 2 purposes: data storage and computation
– Single ‘storage + compute’ cluster vs. Separate clusters



5

Hadoop Architecture

Data
Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Results
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data

Hadoop Cluster

DFS Block 1

DFS Block 1

DFS Block 2

DFS Block 2

DFS Block 2

DFS Block 1

DFS Block 3 

DFS Block 3 

DFS Block 3 

MAP

MAP

MAP

Reduce



6

HDFS Data Model

• Data is organized into files and directories
• Files are divided into uniform sized blocks and

distributed across cluster nodes
• Blocks are replicated to handle hardware failure
• Filesystem keeps checksums of data for

corruption detection and recovery
• HDFS exposes block placement so that

computation can be migrated to data



7

HDFS Data Model

NameNode(Filename, replicationFactor, block-ids, …)
/users/user1/data/part-0, r:2, {1,3}, …
/users/user1/data/part-1, r:3, {2,4,5}, …

Datanodes

1 1

3
3

2

2
2

4

4

4
55

5



8

HDFS Architecture

• Master-Slave architecture
• DFS Master “Namenode”

– Manages the filesystem namespace
– Maintain file name to list blocks + location mapping
– Manages block allocation/replication
– Checkpoints namespace and journals namespace changes

for reliability
– Control access to namespace

• DFS Slaves “Datanodes” handle block storage
– Stores blocks using the underlying OS’s files
– Clients access the blocks directly from datanodes
– Periodically sends block reports to Namenode
– Periodically check block integrity



9

HDFS Architecture

Read

Metadata ops

Client

Metadata (Name, #replicas, …):
/users/foo/data, 3, …

Namenode

Client

Datanodes

Rack 1 Rack 2

Replication

Block ops

Datanodes

Write

Blocks



10

Block Placement And Replication

• A file’s replication factor can be set per file (default 3)
• Block placement is rack aware

– Guarantee placement on two racks
– 1st replica is on local node, 2rd/3rd replicas are on remote rack
– Avoid hot spots: balance I/O traffic

• Writes are pipelined to block replicas
– Minimize bandwidth usage
– Overlapping disk writes and network writes

• Reads are from the nearest replica
• Block under-replication & over-replication is detected by

Namenode
• Balancer application rebalances blocks to balance DN

utilization



11

HDFS Future Work: Scalability

• Scale cluster size
• Scale number of clients
• Scale namespace size (total number of files,

amount of data)
• Possible solutions

– Multiple namenodes
• Read-only secondary namenode
• Separate cluster management and namespace management
• Dynamic Partition namespace
• Mounting



12

Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:
– cat input | grep |       sort           | uniq -c      |  cat > output

–    Input     | Map  | Shuffle & Sort |   Reduce   | Output
• A simple model but good for a lot of applications

– Log processing
– Web index building



13

Word Count Dataflow



14

Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines the job
– Submits job to cluster



15

Map/Reduce features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when possible



16

Documentation

• Hadoop Wiki
– Introduction

• http://hadoop.apache.org/core/
– Getting Started

• http://wiki.apache.org/hadoop/GettingStartedWithHadoop
– Map/Reduce Overview

• http://wiki.apache.org/hadoop/HadoopMapReduce
– DFS

• http://hadoop.apache.org/core/docs/current/hdfs_design.html

• Javadoc
– http://hadoop.apache.org/core/docs/current/api/index.html



17

Questions?

Thank you!


