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Cloud Computing

• Elastic – size changes dynamically

• Scale – large number of servers
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Coordination is important
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Coordination is important



Internet-scale Challenges

• Lots of servers, users, data

• FLP, CAP

• Mere mortal programmers
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Fully Distributed System 
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What is coordination?

• Group membership

• Leader election

• Dynamic Configuration

• Status monitoring

• Queuing

• Barriers

• Critical sections



Goals

• Been done in the past

– ISIS, distributed locks (Chubby, VMS)

• High Performance

– Multiple outstanding ops

– Read dominant

• General (Coordination Kernel)

• Reliable

• Easy to use



wait-free

• Pros

– Slow processes cannot slow down fast ones

– No deadlocks

– No blocking in the implementations

• Cons

– Some coordination primitives are blocking

– Need to be able to efficiently wait for conditions



Serializable vs Linearizability

• Linearizable writes

• Serializable read (may be stale)

• Client FIFO ordering



Change Events

• Clients request change notifications

• Service does timely notifications

• Do not block write requests

• Clients get notification of a change before they see the 
result of a change



Solution

Order + wait-free + change events = coordination



ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync()

Stat setACL(path, acl, expectedVersion)

(acl, Stat) getACL(path)



  

Data Model

● Hierarchal namespace (like a file 
system)

● Each znode has data and children

● data is read and written in its 
entirety 
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Create Flags

• Ephemeral: znode deleted when 
creator fails or explicitly deleted

• Sequence: append a monotonically 
increasing counter
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Configuration

• Workers get configuration

– getData(“.../config/settings”, true)

• Administrators change the configuration

– setData(“.../config/settings”, newConf, -1)

• Workers notified of change and get the new settings

– getData(“.../config/settings”, true)

config

settings



Group Membership

• Register serverName in group

– create(“.../workers/workerName”, hostInfo, 
EPHEMERAL)

• List group members

– listChildren(“.../workers”, true)
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Leader Election

1 getData(“.../workers/leader”, true)

2 if successful follow the leader described in 
the data and exit

3 create(“.../workers/leader”, hostname, 
EPHEMERAL)

4 if successful lead and exit

5 goto step 1

workers

worker2

worker1

If a watch is triggered for
“.../workers/leader”, followers will
restart the leader election process

leader



Locks

1 id = create(“.../locks/x-”, 
SEQUENCE|EPHEMERAL)

2 getChildren(“.../locks”/, false)

3 if id is the 1st child, exit

4 exists(name of last child 
before id, true)

5 if does not exist, goto 2)

6 wait for event

7 goto 2)

locks

x-19

x-11

x-20

Each znode watches one other.
No herd effect.



Shared Locks

1 id = create(“.../locks/s-”, 
SEQUENCE|EPHEMERAL)

2 getChildren(“.../locks”/, false)

3 if no children that start with x- 
before id, exit

4 exists(name of the last x- before 
id, true)

5 if does not exist, goto 2)

6 wait for event

7 goto 2)

locks
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ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

• All servers have a copy of the state in memory

• A leader is elected at startup

• Followers service clients, all updates go through leader

• Update responses are sent when a majority of servers have persisted the 
change

We need 2f+1 machines to tolerate f failures



ZooKeeper Servers

ZooKeeper Service
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Client ClientClientClientClientClient ClientClient

Leader
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Evaluation & Experience
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Evaluation

• Cluster of 50 servers

• Xeon dual-core 2.1 GHz

• 4 GB of RAM

• Two SATA disks
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Latency
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Throughput
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Load in production (Fetching Service)
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At Yahoo!...

●Has been used for:

● Cross-datacenter locks (wide-area locking)

● Web crawling

● Large-scale publish-subscribe (Hedwig: ZOOKEEPER-
775)

● Portal front-end

●Largest cluster I’m aware of
● Thousands of clients
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Faults in practice

●Bugzilla

● Ticket system for software defects, improvements, etc

●Fetching service queue

● Over 2 years running

● 9 tickets reporting issues with ZooKeeper
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Faults in practice

● Misconfiguration: 5 issues
● System configuration, not ZK

● E.g., misconfigured net cards, DNS clash

● Application bugs: 2 issues

● Misunderstanding of the API semantics 

● E.g., race condition using async api

● ZK bugs: 2 issues

● Really our fault

● API and server (affected all)



Summary

• Easy to use

• High Performance

• General

• Reliable

• Release 3.3 on Apache

– See http://hadoop.apache.org/zookeeper

– Committers from Yahoo! and Cloudera

http://hadoop.apache.org/zookeeper

