
1

ZooKeeper

Yahoo! Research
NFIC 2010

2

Cloud Computing

• Elastic – size changes dynamically

• Scale – large number of servers

3

Coordination is important

4

Coordination is important

Internet-scale Challenges

• Lots of servers, users, data

• FLP, CAP

• Mere mortal programmers

Classic Distributed System

Master

Slave SlaveSlaveSlaveSlaveSlave

Fault Tolerant Distributed System

Master

Slave SlaveSlaveSlaveSlaveSlave

Coordination
Service

Master

Fault Tolerant Distributed System

Master

Slave SlaveSlaveSlaveSlaveSlave

Coordination
Service

Master

Fully Distributed System

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

What is coordination?

• Group membership

• Leader election

• Dynamic Configuration

• Status monitoring

• Queuing

• Barriers

• Critical sections

Goals

• Been done in the past

– ISIS, distributed locks (Chubby, VMS)

• High Performance

– Multiple outstanding ops

– Read dominant

• General (Coordination Kernel)

• Reliable

• Easy to use

wait-free

• Pros

– Slow processes cannot slow down fast ones

– No deadlocks

– No blocking in the implementations

• Cons

– Some coordination primitives are blocking

– Need to be able to efficiently wait for conditions

Serializable vs Linearizability

• Linearizable writes

• Serializable read (may be stale)

• Client FIFO ordering

Change Events

• Clients request change notifications

• Service does timely notifications

• Do not block write requests

• Clients get notification of a change before they see the
result of a change

Solution

Order + wait-free + change events = coordination

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync()

Stat setACL(path, acl, expectedVersion)

(acl, Stat) getACL(path)

Data Model

● Hierarchal namespace (like a file
system)

● Each znode has data and children

● data is read and written in its
entirety

/

services

users

apps

locks

workers

YaView

s-1

worker2

worker1

Create Flags

• Ephemeral: znode deleted when
creator fails or explicitly deleted

• Sequence: append a monotonically
increasing counter

/

services

users

apps

locks

workers

YaView

s-1

worker2

worker1

Ephemerals
created by
Session X

Sequence
appended
on create

Configuration

• Workers get configuration

– getData(“.../config/settings”, true)

• Administrators change the configuration

– setData(“.../config/settings”, newConf, -1)

• Workers notified of change and get the new settings

– getData(“.../config/settings”, true)

config

settings

Group Membership

• Register serverName in group

– create(“.../workers/workerName”, hostInfo,
EPHEMERAL)

• List group members

– listChildren(“.../workers”, true)

workers

worker2

worker1

Leader Election

1 getData(“.../workers/leader”, true)

2 if successful follow the leader described in
the data and exit

3 create(“.../workers/leader”, hostname,
EPHEMERAL)

4 if successful lead and exit

5 goto step 1

workers

worker2

worker1

If a watch is triggered for
“.../workers/leader”, followers will
restart the leader election process

leader

Locks

1 id = create(“.../locks/x-”,
SEQUENCE|EPHEMERAL)

2 getChildren(“.../locks”/, false)

3 if id is the 1st child, exit

4 exists(name of last child
before id, true)

5 if does not exist, goto 2)

6 wait for event

7 goto 2)

locks

x-19

x-11

x-20

Each znode watches one other.
No herd effect.

Shared Locks

1 id = create(“.../locks/s-”,
SEQUENCE|EPHEMERAL)

2 getChildren(“.../locks”/, false)

3 if no children that start with x-
before id, exit

4 exists(name of the last x- before
id, true)

5 if does not exist, goto 2)

6 wait for event

7 goto 2)

locks

x-19

s-11

x-20

x-19x-19

s-21

x-22

s-20

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

• All servers have a copy of the state in memory

• A leader is elected at startup

• Followers service clients, all updates go through leader

• Update responses are sent when a majority of servers have persisted the
change

We need 2f+1 machines to tolerate f failures

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

Client ClientClientClientClientClient ClientClient

Leader

26

Evaluation & Experience

27

Evaluation

• Cluster of 50 servers

• Xeon dual-core 2.1 GHz

• 4 GB of RAM

• Two SATA disks

28

Latency

29

Throughput

30

Load in production (Fetching Service)

31

At Yahoo!...

●Has been used for:

● Cross-datacenter locks (wide-area locking)

● Web crawling

● Large-scale publish-subscribe (Hedwig: ZOOKEEPER-
775)

● Portal front-end

●Largest cluster I’m aware of
● Thousands of clients

32

Faults in practice

●Bugzilla

● Ticket system for software defects, improvements, etc

●Fetching service queue

● Over 2 years running

● 9 tickets reporting issues with ZooKeeper

33

Faults in practice

● Misconfiguration: 5 issues
● System configuration, not ZK

● E.g., misconfigured net cards, DNS clash

● Application bugs: 2 issues

● Misunderstanding of the API semantics

● E.g., race condition using async api

● ZK bugs: 2 issues

● Really our fault

● API and server (affected all)

Summary

• Easy to use

• High Performance

• General

• Reliable

• Release 3.3 on Apache

– See http://hadoop.apache.org/zookeeper

– Committers from Yahoo! and Cloudera

http://hadoop.apache.org/zookeeper

