New Standards from W3C:
XPath, XQuery, and XSLT

Don Chamberlin
IBM Almaden Research Center
Feb. 15, 2007

New from W3C

® Jan. 23, 2007: three new W3C "Recommendations"

® XQuery 1.0: a new XML query language

® XSLT 2.0: a major enhancement to an existing standard
for stylesheets and transforms

® XPath 2.0: the common subset of XQuery and XSLT

® XQuery and XSLT share:

® data model

® function library
® type system

® navigation syntax

XML
Schema

XQuery XSLT

XPath 2.0

® These new standards are motivated by convergence
of two types of information: documents and data

Evolution of document markup

® "Blue-pencil" instructions to typesetter
® Appearance-related commands in word processors

® Separation of content from appearance
® Content marked up with generic tags (SGML)
® Appearance controlled by "style sheets" (DSSSL)

® The explosion of hypertext and the Web (early '90's)
® HTML: a specific vocabulary of tags for hypertext
® XML: simpler than SGML, more flexible than HTML
® W3C standards (HTML 1995, XML 1998, XSL 2001)

Evolution of databases

® Early databases relied on explicit "navigation"

® Since about 1980, most business data has been

relational

® Data in tables, uniform rows and columns

® Data has no intrinsic order
® Automatic optimization of access paths

® A standard language: SQL

SELECT price * gty
FROM parts
WHERE name = "Bolt"

PARTS

NAME | PRICE | QTY
Bolt | 0.75 300
Nut 0.12 300

Convergence of data and documents

® The Web led to new requirements for business data
® purchase orders, medical records, insurance records, etc.

® Much of this data looks like "documents"
® Intrinsic order
® Heterogeneous (every instance is different)
® Sparse
® Hierarchic

® Databases need a self-describing data format
® XML is the obvious choice
® Metadata mixed with data as "tags"
® All major database vendors are investing in XML

Beginnings of XML Query

® QL '98 Conference, Boston (W3C)
® Resulted in ~50 proposals for an XML query language

® The XML Query Working Group
® Chartered by W3C in October 1999
® Representatives from about 30 companies
® Studied QL '98 proposals and generated some new ones
® Also looked at possible extensions to SQL
® Decided to develop a new language: "XQuery"

Principles of XQuery Design

® Closure

® Define a data model and a set of operators that are closed
under the data model

® Compositionality
® XQuery consists of several kinds of expressions
® Every expression can be evaluated without side effects
® Expressions can be composed with full generality

® Compatibility with existing XML Standards
® Type system of XML Schema
® Naming conventions of XML Namespaces
® Navigation syntax of XPath (shared with XSLT)

The XQuery Data Model (XDM)

XML Document

(Linear text)

Parsing

Optional validation Serializati
to add data types n erialization
XQuery

XDM Instance
(Nodes and Atomic Values)

An XML Document ...

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb'">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>
Rotate it
<warning>slowly</warning>
counterclockwise.
</step>
</procedure>

. and its XDM Representation

/@procedure

@ —@ title="Removing a light bulb"

. step
Q unit="sec"

Grip bulb. Rotate it counterclockwise.

10

Learning from existing standards

® XSLT (XML Stylesheet Language: Transforms)

® Used for transforming XML documents
® Often into HTML for display or printing
® Sometimes into another type of XML document
® Sometimes into something else (PDF etc.)

® XSLT:

® uses an XML syntax

® is based on matching "patterns”
(each pattern can generate some output)

® uses XPath for navigation (finding patterns)

11

XPath

® XPath is used for finding nodes that match a pattern
® XPath can find things but cannot create new things

® The simplest form of XPath looks like a downward
path with optional predicates

® Each step returns a list of nodes in document order
® These nodes in turn provide context for the next step
® Example:

/company[@location = "Denver"]
/employee [secretary] /language[1]

12

XPath has 3 kinds of predicates

® Boolean expressions:
book[author = "Mark Twain"]

® Numeric expressions:
chapter|[2]

® Existence tests:
book [appendix]
person[married] (Tests existence, not valuel)

® It's not always possible to distinguish these statically
® Makes optimization difficult

13

XPath design philosophy

® Few types
® Boolean, String, Number, Node Set

® Few errors (do something reasonable and keep moving)
® Cast to the needed type (very permissive)
® Use the first element in a list if you need only one

® Implicit operations
® Extract the value of a node when you need it
® Comparisons based on existential quantifiers
bonus > salary means:

some b in bonus, s in salary
satisfies number (b) > number (s)

14

Decision to use XPath in XQuery

® Adopt XPath as a navigation syntax
® Update XPath to the type system of XML Schema
® Use XPath semantics for arithmetic, comparisons, etc.

® Invent other composable expressions for additional
functionality (constructors, etc.)

® A path is a"leaf" of the XQuery expression tree

15

Some implications of using XPath

® Case-sensitive language

® No reserved words
return IS a hame

® Can't use / for division
a/b VS. a div b

® a-b is a name
a-b vs. a - b

16

Some XQuery expressions

Iteration: for $x in exprl return expr2
Conditional: if (test) then exprl else expr2
Existential: some $x in exprl satisfies test2
Universal: every $x in exprl satisfies test2
Set operations: union, intersect, except

Constructors:

<greeting>Hello</greeting>

<revenue>{$price * $quantity}</revenue>

17

Meanwhile, back at XSLT

® Updating XPath to the type system of XML Schema

® Extending XPath with new kinds of expressions
(if-then-else, set operations, existential and universal
quantifiers, iterating functions over sequences, etfc.)

® Agreement (2001)
® 2 working groups get "joint custody" of XPath-2
® Common functionality to be pushed into XPath-2
® Path expression is no longer a "leaf" (full compositionality)

® Working groups agree to meet jointly with each other
and with Schema

18

Fun with XPath 1.0

® a[b = 5]
returns a-elements that have any b-child with value 5

® a[b+0 = 5]
returns a-elements whose f/irstb-child has value 5

® a[b-0 = 5]
returns a-elements that have any child hamed "b-0"
with value 5

19

Fun with XPath 1.0, continued

® //person[8]
returns the eighth person in document order

® //person[shoesize]
returns all persons who have at least one shoesize

® //person[shoesize + 0]

returns persons whose position in the list of persons
is equal to their (first) shoesize

20

Fun with XPath 1.0, continued

® Comparisons:
® "4" ="4.0" returns False (compared as strings)
® "4">="4 0" returns True (compared as numbers)
® "4" <= "40" returns True (compared as numbers)

® These elements are "equal" according to the "=

<book>
<author> Mark Twain </author>
<title> Huckleberry Finn </title>
</book>

<book>
<title> Mark Twain </title>
<author> Huckleberry Finn </author>
</book>

operator:

21

What did we do about this?

® XQuery wanted strong and consistent typing
® Adding a number to a list is an error
® Comparing a number to a string is an error
® Strings are always compared as strings, not numbers
® Deep-equal function defined for comparing elements

® XSLT wanted backward compatibility
® Both languages wanted to be supersets of XPath-2

® The compromise:
® XPath-2 has a "compatibility mode"
® XQuery always turns it off (not compatible with XPath-1)
® XSLT gives the user a choice

22

Issue: fransitive comparisons

® XPath comparison ops: I= < <= > >=

® Existential semantics
® author = "Gray" is frue if any author is Gray
® Not good for exact comparisons

® Not transitive
@ (1,2)=(2,3) and (2,3)=(3,4) but (1,2)!=(3,4)
® (1,4)>(2,3) and (1,4)<(2,3) areboth true
® Not good for ordering, grouping

® We added "value comparisons": eq ne 1t le gt ge
® Transitive
® Raise an error if either operand has multiple values

23

Issue: errors and indeterminacy

® An expression may evaluate its operands in any order

® Some expressions may either return a result or raise
an error

® bonus > 5 and salary div 0 > 6

® some $c in Scars satisfies
Sc/price div $c/mileage < 1000

® product[price > 100] (allowed to use an index)

® General principle: No need to search for data that
could only raise errors

24

Issue: types

® Where do types come from?
® Named typing vs. structural typing
® What is this? <a>12

® Each operator has its own rules for untyped data

® What is the syntax of a type?
® Used in function signatures, node tests, cast expressions
® Simplified:

— element

L attribute

atomic-type-name

-

)
— hame — J
—, Typename

25

What did we do right?

® We took existing standards seriously
(XPath, Schema, Namespaces)

® XQuery operates on XML in its own data model
® No need to tfransform XML into something else
® Much less code than conventional XML apps
® Rapid prototyping, apps are easy to build and change

® Declarative, functional language (optimizable)
® Gracefully integrates navigation with construction

® Usable in many environments
® Typed and untyped data
® Stand-alone or with a host language
® With file systems, databases, streams and feeds

26

What did we do wrong?

® We took existing standards seriously

® Inherited all the complexity and foibles of
XPath + Schema + Namespaces

® 5x[Sy] might be a positional predicate, or might not
® Schema has 44 built-in types, two kinds of inheritance,

"substitution groups", "nillable" elements, etc.

® Our syntax is fragile and sometimes ugly
® No reserved words: return is a query
® What is this? delete union + 2
® Double-token approach: do delete

® We left out some important things
® Updates, grouping, error handling, text search

® We took way too long
27

Why did it take so long?

® We took existing standards seriously
® We had to reconcile XPath with XML Schema
® We spent a lot of time on the type system

® We published several working drafts per year
and responded to public comments

® ~2000 public comments during "last call" period
® We developed a shared function library (128 functions)

® We built a comprehensive test suite
® More than 15,000 test cases
® 14 implementations have submitted test results
® 11 have demonstrated at least 98% conformance

28

Where are we now?

® XPath-2 adapts XPath to the Schema type system
and adds many new operators:
for if-then-else some every intersect eq efc.

® XQuery includes all of XPath-2 plus:
constructors, FLWOR, user-defined functions, etc.

® XSLT-2 includes all of XPath-2 plus:
grouping, user-defined functions, validation, etc.

® Both languages share a new function library

29

Comparison of XQuery and XSLT

® XQuery and XSLT are (roughly) equivalent in power
® Both are Turing-complete languages
® Open-source translator available from XQuery into XSLT

® Some things are easier to do in one than the other

® XSLT is more oriented toward documents, formatting,
whole-document transformations

® XQuery more oriented toward data, extraction of small
query results, SQL users

30

XQuery and XSLT

® XSLT is older and more established
® XSLT: 20M Google hits, 25 books on Amazon
® XQuery: 5M Google hits, 8 books on Amazon

® XQuery is gaining traction
® W3C lists 48 XQuery implementations (some partial)
® Some are databases, XML or hybrid
® Some are data integrators (merge and transform XML data)
® Several are free and open-source
® FLWOR Foundation: www.flworfound.org

31

Ongoing work at W3C

® The Query working group has been rechartered

® Working drafts nearing last call:
® XQuery Update Facility (insert, delete, replace, rename)

® Full-text search (ranking, stemming, synonyms, etc.)

® Now in the requirements stage:
® XQuery 1.1 (grouping, try/catch, etc.)

® Scripting extensions (sequential execution, assignments,
while-loops, local variables, etc.)

32

