

High Performance Computing Union of Software and Reconfigurable Logic

Ivo Bolsens, Senior Vice President and CTO October 2010

Xilinx at a Glance

Worldwide leader in programmable solutions

- Founded in 1984
- \$1.8B in revenues in FY '10
- ~3,100 employees worldwide
 - 1,300 in San Jose
- 20,000+ customers worldwide

+50% PLD market segment share

- Larger than all competitors combined
- Diversified customers and markets
- Excellent financial scorecard

Why Programmable Logic?

Xilinx Provides Standard Parts

- Faster time-to-market and volume production
- Modifications made quickly through software
- Low inventory risk for customers
- Field programmability
- No up front NRE (Non-recurring Engineering)

The Benefits of FPGAs vs. Asics are Similar to Digital Photography vs. 35mm Film

Xilinx Revenue Breakdown Q2 Calendar Year 2010

Challenging, Changing Markets

Fickle, fragmented markets

How System Companies Must Adapt

Design Cost Challenges

Narrow Focus to high volume applications

IC Cost by Process Node

Xilinx Proprietary

Source: GSA, Chartered and Synopsys

(\$M)

Semiconductor Companies are Challenged

Source: GSA

Page 8

Startup Challenges Funding Has Vanished

- Round-A funding [\$ amount] declined 82% from 2000-2007
- Only 2 chip companies received Round-A funding in 2008, totaling \$12M

Source: GSA

Startup Challenges

August Capital, Partner Andy Rappaport

Mark Stevens

"These days it's very difficult to build a fabless company making a device with any digital complexity for less than \$100 million, and a number have exceeded 200 million" A Rappaport "The problem came when we looked at the volume required vs. the cost of running the company" "We said, 'hold on these equations don't solve." – A Rapport commenting on T-Zero semiconductor

Stevens estimated it takes \$40-\$100 million and six to eight years to get a major chip startup to a breakeven point. "That's much larger than it was in the '80's or even the '90's," "the IPO window has been largely shut for semiconductor startups for most of this decade," "When you put nearly \$100 million in a company and someone buys it for \$200 million, if you're lucky, the math doesn't work,"

"The Tzero story likely will be repeated more than a hundred times over the next few years as investors slash through a decade of over-investments in semiconductor startups." Rick Merritt, EETimes

EE Times

(06/22/2009 2:52 PM EDT)

FPGA Opportunity Is Growing

New FPGA Powered Infrastructure Opportunities

Now Is the Time for Programmable Platform

FPGA Platform : "Virtual Foundry"

EXILINX.

Platform Architecture : Processor + FPGA Platforms

Xilinx

Page 15

Xilinx Proprietary

E XILINX.

System Interconnect

Heterogeneous Multi-Processor

FPGA Use Models

Use Model 1 : Image and Video Processing Pipe

- RTL design and IP blocks for the Pipe: pixel rate processing
- Microblaze : control program and some image contents based settings

Use Model 2 : Explicit Memory Management

- 1. flushSourceToMem()
- 2. setupDMA()
- 3. HW Process()
 - A. if DMA'event ...
 - B. DMAreadFromMainMem()
 - C. HWcomputeProcess()
 - D. DMAwriteToMainMem()
- 4. SignalDonelRQ()
- 5. waitForHWDone()
- 6. rebuildCacheFromMem()

Model 3 : CPU + FPGA Peer Processing

Shared Memory with Coherency

Coherency Benefits:

- Peer Processing: Direct Cache-2-Cache data movement
- Latency: Very low latency access to CPU (FPGA) data
- Usability: No SW cache flush needed

Shared Memory Programming on FPGAs: Convey HC-1 (2008)

Page 22

Processor-Centric, Embedded ARM, AMBA-AXI

- Open standard optimized for data throughput
- Supports multiple outstanding transactions
- Uni-directional improves gate count & timing
- Symmetrical interfaces enables Hybrid Computing

Embedded Opportunity

Major Leap in Cost and Performance

High Level Programming : C2FPGA

From C Algorithm to FPGA Implementation

FPGA:>38 times better performance than DSP video processorQOR:C2FPGA equal to or better than RTL synthesisEase-of-use:C2FPGA 2x fewer lines of C code than DSP processor

Next: C programs on a Video Design Platform

- C/C++ programs on streams of pixels,
- Cooperating program on the Microblaze, e.g. coefficient tables
- Guaranteed performance on abstract interfaces

EPP Opportunity : Software Flow

Hybrid Multi-core Platform

Hybrid Multi-Core Programming Model

The Programmable Processing Platform

A heterogeneous multicore

Application processors

- Hard core and soft core
- External and embedded
- Caches and large memory space
- Unified shared memory
- Full OS support

Streaming micro-engines

- Configurable (soft) vector cores
- Tiny memory footprint
- Many, distributed, memories
- Compute kernels, no OS

Fixed function datapaths

- C to Gates generated
- HDL coded
- Library IP component

FPGAs provide a rich set of mapping options for complex algorithms and communication patterns

Pre / Post Bitstream Programming Interconnect

Pre bitstream programmable

- Buffer sizes
- Arbitration schemes

Post bitstream programmable

- Relative port priorities
- Routing tables

A correctly tuned interconnect is crucial to minimize the inevitable bottlenecks of feeding processors and processing engines

Pre / Post Bitstream Programming

Hardware Datapaths

Pre bitstream programmable

- C program synthesized
- Parameters passed in at compile time

Post bitstream programmable

- Contents of RAMs modifiable

A well built hardware datapath will always outstrip its single core software equivalent

E XILINX.

Pre / Post Bitstream Programming Microengine Array

Pre bitstream programmable

- Topology of engines
- Number and type of engines
- Memory hierarchy

Post bitstream programmable

- Load kernels into engines
- Load datasets into memory hierarchy

Most multi-cores are only "post bitstream" programmable

Conclusions

If FPGA technology did not exist today, you had to invent this

• FPGA will be at the heart of future :

- DSP processing
- Packet processing
- Embedded computing

Enabling technology for high end computing

- Silicon roadmap
- Intimate integration CPU and FPGA
- Programming flow

Thanks!

