
Multicore Programming

Pitfalls and Solutions

Madan Musuvathi
Research in Software Engineering

Microsoft Research

My Team at MSR

� Research in Software Engineering

� http://research.microsoft.com/rise

My Team at MSR

� Research in Software Engineering

� http://research.microsoft.com/rise

� Build program analysis tools

� Research new languages and runtimes

� Study new logics and build faster inference engines

� Improve software engineering methods

http://research.microsoft.com/rise

This talk is about

Race Conditions

This talk is about

Race Conditions

And how to deal with them

Race Conditions == Timing Errors

� Unexpected timing of program events

� Threads, inputs, event handlers, timers, …

� Can result in bugs that are

� HARD to find

� HARD to reproduce

� HARD to debug

� HARD to fix

� Some of the most expensive in terms of dev/test time

Fundamental Problem

� We don’t know how to make computers do multiple

things at the same time

Recent Hardware Trends

� Moore’s law = No. of transistors doubles every two years

Moore’s law used

to make computers faster Moore’s law now

produces more cores

More programmers exposed

to race conditions

More programmers exposed

to race conditions

Race Condition Example

void* p = 0;

CreateThd(child);

p = malloc(…);

void* p = 0;

CreateThd(child);

p = malloc(…);

Init();

DoMoreWork();

p->f ++;

Init();

DoMoreWork();

p->f ++;

Parent Child

void* p = 0;

CreateThd(child);

void* p = 0;

CreateThd(child);

p = malloc(…);p = malloc(…);

Under rare

conditions,

parent might

take a long time

to start

Under rare

conditions,

parent might

take a long time

to start

Even “single-threaded” programs have race conditions

JavaScript: lingua franca of the web

How to Deal with Race Conditions

Simple Answer

�Identify the sources of nondeterminism

�Identify the space of all behaviors of your program

�Use tools to explore this space

Thread Schedule Space

x++;

x++;

x++;

x++;

x*=2;

x*=2;

x*=2;

x*=2;

44

11

00

22

88

4433

22

5566

11

00

00

22

22 22

11

44 33

Sources of Nondeterminism

� User inputs

� Network Events

� Timers

� Thread interleavings

� System call return values

Cuzz: Concurrency Fuzzing

Cuzz: Concurrency Fuzzing

� Disciplined randomization of thread schedules

� Finds all concurrency bugs in every run of the program

� With reasonably-large probability

� Scalable

� In the no. of threads and program size

� Effective

� Bugs in IE, Firefox, Office Communicator, Outlook, …

� Bugs found in the first few runs

Concurrency Fuzzing in Three Steps

void* p = 0;

CreateThd(child);

p = malloc(…);

void* p = 0;

CreateThd(child);

p = malloc(…);

Init();

DoMoreWork();

p->f ++;

Init();

DoMoreWork();

p->f ++;

Parent Child

1. Instrument calls to Cuzz

2. Insert random delays

3. Use the Cuzz algorithm

to determine when and

by how much to delay

1. Instrument calls to Cuzz

2. Insert random delays

3. Use the Cuzz algorithm

to determine when and

by how much to delay

void* p = 0;

CallCuzz();

CreateThd(child);

CallCuzz();

p = malloc(…);

void* p = 0;

CallCuzz();

CreateThd(child);

CallCuzz();

p = malloc(…);

Init();

CallCuzz();

DoMoreWork();

CallCuzz();

p->f ++;

Init();

CallCuzz();

DoMoreWork();

CallCuzz();

p->f ++;

void* p = 0;

RandDelay();

CreateThd(child);

RandDelay();

p = malloc(…);

void* p = 0;

RandDelay();

CreateThd(child);

RandDelay();

p = malloc(…);

Init();

RandDelay();

DoMoreWork();

RandDelay();

p->f ++;

Init();

RandDelay();

DoMoreWork();

RandDelay();

p->f ++;

void* p = 0;

RandDelay();

CreateThd(child);

void* p = 0;

RandDelay();

CreateThd(child);

RandDelay();

p = malloc(…);

RandDelay();

p = malloc(…);

Init();

RandDelay();

DoMoreWork();

Init();

RandDelay();

DoMoreWork();

RandDelay();

p->f ++;

RandDelay();

p->f ++;

This is where all

the magic is

Cuzz Demo

Cuzz Algorithm
Inputs: n: estimated bound on the number of threads

k: estimated bound on the number of steps

d: target bug depth

// 1. assign random priorities >= d to threads

for t in [1…n] do priority[t] = rand() + d;

// 2. chose d-1 lowering points at random

for i in [1...d) do lowering[i] = rand() % k;

steps = 0;

while (some thread enabled) {

// 3. Honor thread priorities

Let t be the highest-priority enabled thread;

schedule t for one step;

steps ++;

// 4. At the ith lowering point, set the priority to i

if steps == lowering[i] for some i

priority[t] = i;

}

Probabilistic Guarantee

…

phase

Bug Depth

� Bug depth = number of ordering constraints sufficient

to find the bug

� Bugs of higher depth

� Have a more complex root cause

� Cuzz finds them with lower probabilistic bounds

� Best explained through examples

A Bug of Depth 1
� Bug Depth = no. of ordering constraints

sufficient to find the bug

� Probability of bug >= 1/n

� n: no. of threads (~ tens)

A: …
B: fork (child);
C: p = malloc();
D: …
E: …

A: …
B: fork (child);
C: p = malloc();
D: …
E: …

Parent

F: ….
G: do_init();
H: p->f ++;
I: …
J: …

F: ….
G: do_init();
H: p->f ++;
I: …
J: …

Child
Possible schedules

A B C D E F G H I J ����

A B F G H C D E I J ����

A B F G C D E H I J ����

A B F G C H D E I J ����

A B F G H I J C D E ����

…

A Bug of Depth 2
� Bug Depth = no. of ordering constraints

sufficient to find the bug

� Probability of bug >= 1/nk

� n: no. of threads (~ tens)

� k: no. of instructions (~ millions)

A: …
B: p = malloc();
C: fork (child);
D: ….
E: if (p != NULL)
F: p->f ++;
G:

A: …
B: p = malloc();
C: fork (child);
D: ….
E: if (p != NULL)
F: p->f ++;
G:

Parent

H: …
I: p = NULL;
J : ….

H: …
I: p = NULL;
J : ….

Child
Possible schedules

A B C D E F G H I J ����

A B C D E H I J F G ����

A B C H I D E G J ����

A B C D H E F I J G ����

A B C H D E I J F G ����

…

Another Bug of Depth 2

� Bug Depth = no. of ordering constraints

sufficient to find the bug

� Probability of bug >= 1/nk

� n: no. of threads (~ tens)

� k: no. of instructions (~ millions)

A: …
B: Lock (A);
C: …
D: Lock (B);
E: …

A: …
B: Lock (A);
C: …
D: Lock (B);
E: …

Parent

F: …
G: Lock (B);
H: …
I: Lock (A);
J: …

F: …
G: Lock (B);
H: …
I: Lock (A);
J: …

Child

Empirical bug probability w.r.t

worst-case bound

� Probability increases with n, stays the same with k

� In contrast, worst-case bound = 1/nkd-1

Why Cuzz is very effective

� Cuzz (probabilistically) finds all bugs in a single run

� Programs have lots of bugs

� Cuzz is looking for all of them simultaneously

� Probability of finding any of them is more than the

probability of finding one

� Buggy code is executed many times

� Each dynamic occurrence provides a new opportunity

for Cuzz

Cuzz Status

� We are “dog fooding” Cuzz internally at Microsoft

� A non-commercial version will soon be available at

� http://research.microsoft.com/projects/cuzz

CHESS:

Systematic Enumeration of Thread

Schedules

Refresh: Thread Schedule Space

x++;

x++;

x++;

x++;

x*=2;

x*=2;

x*=2;

x*=2;

44

11

00

22

88

4433

22

5566

11

00

00

22

22 22

11

44 33

Systematic Exploration

� If your program is small enough

� We can systematically enumerate thread schedules

� Using model checking techniques

� Systematic enumeration is more efficient (in the long

run) than random exploration

“Unit Testing” for Concurrency

� Idenitfy individual concurrency scenarios

� e.g. spell-checking thread races with the rendering

thread

� Test each scenario at a time

� A test that creates the spell-checker and the renderer

� Write assertions that look for correct behavior

� Contrast with stress/concurrency testing

� Run multiple scenarios at the same time

Concurrency Unit Testing with

CHESS

Kernel:

Threads, Scheduler,

Synchronization Objects

While(not done) {

TestScenario()

}

While(not done) {

TestScenario()

}

TestScenario() {

…

}

Program

Tester Provides a Test Scenario
CHESS

CHESS runs the scenario in a loop

• Every run takes a different interleaving

• Every run is repeatable

Win32 API

CHESS architecture

Kernel:

Threads, Scheduler,

Synchronization Objects

While(not done){

TestScenario()

}

While(not done){

TestScenario()

}

TestScenario(){

…

}

Program

CHESS

Win32 API

Detour Win32 API calls
• To control and introduce nondeterminism

• CHESS ‘hijacks’ the scheduler

Run the system as is
• On the actual OS, hardware

• Using system threads, synchronization

Advantages
• Avoid reporting false errors

• Easy to add to existing test frameworks

• Use existing debuggers

Dealing with State Space Explosion

� CHESS implements many techniques to effectively

explore the (astronomically) large state space

� Reduction techniques

� Identify (exponentially many) schedules that have the

same behavior

� Prioritization techniques

� Derandomized version of Cuzz

CHESS availability

� Source available at

� http://chesstool.codeplex.com

Automatic Thread Safety Checking

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);q.push(10); t = q.pop();t = q.pop();

Assert(?)Assert(?)

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);q.push(10); t = q.pop();t = q.pop();

Assert:
q.size() is 0 or 1

Assert:
q.size() is 0 or 1

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);q.push(10); t = q.pop();t = q.pop();

Assert:
q.size() is 0 or 1

and t is 10 or <fail>

Assert:
q.size() is 0 or 1

and t is 10 or <fail>

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);q.push(10); t = q.pop();t = q.pop();

Assert:
t = fail && q.size() = 1 &&

q.peek() == 10 ||
t = 10 && q.size() = 0

Assert:
t = fail && q.size() = 1 &&

q.peek() == 10 ||
t = 10 && q.size() = 0

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t = q.pop();
q.push(10);
t = q.pop();

q.push(20);
u = q.pop();
q.push(20);
u = q.pop();

Assert (?)Assert (?)

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t = q.pop();
q.push(10);
t = q.pop();

q.push(20);
u = q.pop();
q.push(20);
u = q.pop();

Assert:
q.size() == 0 &&

t = 10 || t = 20 &&
u = 10 || t = 20 &&

u != t

Assert:
q.size() == 0 &&

t = 10 || t = 20 &&
u = 10 || t = 20 &&

u != t

Let’s Write a Test

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

Assert (?)Assert (?)

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

Wouldn’t it be nice if we could just say…

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

Assert:

ConcurrentQueue
behaves

like a queue

Assert:

ConcurrentQueue
behaves

like a queue

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

Informally, this is “thread safety”

ConcurrentQueue behaves like a
queue

ConcurrentQueue behaves like a
queue

Formally, this is “Linearizability” [Herlihy & Wing ‘90]

ConcurrentQueue behaves like a queueConcurrentQueue behaves like a queue

Concurrent
behaviors of

ConcurrentQueue

Concurrent
behaviors of

ConcurrentQueue

are
consistent

with

are
consistent

with

a sequential
specification
of a queue

a sequential
specification
of a queue

Every operation appears to occur
atomically at some point between the

call and return

Every operation appears to occur
atomically at some point between the

call and return

So, simply check linearizability

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

Assert:

Linearizability wrt
a given sequential

specification

Assert:

Linearizability wrt
a given sequential

specification

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

Automatic Thread Safety Checking

q = new ConcurrentQueue();q = new ConcurrentQueue();

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

q.push(10);
t1 = q.pop();
t2 = q.peek();
q.push(20);

Assert:

ConcurrentQueue is
Thread Safe

Assert:

ConcurrentQueue is
Thread Safe

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

q.push(30);
u1 = q.peek();
q.push(40);
u2 = q.pop();

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

v1 = q.pop();
q.push(50);
v2 = q.peek();
q.push(60);

Automatically learn how “a

queue” behaves

Automatically learn how “a

queue” behaves

Conclusions

� Beware of race conditions when you are designing

your programs

� Think of all source of nondeterminism

� Reason about the space of program behaviors

� Use tools to explore the space

� Cuzz: Randomized algorithm for large programs

� CHESS: systematic algorithm for unit testing

� Thread-safety as a correctness criterion

