Seminar

Modeling and Simulation of Dynamical Systems

Presented by the IEEE Control Systems Society Santa Clara Valley

Sunnyvale, 5 February 2011

Program

Welcome	08:45 – 09:10am	Coffee and bagels, Seminar kickoff at 9:00am	
Session 1	09:10 – 10:00am	Mathematical models of dynamical systems Dr. P.K. Menon, Optimal Synthesis	
Session 2	10:10 – 11:00am	System Identification - Theory and Practice Dr. Mark B. Tischler, Ames Research Center	
Session 3	11:10 – 12:00am	Visualization and Virtual Environments Dr. Hadi Aggoune, Cogswell Polytech. College	
Lunch	12:00 – 12:40pm	Sandwiches, sodas, discussions and product demos	
Session 4	12:40 – 01:30pm	Applications of Hardware-in-the-Loop Simulators Christoph Wimmer, National Instruments	
Session 5	01:40 – 2:30pm	Simulation with Software Tools Elliot English, Dr. Martin Aalund, Dr. Karl Mathia	

Session 5

Simulation Software Tools

Martin Aalund

Historical Simulation Tools

Historically dynamical systems were often simulated with:

- Scaled Models
 - Such as the Antikythera mechanism used by the Greeks to calculate astronomical positions in 100 BC
- Mechanical Analogue Computers
 - French physicist Gaspard-Gustave Coriolis designed a mechanical device to integrate differential equations of the first order in 1839
 - Differential Analyzers such as the Thomson Disk and Sphere analyzer used to simulate tides
- Simplified Systems Lumped models
 - Spring as Capacitor
 - Damper as Resistor
 - Inertia as Inductors
- Analog Computers (Gained Popularity in 1940s)
 - Use Active circuits integrate, differentiate and scale signals.
 - Can model complex electro mechanical systems.
 - Real time operation and reprogrammable

Current State of the Art

- Analog Solutions were
 - Hard to setup,
 - problem size limited,
 - must carefully scale problems,
 - Have limited dynamic range
- Advent of Modern Computers and Advanced Software have replaced analog computers in most cases
 - Allow for unlimited size of model
 - Reusable models
 - Large choice of tools available
 - Domain Specific
 - Commercial
 - Free

Simulation SW (Open/Free)

- Octave http://www.gnu.org/software/octave/
 - Matlab like language
 - Numerical Computations
 - Linear and Non-linear solvers
- SciLab http://www.scilab.org/products/scilab/features
 - 2d and 3d Visualization
 - Numerical Computation
 - Data Analysis
 - Xcos: hybrid dynamic systems modeler and simulator
- Maxima http://maxima.sourceforge.net/
 - manipulation of symbolic and numerical expressions
- Euler Math Toolbox http://eumat.sourceforge.net/
 - Built on Maxima
 - Provides notebook style interface
 - Advanced Graphics, Numerical functions
- Sage http://www.sagemath.org/
 - Open source alternative to Magma, Maple, Mathematica and Matlab.
 - Web Based Interface

Simulation SW (commercial)

- Matchcad http://www.ptc.com/products/mathcad/
 - Visual Interface WYSIWYG
 - Symbolic and numerical simulations
- MapleSim http://www.maplesoft.com/products/maplesim/#
 - Based on Maple Symbolic Computation technology
 - Multi-Domain Systems
- Matlab/Simulink http://www.mathworks.com/products/simulink/
 - Powerful modeling and simulation capability
 - Can generate code based on models
- Anykode/Marilou http://www.anykode.com/marilou.php
 - Modeling and simulation tools for mobile robotics
- Microsoft Robotics Studio http://www.microsoft.com/robotics/
 - Simulations and development environment
 - Contains Physics models for Gravity
- PHYSX
 http://www.nvidia.com/object/physx_new.html
 - Free commercial Physics engine from NVIDIA

MathCad Demo

Can Solve Equations Symbolically

$$x^2 - 3x + 2$$

Can find the derivative by highlighting variable

Next we can solve for the value.

we can also define a function

$$\mathbf{f}(\mathbf{x}) := \left(\mathbf{x}^2 - 3\mathbf{x} + 2\right)$$

Press Ctr period to insert symbolic equal sign and factor

$$f(x) \rightarrow x^2 - 3 \cdot x + 2$$

Can also differentiate by hitting? or CTR Shit /

$$\frac{d}{dx}f(x) \rightarrow 2 \cdot x - 3$$

Press Crtl Shift period and type keyword

Symbolic X								
	\rightarrow	$\blacksquare \to$	Modifiers	float	rectangular	assume		
	solve	simplify	substitute	factor	expand	coeffs		
	collect	series	parfrac	fourier	laplace	ztrans		
	invfourier	invlaplace	invztrans	$M^T \rightarrow$	${ m M}^{-1} ightarrow$	m →		
	explicit	combine	confrac	rewrite				

$$f(x) \rightarrow x^2 - 3 \cdot x + 2$$

$$f(x) \ factor \ \rightarrow (x-1) \cdot (x-2)$$

$$\sin(x)$$
 series $\rightarrow x - \frac{x^3}{6} + \frac{x^5}{120}$

Can also calculate results by entering value for x

$$x := 3$$
 $f(x) = 2$

Demo Continued

Can define functions and plot them

$$u(t) := \Phi(t)$$

we can use built in functions to find the laplace transform

$$U(s) := u(t) \text{ laplace } \rightarrow \frac{1}{s}$$

We can define a function in s domain and do an inverse transform

$$\omega := 3$$

$$H(s) := \frac{\omega}{s^2 + \omega^2}$$

 $H(t) := H(s) \text{ invlaplace } \rightarrow \sin(3 \cdot t)$

Other Open SW for simulation

- FreeMat http://freemat.sourceforge.net/
- JMathLib Java Clone http://www.jmathlib.de/
 - Octave, SciLab and Matlab functionality
- Mathnium http://www.mathnium.com/
 - Numerical Computing, Data Analysis, and Graphics
- TeLa http://www.geo.fmi.fi/prog/tela.html
- Algae http://algae.sourceforge.net/
 - Language For Large Systems
- Lush http://lush.sourceforge.net/
 - Lisp Based for Large scale numerical and graphical applications
- Yorickhttp://yorick.sourceforge.net/
- Rlab http://rlab.sourceforge.net/
- Python Extensions http://www.python.org/
 - NumPy http://sourceforge.net/projects/numpy/
 - SciPy http://www.scipy.org/
- The R Project http://www.r-project.org/
 - Statistical Computing

Other Open SW for simulation

- Delta3D http://www.delta3d.org/
 - 3D visualization and simulations
 - Dynamic Engine based on ODE
- ODE http://ode.org/
 - Open Dynamics Engine
 - Simulation of Ridged body dynamics
- Physics Abstraction Layer
 http://www.adrianboeing.com/pal/index.html
 - Fluids
 - Dynamics
 - Actuators, Sensor

Sponsors

http://www.cogswell.edu

http://www.applimotion.com

http://www.willowgarage.com

http://www.asme.org