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Abstract 

One of the requirements for closely spaced parallel approaches 
(CSPA) is the proof that possible blunders of the adjacent aircraft do not 
lead to a loss of separation. Our paper addresses this problem by 
considering the blunderer as a “pursuer” and the other aircraft as an 
“evader” . We then use differential game methodology to find the safe 
region in which it is guaranteed that blunders do not lead to a loss of 
separation. We apply the technique to a practical case to show how the 
minimum safe longitudinal separation (MSLS) can be computed. Finally, 
simulation is performed to show how the technique can be used as an 
alerting algorithm for onboard on-line computation.  

Introduction 
Pairs of aircraft approaching closely spaced 

parallel runways have to be spaced apart such that 
they can perform the approach safely. The wake 
vortex and the possible blunders of one aircraft define 
the unsafe operating region for the other aircraft. Our 
paper addresses the computation of the unsafe region 
due to the latter phenomenon. We assume that 
position and velocity vector information of each 
aircraft are available from a Wide Area 
Augmentation DGPS system (WAAS) and 
transmitted to the other through a datalink, using, for 
example, Automatic Dependent Surveill ance-
Broadcast (ADS-B) [1]. 

Previous research [2,3,4] has focused on finding 
the minimum separation between the aircraft so that 
one aircraft can perform safe emergency evasive 
maneuvers (EEMs) should the other aircraft blunder in 
its approach; alerting and colli sion avoidance 
algorithms have been developed to provide directives 
to the evading aircraft. These works used empirical 
and Monte Carlo simulation techniques to obtain the 
results. An alternative method using analysis based on 
differential game theory was proposed by previous 
researchers [5,6] for aircraft colli sion avoidance 
problems. Our paper applies this approach specifically 
to the closely spaced parallel approach (CSPA) 
problem.  

The first section of the paper describes how the 
CSPA is posed as a differential game problem. It also 
provides the analysis and explains the results 
obtained. The second section of the paper discusses 
how uncertainties can be incorporated into the 
results; the third describes how this approach can be 
implemented as an alerting algorithm for CSPA. The 
fourth provides the results on the minimum 
longitudinal separation required for safe CSPA. The 
last section demonstrates the implementation of the 
algorithm through simulation using a higher order 
aircraft model. 

Computing unsafe blunder zones  
An unsafe blunder zone is one that contains 

starting points from which an evading aircraft 
(evader) may not conduct the EEM safely because the 
blundering aircraft (blunderer) can find at least one 
trajectory to cause a loss of separation. Its boundary 
is the set of starting points of the EEM for which the 
blunderer needs to do its “best” by using its worst-
case (i.e. minimum-time) control inputs to cause a 
loss of separation during the EEM. It is thus 
guaranteed that if the evader starts its EEM outside 
the unsafe zone, the blunderer will not be able to 
cause a loss of separation regardless of its choice of 
control inputs (within certain bounds) during the 
evasion. 

To find the unsafe blunder zone or rather its 
boundary, our approach involves the following steps: 

1. Choose an EEM. 

2. Determine the end conditions in terms of relative 
position and orientation between blunderer and 
evader (terminal states) for which a loss of 
separation can occur. 

3. Determine the worst-case control inputs required 
of the blunderer to drive the relative position and 
orientation between blunderer and evader (the 
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states) to these terminal states in the minimum 
time for the given EEM.  

4. Propagate the states backwards in time from these 
terminal states using these worst-case control 
inputs.  

5. Obtain the unsafe boundary from the analytical 
solutions of the state propagation. 

The analytical solution of this unsafe zone is 
based on the solution of a two-person zero-sum 
differential game [7]. The blunderer is assumed to be 
the “pursuer” which tries its best to cause a loss of 
separation with the “evader” . 

The EEM could be a climbing turn, for example. 
We assume that if the evader completes the EEM 
safely, it would remain safe thereafter. 

A set of equations of motion has to be selected 
for the analysis. The use of the higher order full point 
mass model of an aircraft [8] would be diff icult for 
on-line implementation. The lower order kinematic 
model [9] is thus selected. This allows us to obtain 
analytical solutions of the worst-case trajectories, 
enabling on-line computation of the unsafe zones. 
However, we need to assume that speed and turn rate 
of the blunderer can be changed instantaneously. This 
gives conservative results which is consistent with the 
problem as safety is criti cal. 
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Figure 1.  Reference frame 

The kinematic model in coordinates relative to 
the blunderer is: 
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The notation is shown in Figure 1 above.  

Though this only models motion in a horizontal 
plane, the climbing turn EEM can still be analyzed by 
considering only the turn component of the 
maneuver. 

The bounds on the control inputs of the 
blunderer are as follows: 

max

maxmin

ωω ≤
≤≤

b

b vvv    (2) 

Terminal conditions 
A loss of separation is defined to occur when the 

two aircraft are 500 ft apart. As such, the terminal 
surface in the relative coordinates x , y and ψ is: 

}500:),,{( 222 =+= yxyxT ψ  (3) 

In differential game terms, the surface can be 
subdivided into the Usable Part (UP) and the Non-
usable Part (NUP). The UP is the part of the terminal 
surface in which a further reduction in separation 
distance between the aircraft would occur 
immediately when the blunderer uses its worst-case 
control inputs. The NUP is that part of the terminal 
surface in which the separation distance would 
increase immediately even when the blunderer uses 
its worst-case control inputs. The boundary between 
the UP and NUP is the Boundary of the Usable Part 
(BUP) which is:  

}0|),,{( 22 =+=∈ yxrTyx
���ψ  (4) 

Substituting (1) into (4), we obtain: 
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where )/(tan 1
1 yxs −=  

Worst-case control inputs 
As discussed earlier, the solution involves 

finding the worst-case control inputs that minimize 
the time to drive the state ( x , y ,ψ ) to the terminal 
surface. The associated cost function is thus: 
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The Hamiltonian, H , is defined as: 
[ ]fpppfpH yx

T
ψ==   (7) 

where p  is known as the adjoint vector. 
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The worst-case control inputs satisfy the 
following condition: 
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Substituting (1) in (8), we obtain: 
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The adjoint vector satisfies the equations: 
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with initial conditions [ ]0yxpo = . The 
o
symbol 

represents 
t∂

∂  in retrograde time. 

From (9), the worst-case control inputs are: 
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where ψpxpypA yx −+−= . 

Worst-case control inputs on terminal surface 
On the terminal surface, 0=A . The worst-case 

control input, bω , is undefined. Thus, we need to 

look at how A  changes over time. Taking the 
derivative of A  with respect to time, we obtain 

bx

o

vpA −= . 

Similarly, on the terminal surface, when 0=y , 

0=yp . The worst-case control input, bω , is 

undefined. Taking the derivative of yp  with respect 

to time, we obtain 
bxy

o

pp ω−= . 

From the above derivatives and (11), we obtain 
the worst-case control inputs on the terminal surface 
as: 
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This result is consistent with intuition. The 
blunderer’s worst-case control inputs steer him 
towards the evader. Note however that when 0=x  
and 500±=y , bω  is still undefined. This is 

possibly a terminal point of a worst-case trajectory 
that is formed by the coming together of infinitely 
many other worst-case trajectories, li ke the coming 
together of infinitely many tributaries to form a large 
stream. Such a worst-case trajectory is known as a 
universal surface in differential games. To check if 
these terminal points are where universal surfaces 
end, we check the following necessary but not 
suff icient conditions: 
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where ** , bb vω are the worst-case control inputs. We 

find that these conditions are satisfied for these 
terminal points. The worst-case control input, if it 
exists, is 0=bω . Upon plotting the trajectories from 

these terminal points, we find that a universal surface 
exists from 0=x  and 500=y  but not from 0=x  

and 500−=y . A different surface exists from the 
latter terminal point. This is a surface from which 
infinitely many worst-case trajectories branch out, 
li ke infinitely many distributaries branching from a 
large stream. Such a surface is known as a dispersal 
surface. 

Switching Times 
The worst-case control inputs given above are 

those specifically at the terminal surface. As in (11), 
these inputs are a function of the state and adjoint 
vectors. From (1) and (10), we see that these vectors 
vary with time. Typically, (1) and (10) are integrated 
numerically and (11) is evaluated at each step of the 
integration to check when the worst-case control 
inputs change. However, in this case, we are able to 
integrate them analytically and consequently obtain 
analytically the switching times of the worst-case 
control inputs. This is an important advantage as it 
saves on computation effort and enables on-line 
computation.  

Integrating (1) and (10) analytically, we obtain 
different sets of solutions depending on whether 

eb ωω ,  are zero. For the case when 0, ≠eb ωω , the 

solutions for Apppyx yx ,,,,,, ψψ  are: 
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to ωψψ +=     (14.3) 

)sin( αω += tbVxp    (14.4) 

)cos( αω += tbVyp    (14.5) 
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Using these analytical solutions, we obtain the 
switches during the evasion. They are as follows for 
the different “starting” points parameterized by 1s  on 

the terminal surface (recall that )/(tan 1
1 yxs −= ): 

1. For 
210 π<< s , bv switches from maxv  to minv  

after )
12

(
max

1
st −= π

ω
 

2. For ππ >≥ 12 s , bω switches from maxω  to 

maxω−  after )
1

(
max

2
st −= π

ω
 

Similar results are obtained for π−>> 10 s . 

From 01 =s , we have a universal surface. To obtain 
the trajectory that makes up the universal surface, we 
set the control input to 0=bω  and propagate the 

state vector backward in time. Recall that a universal 
surface is where many worst-case trajectories 
converge. These trajectories arrive at the universal 
surface through using worst-case control inputs 
corresponding to either maxω+  or maxω−  because 

this satisfies (11). Thus, to obtain these trajectories, 
we propagate the state vector backward in time from 
the universal surface with maxω± . 

Results 
With the switching times, worst-case control 

inputs, BUP, UP, and the analytical trajectory 
equations, we compute the unsafe boundary. The 
bounds on the speed and turn rate of the blunderer are 
chosen as 150± 20 kt and ± 4.2 deg/s respectively. 
The speed and turn rate of the evader making the 
evasion are 150 kt and 4.2 deg/s respectively. These 
correspond to a possible real approach condition. 
With these values, we compute the result shown in 
Figure 2. As with the rest of the paper, we assume 
that the blunderer is meant to land on the left runway 
and the evader is meant to land on the right runway. 
Thus during the approach, the evader will normally 
be on the right of the blunderer. In this context, both 
left and right EEMs were considered. A left EEM 
flies the evader towards the approach path of the 
blunderer. The EEM considered is a constant speed 
climbing turn where the heading change begins after 
a delay of 2.6 sec and is constant at 4.2 deg/s up to a 
heading change of 45 deg. The delay is to account for 
the fact that when an aircraft starts a turn, the full 
turn rate can only be achieved after it has rolled to the 
required bank angle for the turn. Also, as explained, 
climbing turns may be considered in our model (1) by 
ignoring the climb component of the maneuver. 
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Figure 2.  Unsafe boundary for left / right EEM 

To ill ustrate the worst case control inputs of the 
blunderer required to minimize the time to cause a 
loss of separation, the trajectories for initial 
conditions marked ‘a’ and ‘b’ in Figure 2 are given in 
Figure 3. The trajectory corresponding to initial 
condition ‘a’ ( in terms of relative position and 
orientation between blunderer and evader) requires 
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the blunderer to first turn away from the evader and 
then turn towards the evader; this is the shortest-time 
trajectory which terminates at 500 ft from the evader. 
This is known as a swerve in differential game 
theory. The trajectory corresponding to initial 
condition ‘b’ requires a velocity switch from maxv to 

minv at the switching time computed using (15). 
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Figure 3.  Swerve and velocity switch (relative 
distance never less than 500 ft) 

There are instances in which a left EEM allows 
the evader to have a shorter longitudinal separation 
from the blunderer as shown by ‘c’ in Figure 2. To 
ill ustrate this, Figure 4 shows the trajectories from ‘c’ 
where a right and a left EEM were taken whilst the 
blunderer uses its worst-case control inputs. As 
expected, the right EEM leads to a loss of separation 
whereas the left EEM keeps the evader safely away 
from the blunderer. In fact, the evader grazes the 500 
ft radius circle around the blunderer. This is the 
characteristic of reaching the terminal surface on the 
BUP. A left EEM, however, is not usually used as the 
evader will have to fly into the wake of the blunderer. 

Incorporating uncertainties 
As discussed, the distance from the boundary of 

the unsafe zone to the evader’s position is a function 
of the blunderer and evader’s velocities and turn 
rates, and their relative position and heading. The 
sources of uncertainty are thus: 

• the blunderer’s actual speed and turn rate 
(these are considered in the differential 
game framework), 

• the measurement of the blunderer and 
evader’s positions and headings, and 

• the “drift”  in position and heading in 
between sensor updates. 
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Figure 4.  Right EEM (relative distance less than 
500 ft); Left EEM (relative distance never less 

than 500 ft) 

We assume that the position uncertainties due to 
measurement and drift to be uniform in all directions. 

Let them be denoted by zδ  and driftzδ  respectively. 

Let δψ  and driftδψ  be the corresponding 
uncertainties in heading. To obtain the worst-case 
relative uncertainties, we sum the uncertainties due to 
measurement and drift as follows:  

drift
e

drift
beb

drift
e

drift
beb zzzzd

δψδψδψδψδψ
δδδδ

+++=

+++=  

The relative position error is thus contained in a 
circle around the evader with radius d  as shown in 
Figure 5. As a result of the relative heading error, we 
have a range of the unsafe boundaries for relative 
headings δψψ ± that must not intersect the error 
circle for safety. Thus, for on-line computation, we 
need to check that the error circle remains outside the 
range of unsafe boundaries within the region 
contained within the two tangents to the error circle 
that intersect at the blunderer as shown in Figure 5.  

Typically, driftzδ  is larger in the in-track 
direction than in the lateral direction. This will give 
us an error elli pse instead. In this approach, we 
assume an error circle. This simpli fication is, 
however, not overly conservative if we are interested 
in the position of the evader with respect to the front 
and back of the unsafe boundary rather than the side 
of the boundary. This is the case for approaches to 
runways spaced 750ft apart with the parameters used 
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above. If the evader were on the side of the boundary, 
we can use a less conservative driftzδ . Also, if we miss 

updates, the driftdriftz δψδ ,  terms would grow with 
time. 
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d

 

Figure 5.  Incorporating uncertainties 

Implementation 
The implementation of the above algorithm in 

CSPA involves two aspects: 

• the computation of the MSLS (minimum 
safe longitudinal separation), and 

• the on-line computation of the unsafe 
boundary. 

The MSLS is that which ensures the unsafe 
boundary does not intersect the error circle around 
either aircraft for almost all of the deviations in 
lateral position and heading that can be expected in a 
normal approach. This is computed by finding the 
furthest forward and backward the unsafe boundary 
can shift within the approach corridor of the adjacent 
aircraft, for such deviations in lateral position and 
heading.  

During the approach, the aircraft should fly their 
approach speeds and maintain separation greater than 
the MSLS. At the same time, both aircraft compute 
on-line the unsafe boundary based on the current 
states of both aircraft and checks if they are outside 
the unsafe zones. If both aircraft fly nominal 
approaches and maintain the MSLS, the on-line 
computation would show that each aircraft is outside 
the unsafe zone. When deviations in the approach 
occur, the on-line computation will check if such 
deviations cause the unsafe boundary to encroach 
upon the error circle around the aircraft. If so, an 
EEM as assumed in the unsafe boundary 

computation, should be conducted. Such an EEM is 
guaranteed to maintain separation under those 
conditions assumed. 

MSLS required for CSPA 
The MSLS required for CSPA is computed for 

the case of two similar general aviation aircraft 
making the approach to parallel runways. The lateral 
and heading deviation data used in the computation is 
taken from [10] which contains flight test results of a 
Beechcraft Queen Air general aviation aircraft 
performing instrument approaches. Two of the 
various approaches used in the flight tests are termed 
the CDI (Course Deviation Indicator) and the ‘ tunnel’ 
approaches. They both use the WAAS corridor 
approach as opposed to the conventional angular 
approach using ILS (Instrument Landing System). 
They differ however in the cockpit displays. The first 
uses the CDI whilst the second uses the ‘ tunnel-in-
the-sky’ visual display. The latter displays a tunnel 
describing the approach path over a synthetic display 
of the view ahead. This was demonstrated to result in 
lower Flight Technical Error (FTE). 

Of the 27 approaches flown in the flight tests in 
[10], it is reported that 95% of the approach path 
deviations are within the bounds given in Table 1. 
(The heading deviation was estimated from the lateral 
deviation.) Therefore we will use these bounds in our 
analysis. 

Table 1.  95th percentile deviation bounds 

Deviation CDI Tunnel 
Lateral +/- 129 ft +/- 32 ft 
Heading +/- 8.4 deg +/- 4.2 deg 

For the computation of the safe longitudinal 
separation, the bounds on the speed and turn rate of 
the blunderer are 100± 5 kt and ± 10.9 deg/s 
respectively. The speed and turn rate of the evader 
making the EEM are 100 kt and 8.9 deg/s 
respectively. The fact that the 8.9 deg/s turn rate 
cannot be achieved instantaneously is also accounted 
for in the model by including a delay of 2.5 sec. In 
addition, a pilot response delay of 2 sec is considered 
in the EEM. This delay was observed in flight tests 
conducted in [11]. The sensor error for position and 
heading are 15 ft and 0.3 deg respectively. The drift 
error for position and heading are 15 ft and 5 deg 
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respectively. The drift error is estimated assuming a 1 
Hz sensor update rate. 

The results, given in Figure 6, shows that for the 
nominal case on 750 ft runways, the MSLS is about 
1500ft for FTE corresponding to the CDI approach. 
The tunnel approach, which has a better FTE, 
requires slightly less separation than the CDI 
approach for 750ft runways and this improvement 
becomes significant for 1700 ft runways. This is 
because the tunnel approach results in smaller lateral 
deviation, which keeps the aircraft outside of the 
unsafe zone. Also, the significant improvement is 
because of the geometry of the unsafe zone as in 
Figure 2. 
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Figure 6.  Cockpit display vs MSLS 

Figure 7 compares the MSLS required between 
EEM types when the CDI approach is assumed. For 
right only EEMs (recall that the evader is assumed to 
be on the right of the blunderer), the MSLS is only 
slightly more than for the right and left EEM (i.e. the 
evader can choose between a left or a right EEM) for 
750 ft runways. On the other hand, for 1700 ft 
runways, there is no difference in the MSLS. 
However, a safe left EEM has the advantage of being 
safe even beyond the end of the EEM (Figure 4) if it 
can be made without encountering the wake vortices 
of the blunderer. 

Figures 8 and 9 show the change in MSLS when 
certain parameters are varied from the nominal case 
that assumes 750 ft runways and the CDI approach. 
Figure 8 shows that the MSLS increases as the bank 
rate of the evader in the EEM decreases. The increase 
becomes more significant at lower bank rates. This is 
because low bank rates can be thought of as having 
long delays in responding to a blunder. Figure 8 also 
shows the relationship between the heading change of 
the evader in the EEM versus MSLS. Recall that the 
analysis guarantees safety up to a given heading 

change in the EEM. When the EEM assumes a larger 
heading change, we have to guarantee safety for a 
longer duration. Thus, the larger the heading change, 
the larger the unsafe zone and consequently, the 
larger the MSLS. 
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Figure 7.  EEM effect on MSLS 
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Figure 8.  Evader bank rate and heading change 
vs MSLS 

Figure 9 shows that the larger the bound on the 
speed of the blunderer, the larger the MSLS. Figure 9 
also shows that the larger the bound on the turn rate 
of the blunderer, the larger the MSLS. 
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Figure 9.  Bounds on blunderer speed and 
turn rate vs MSLS 
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Simulation 
To test the implementation of the on-line 

computation of the algorithm, simulation using a 
linearized low speed Boeing 747 model [12] is 
conducted for approaches to 750 ft runways. The 
chosen EEM is a climbing turn away from the 
adjacent aircraft. It consists of a roll to a 30 deg bank 
angle and a heading change of 45 deg whilst 
maintaining constant speed and climbing at a flight 
path angle of 3 deg.  

For computing the MSLS and the simulation, the 
normal deviations during approach assumed are given 
in Table 2:  

Table 2.  Normal deviations during approach 

Deviation CDI Tunnel 
Lateral +/- 100 ft +/- 30 ft 

Heading +/- 8 deg +/- 3 deg 

The bounds on the speed and turn rate of the 
blunderer are 150 ± 5 kt and ± 2.7 deg/s respectively. 
The speed and turn rate of the evader making the 
evasion are 150 kt and 2.7 deg/s respectively. The 
sensor errors in position and heading are 15 ft and 0.2 
deg respectively and the drift errors in position and 
heading are 15 ft and 2 deg respectively. The drift 
error is estimated based on a sensor update rate of 1 
Hz. The MSLS for the given parameters is 1191 ft. 
The simulation is conducted with an initial 
longitudinal separation of 1191 ft. 

The blunderer maneuvers are taken from [4]. 
They consist of 8 approach types: 

1. 30 deg heading blunder.  
2. 15 deg heading blunder.  
3. Constant 5 deg bank angle blunder. 
4. Slow 10 deg heading blunder.  
5. Slow 5 deg heading blunder.  
6. Fake blunder.  
7. Drift away then over adjust blunder.  
8. Normal approach.  
In all approaches except Approaches 6, 7 and 8, 

the blunderer crosses the approach path of the evader. 
Altogether, 16 simulations are performed, using the 8 
approach types above with the evader in the rear and 
in the front.  

In addition to the unsafe boundary computation, 
the on-line computation includes a check on the 
lateral separation between the two aircraft. When the 

lateral separation becomes closer than 200 ft when 
the evader is behind the blunderer, an alert is issued 
to conduct an EEM. This is to keep the evader out of 
the wake vortex region of the blunderer. 

The simulation shows that the on-line 
computation is possible at a rate of about 2 Hz using 
MATLAB. For all the blunders simulated, the two 
aircraft never came closer than 500 ft. All the 
blunders with the blunderer in front result in an EEM 
except for Approach 6. All the blunders with the 
evader in front did not warrant an EEM. This is 
because the MSLS for an evader flying in front is less 
than the MSLS for an evader flying in the rear.  

As expected, the simulation for Approach 8 
shows that no EEM is required. 

Figure 10 shows the results of Approach 1 and 
Approach 7. Approach 7 required an evasion because 
the heading of the blunderer became large when it 
was trying to get back to its approach path.  
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Figure 10.  30 deg heading change, and drift 
away and over adjust blunders 

Conclusion 
A game theoretic approach for computing the 

unsafe blunder zone in CSPA has been proposed. The 
approach provides guarantees on safety within the 
bounds on the control inputs used.  The approach also 
provides insight on what the worst case blunders are. 
By using a kinematic model, the computation of the 
unsafe boundaries can be performed on-line whilst 
considering uncertainties. The implementation of the 
algorithm is described and simulation is conducted to 
demonstrate its implementation. In addition, some 
sensitivity studies on the parameters affecting the 
MSLS is conducted.  
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The proposed approach is conservative as it does 
not consider vertical separation and it assumes that 
the blunderer can change its turn rate and speed 
instantaneously. Nevertheless, it provides a means of 
guaranteeing safety against blunders for CSPA 
subject to the parameters used in the computation. 
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