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Abstract

We present a method to design controllers for safety speci�cations in hybrid systems. The hybrid system

combines discrete event dynamics with nonlinear continuous dynamics: the discrete event dynamics model

linguistic and qualitative information and naturally accommodate mode switching logic, and the continuous

dynamics model the physical processes themselves, such as the continuous response of an aircraft to the

forces of aileron and throttle. Input variables model both continuous and discrete control and disturbance

parameters. We translate safety speci�cations into restrictions on the system's reachable sets of states.

Then, using analysis based on optimal control and game theory for automata and continuous dynamical

systems, we derive Hamilton-Jacobi equations whose solutions describe the boundaries of reachable sets.

These equations are the heart of our general controller synthesis technique for hybrid systems, in which we

calculate feedback control laws for the continuous and discrete variables which guarantee that the hybrid

system remains in the \safe subset" of the reachable set. We discuss issues related to computing solutions to

Hamilton-Jacobi equations. Throughout, we demonstrate our techniques on examples of hybrid automata

modeling aircraft conict resolution, autopilot ight mode switching, and vehicle collision avoidance.

1 Introduction

1.1 Why study hybrid systems?

For about the past eight years, researchers in the traditionally distinct �elds of control theory and computer

science veri�cation have proposed models, and veri�cation and controller synthesis techniques for complex,

safety critical systems. The area of hybrid systems is loosely de�ned as the study of systems which involve

the interaction of discrete event and continuous time dynamics, with the purpose of proving properties such

as reachability and stability.

To elaborate, consider that individual feedback control scenarios are naturally modeled as interconnections

of modules characterized by their input/output behavior. Modal control, by contrast, naturally suggests a

state-based view, with states representing control modes. These distinct modeling techniques need to be

reconciled in order to support a systematic methodology for the design, validation, and implementation of

�Research of the �rst author supported by the DARPA Software Enabled Control (SEC) Program administered by AFRL
under contract F33615-99-C-3014, and by a Frederick E. Terman Faculty Award; that of the last two authors by the DARPA
SEC program under AFRL contract F33615-98-C-3614, and by ARO under grant DAAH04-96-1-0341.
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control software. The dichotomy between the input/output (feedback) view and the state (multi-modal) view

is often presented in a restricted setting, as a di�erence between continuous and discrete control. Continuous

feedback control focuses on the analog interaction of the controller with a physical plant, through sensors

and actuators. Continuous control models and design techniques have been developed, used, and validated

extensively. The case for discrete multi-modal control rests on the observations that discrete abstractions make

it easier to manage system complexity, discrete models are easier to manipulate, and discrete representations

more naturally accommodate linguistic and qualitative information in controller design. Commonly used

models for hybrid systems, such as hybrid automata, combine state-transition diagrams for discrete behavior

with di�erential equations or inclusions for continuous behavior. The discrete event systems are used to

model modes of operation of the system, such as the mode of ight of an aircraft, or the interaction and

coordination between several aircraft. The continuous dynamics model the physical process, such as the

continuous response of an aircraft to the forces of aileron and throttle. For complex multi-agent systems, in

addition to the requirement of designing hierarchies of decision making at di�erent levels of abstraction, there

is the need to synchronize decision making across di�erent agents. In the absence of a global clock, it is useful

to have the mechanism of synchronization using discrete events. The resulting interplay of continuous single

agent dynamics with synchronization across multiple agents once again results in a hybrid system.

1.2 Problems Solved Using Hybrid Systems

In work to date, a number of problems for hybrid systems have been studied:

� Optimal control: Roughly speaking, the optimal control problem is to drive the system to a desirable

state while minimizing a cost function that depends on the path followed. It typically involves a terminal
cost (depending on the terminal state), an integral cost accumulated along continuous evolution, and a

series of jump costs associated with discrete transitions. This is a classical problem for continuous

systems, extended more recently to discrete systems [1], and to classes of hybrid systems with simple

continuous dynamics [2]. The approach has been extended to general hybrid systems both for the

dynamic programming formulation [3], and for the variational formulation, extending the maximum

principle [4];

� Hierarchical control: This describes the systematic decomposition of control tasks such that the

resulting hierarchical controller guarantees a certain performance [5, 6];

� Distributed, multi-agent control: Here, optimal control problems are decomposed so that they can

be solved in a distributed way by a collection of agents with a speci�ed communication and information

architecture [7];

� Least restrictive controllers for speci�cations such as safety and liveness: Here it is required

that all trajectories of the system satisfy certain properties. Properties include safety properties (for

example, requiring that the state of the system remains in a certain safe set) and liveness properties

(requiring that the state eventually enter a certain target set or visit a set in�nitely often). For discrete

systems, this problem has a long history in mathematics and computer science. The essence of the

classical problem was posed by Church [8], solved in di�erent ways by a number of authors, including

B�uchi and Landweber [9] (for an overview, please see [10]). In the continuous domain, control problems

of the safety type have been addressed in the context of pursuit evasion games [11].

In this paper, we concentrate on the solution of safety speci�cations for hybrid systems which have rich classes

of nonlinear dynamics. We encode system safety properties into requirements that the state trajectory of the

system remain within certain safe subsets of the state space. We then calculate the subset of states from which

this safe subset is always reachable, and determine the control law, in both the discrete and continuous control

variables, which renders this subset invariant. We present three examples to illustrate our model and control

law design methodology: aircraft conict resolution, aerodynamic envelope protection, and highway vehicle

collision avoidance. These examples, introduced below, illustrate the ability of a hybrid system framework to

improve the ease of analysis and control of complex safety critical systems.
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1.3 High Con�dence Systems

We increasingly �nd ourselves surrounded by so-called high con�dence systems: transportation networks,

power networks, communication networks. These are systems in which the real time software is expected to

work at a very high level of con�dence: of necessity is the reliability, correctness, and graceful degradation

under faulted modes of operation. These systems are safety critical since failures could result in loss of life

and/or property; they are hybrid due to the multi-agent hierarchical nature of the control system involved.

Two key examples in the area of transportation systems have motivated our work: air tra�c management

systems ([12]) and automated highway systems ([13]).

Today's crowded skies and ever-increasing demand for air travel, coupled with new technologies for navigation

and surveillance, are fueling a change in the way that the Federal Aviation Administration manages air

tra�c. Current Air Tra�c Control (ATC) practice manually routes aircraft along prede�ned paths between

\�xes", using radar track and ight information from plan view displays and voice communication over radio

channels. The use of Global Positioning Systems and datalink communication will enable automation of some

ATC functionality, such as the prediction and resolution of trajectory conicts between aircraft. For such

a safety critical system, the integrity and acceptance of new automated control functionality depends on a

provably-safe design, which requires accurate system models, and procedures for verifying and synthesizing

safe control actions. For more details we refer the reader to [14, 15, 16]. A proposed new solution to the

growing congestion is a program called \free" or \exible" ight, in which each aircraft ies along optimal

user preferred routes which can minimize ight time, fuel consumption or avoid inclement weather. Key

enabling technologies for such a system are accurate methods for navigation and communication (such as

Inertial Navigation Systems (INS), Global Positioning Systems (GPS), Automatic Dependence Surveillance-

Broadcast (ADS-B) datalinks), provably safe methods for conict detection and resolution, route generation

and regeneration, and automatic ight mode switching to follow routes. In such a system, each aircraft is

surrounded by a virtual cylinder called a protected zone, the radius and height of which (2.5 nautical miles

by 1000 feet) depend on current International Civil Aviation Organization (ICAO) separation standards. A

conict or loss of separation between aircraft occurs when protected zones of two or more aircraft overlap. The

conict resolution algorithm must use available information to generate maneuvers which resolve conicts as

they are predicted. From a database of ight modes, such as segments of constant heading, of constant bank

angle, of constant or varying airspeed, the conict resolution algorithm could synthesize the parameters of

the maneuver, such as the proper sequencing of these modes, the numerical values associated to each segment

(heading angle, bank angle, airspeed), and the conditions for switching between ight modes. The result

would be a maneuver, proven to be safe within the limits of the models used, which is a familiar sequence of

commands easily executable by the ight management systems on board aircraft. The resulting maneuvers

could be viewed as protocols, or \rules of the road".

Highway tra�c congestion is a problem millions of commuters face every day. Even though building new

highways seems like an easy solution, the price of real estate in and around urban areas makes it impractical.

An alternative solution that has attracted attention in recent years uses automation to make more e�cient

use of the current highway system. Intelligent Vehicle Highway Systems (IVHS) attempt to do this by taking

advantage of recent technological advances in communication, sensing, surveillance, computation, and control.

The most ambitious form of IVHS is the Automated Highway System (AHS), in which driving is partially

or even fully automated. Di�erent AHS concepts have been proposed, ranging from longitudinal (along the

lane) Autonomous Intelligent Cruise Controllers (AICC) to fully automated driving. The platooning concept

[17] is based on the empirical observation that low relative velocity collisions are safe for both the vehicles

and their passengers. On an AHS that supports platooning, vehicles move in tightly spaced groups (known

as platoons) of up to twenty vehicles, with intra-platoon spacings of the order of one to two meters. Under

normal conditions of operation the controllers of the vehicles can be designed such that no collisions occur

within a platoon. Under emergency conditions collisions may be possible. However, because of the tight

spacing, it is likely that they will be at low relative velocities. Collisions are prevented from propagating from

one platoon to the next by maintaining a large inter-platoon spacing (on the order of �fty meters). Because

it promises a substantial increase in highway throughput, platooning has been studied extensively in recent

years. As with the air tra�c system, control design techniques which guarantee safety of the system are

paramount. Controllers have been proposed for maintaining the longitudinal stability of a platoon [18], for
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joining and splitting platoons and maintaining the inter-platoon separation [13], for regulating the lateral

movement of the vehicles (lane keeping and lane changing), for coordinating the actions of di�erent platoons

[17], for stabilizing the tra�c in segments of the highway, and for routing tra�c along the entire highway

system. The interaction among these controllers involves hybrid phenomena at di�erent levels. For example,

the discrete communication protocols that coordinate the actions of neighboring platoons [17] implement

their decisions by invoking continuous controllers designed for joining platoons, splitting platoons, and other

maneuvers. Moreover, even these low level controllers may involve switching, between the di�erent modes

used for maintaining a desired speed and heading from the preceding vehicle [19], for example.

1.4 Game Theoretic Approach to Hybrid Systems Design

The analysis and control of hybrid systems can be based on game-theoretic methods from computer science

and optimal control. A hybrid game is a multi-player structure in which the players have both discrete and

continuous moves. Each player controls a set of real-valued variables. The game proceeds in a sequence of

rounds. In every round, each player either chooses to update some of its variables (a discrete move), or chooses

a law according to which its variables will evolve together with an upper bound on the duration of the round

(a continuous move). If some player chooses a discrete move, then the variables are updated and no time

elapses. If all players choose continuous moves, then the variables evolve according to the selected laws for

the minimum of the selected durations.

Hybrid games have been used both in the computer science and in the control community. In the computer

science literature they have been classi�ed with respect to the complexity of the laws that govern the evolution

of the variables, and with respect to the winning conditions for the players. This has been studied in the timed

games of Maler, Pnueli, Asarin, and Sifakis [20, 21] (for constant di�erential equations of the form _x = c)

and the rectangular games of Henzinger, and coworkers [22, 23] (constant di�erential inclusions of the form

c � _x � d). The classical winning conditions for in�nite discrete games are safety (stay within a given set of

states), B�uchi (visit a given set of states in�nitely often), and Boolean combinations thereof. In the control

community, problems of the safety type have been addressed in the context of pursuit-evasion games and

robust control [11, 24, 25].

As the reader will see in this paper, the solution of safety games for hybrid automata involves the �xed point

iteration of single-round controllability operators. The solution of B�uchi games requires the nesting of �xed

point iterations combined with Boolean operations of a certain restricted form (this is not discussed in the

current paper). In terms of the complexity of computations or even the decidability results concerning our

design methods, the results are quite pessimistic, in that the game theoretic synthesis procedure is semi-

decidable when certain operators called Pre1;Pre2;Reach that we de�ne in the paper are computable. This

is typically the case only for rectangular hybrid automata with polyhedral sets. Nonetheless, we discuss how

to approximate the solution of the exact Pre1;Pre2;Reach operators in order to cover cases which are not

decidable. It is our conviction that this sort of theory is critical for most examples of practical importance.

1.5 Outline of the Paper

In Section 2 we give the formal de�nition of the class of hybrid systems, called hybrid automata, that we

will study. Section 3 contains three motivating examples drawn from air tra�c management, ight systems

avionics design, and automated highway systems, which we carry thoughout the paper. In Section 4, we give

a review of the discrete, continuous, and hybrid controller design procedure. This procedure is applied to the

three model examples in Section 5. Approximate solution techniques are discussed in Section 6.

2 Modeling Formalism

Our goal is to develop a mathematical model of hybrid systems which is rich enough to describe both the

evolution of continuous dynamics as well as the discrete switching logic, and is capable of modeling uncertainty
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in both the continuous and discrete input variables. In this section, we present a hybrid system model which

was developed in [16, 26, 27] and is based on overlaying �nite automata on nonlinear continuous-time control

systems. To get the ideas �xed, we start with �nite state automata and continuous state, continuous time

control systems.

2.1 Notation

LetW be a countable collection of variables and letW denote its set of valuations, that is the set of all possible

assignments of the variables in W . We refer to variables whose set of valuations is countable as discrete and to

variables whose set of valuations is a subset of a Euclidean space Rn as continuous. We assume that Euclidean

space is given the Euclidean metric topology, whereas countable and �nite sets are given the discrete topology

(all subsets are open). Subsets of a topological space are given the subset topology and products of topological

spaces are given the product topology. For a subset U of a topological space we use U to denote its closure,

U
o its interior, @U its boundary, U c its complement, jU j its cardinality, 2U the set of all subsets of U , U! the

set of �nite or in�nite sequences of elements in U , and U to denote the set of piecewise continuous functions

from R to U . We use ^ to denote conjunction, _ to denote disjunction, : to denote negation, 8 to denote the

universal quanti�er, and 9 to denote the existential quanti�er.

A �nite state automaton is represented as

(Q;�; Init; R) (1)

where Q is a �nite set of discrete state variables; � = �1 [�2 is a �nite set of discrete input variables, where

�1 contains the controller's inputs and �2 contains the environment's inputs, which cannot be controlled;

Init � Q is a set of initial states; and R : Q � � ! 2Q maps the state and input space to subsets of the

state space and thus describes the transition logic of the �nite automaton. An execution of (1) is de�ned to

be a �nite or in�nite sequence of states and inputs (q(�); �(�)) 2 Q!
� �! where, for i 2 Z, q(0) 2 Init and

q(i + 1) 2 R(q(i); �(i)).

Continuous state, continuous time control systems, on the other hand, may be represented as di�erential

equations evolving on a state space X:

_x = f(x; v) (2)

where x 2 X is the state, usually X = Rn; v 2 V = U �D is the space of continuous input variables, where

U = Ru is the set of control inputs and D = Rd is the set of disturbance inputs; f is a vector �eld, assumed to

be globally Lipschitz in x and continuous in v; and the initial state x(0) 2 Init where Init � X. A trajectory

of (2) over an interval [�; � 0] � R is a map: (x(�); v(�)) : [�; � 0]! X �V such that _x(t) = f(x(t); v(t)) for all

t 2 [�; � 0].

2.2 Hybrid Automata

Since we are interested in hybrid phenomena that involve both continuous and discrete dynamics, we introduce

the hybrid time trajectory, which will encode the set of times over which the evolution of the system is de�ned.

De�nition 1 (Hybrid Time Trajectory) A hybrid time trajectory � = fIig
N

i=0 is a �nite or in�nite se-
quence of intervals of the real line, such that

� Ii = [�i; �
0
i
] for i < N and, if N <1, IN = [�N ; �

0
N
] or IN = [�N ; �

0
N
);

� for all i, �i � �
0
i
= �i+1.

The interpretation is that �i are the times at which discrete transitions take place. Notice that discrete

transitions are assumed to be instantaneous and that multiple discrete transitions may take place at the same
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time, since it is possible for �i = �i+1. Hybrid time trajectories can extend to \in�nity" if � is an in�nite

sequence or if it is a �nite sequence ending with an interval of the form [�N ;1). Since the dynamical systems

we consider are time invariant, we assume, without loss of generality, that �0 = 0. We denote by T the set

of all hybrid time trajectories. For t 2 R and � 2 T we use t 2 � as a shorthand notation for \there exists a

j such that t 2 [�j; �
0
j
] 2 �". We mention that in this paper, the evolution of time will be so-called \dense"

continuous time, that is, the underlying continuous state dynamics are continuous time. In applications, it

is sometimes of interest to have discrete time (synchronous) evolution of the continuous state with automata

like transitions (asynchronous).

De�nition 2 (Hybrid Automaton) A hybrid automaton H is a collection

H = (Q;X;�; V; Init; f; Inv; R) (3)

where

� Q [X is a �nite collection of state variables, with Q �nite and X = Rn;

� � = �1[�2 is a �nite collection of discrete input variables, where �1 is the set of discrete control inputs,
and �2 is the set of discrete disturbance inputs;

� V = U [D is the set of continuous input variables, where U is the set of continuous control inputs, and
D is the set of continuous disturbance inputs;

� Init � Q�X is a set of initial states;

� f : Q � X � V ! X is a vector �eld describing the evolution of x for each q 2 Q; f is assumed to be
globally Lipschitz in X (for �xed q 2 Q) and continuous in V ;

� Inv � Q � X � � � V is called an invariant, and de�nes combinations of states and inputs for which
continuous evolution is allowed;

� R : Q � X � � � V ! 2Q�X is a reset relation, which encodes the discrete transitions of the hybrid
automaton.

We refer to (q; x) 2 Q�X as the state of H and to (�; v) 2 ��V as the input of H. We make the following

assumption to ensure that the hybrid automaton does not block trajectories, causing the system to deadlock:

assume that Inv is an open set, and that if (q; x; �; v) 62 Inv then R(q; x; �; v) 6= ;.

The main di�erences between the model presented here and that of timed and linear hybrid automata are in

the continuous dynamics: we incorporate full nonlinear models of the continuous state dynamics, and include

continuous input variables to model both parameters that the designer may control as well as disturbance

parameters that the designer must control against. This allows an accurate representation of the continuous

physical processes that we would like to model and control.

De�nition 3 (Execution of a Hybrid Automaton) An execution of a hybrid automaton H is a hybrid
trajectory, � = (�; q; x; �; v) with:

� initial condition: (q(�0); x(�0)) 2 Init;

� continuous evolution: for all i with �i < �
0
i
, q(�), �(�) are constant, v(�) is piecewise continuous, x(�) is a

solution to the di�erential equation _x = f
�
q; x; v

�
over [�i; �

0
i
], and for all t 2 [�i; �

0
i
), (q(t); x(t); �(t); v(t)) 2

Inv;

� discrete evolution: for all i, (q(�i+1); x(�i+1)) 2 R(q(�
0
i
); x(� 0

i
); �(� 0

i
); v(� 0

i
)).
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A hybrid automaton is interpreted as accepting, rather than generating, an execution. Hybrid automata may

accept no executions for some initial states or some inputs, may accept multiple executions for the same initial

state and inputs, or may not accept executions over arbitrarily long time horizons. More formally an execution

� = (�; q; x; �; v) is called �nite if � is a �nite sequence ending with a closed interval, in�nite, if � is an in�nite

sequence or if
P1

i=0(�
0
i
� �i) = 1, and Zeno1 if it is in�nite but

P1

i=0(�
0
i
� �i) < 1. In [28, 29], conditions

are given that allow one to ensure that a hybrid automaton accepts a unique in�nite, non-Zeno execution.

Associated to the hybrid automaton H is a trajectory acceptance condition, which describes the speci�cation

that one would like executions of the system to satisfy. We de�ne a property as a map from the set of executions

to fTrue;Falseg. Our work has been motivated by veri�cation and synthesis for safety critical applications,

and as such we have been primarily interested in safety speci�cations. These speci�cations are encoded as

subsets of the state space of the hybrid system: the safe set F � Q � X is that subset in which the system

is de�ned to be safe. We assume that safe sets are closed, and unsafe sets are open; we use F to denote safe

sets, and Go = F
c to denote unsafe sets. We de�ne a safety property, denoted by 2F , by:

2F (�) =

�
True if 8t 2 �; (q(t); x(t)) 2 F

False otherwise

Safety properties are more general than they may initially appear. Consider, for example, another property

3G de�ned by:

3G(�) =

�
True if 9t 2 �; (q(t); x(t)) 2 G

False otherwise

It is easy to see that 3G(�) = :2(Gc)(�). Examples of more complex speci�cations not covered by safety

properties are so-called liveness properties, for example, the \always eventually" property 23F (�). The full

Borel hierarchy of speci�cations built up from 2;3 constitutes an important set of temporal properties (see

[30]).

In what follows, we will restrict ourselves to static state feedback controllers. We de�ne a static state feedback
controller for a hybrid automaton H to be a map from the state space to subsets of the controller's input

space:

g : Q�X! 2�1�U (4)

Thus, the controller may a�ect the behavior of H though its discrete and continuous control inputs �1 2 �1
and u 2U.

3 Motivating Examples

We now present three examples of hybrid systems: resolution of trajectory conicts between aircraft, single

aircraft aerodynamic envelope protection, and collision avoidance for automated vehicles in an automated

highway system (AHS). In the conict resolution and collision avoidance problems, the system is safe if

the aircraft or vehicles always maintain minimum separation with each other. In the aerodynamic envelope

protection problem (representative of autopilot design problems), system safety means that the state of the

aircraft remains within minimum and maximum bounds imposed on its velocities and orientation variables.

3.1 Aircraft Conict Resolution

We present as motivating example a model for the kinematic motions of two aircraft, labeled 1 and 2, at a �xed

altitude. Let (xr; yr;  r) 2 R
2
�[��; �) represent the relative position and orientation of aircraft 2 with respect

to aircraft 1. In terms of the absolute positions and orientations of the two aircraft xi; yi;  i for i = 1; 2, it may

1The name \Zeno" comes from the ancient Greek philosopher Zeno who lived in Elea, a Greek colony in southern Italy, in the

�fth century B.C. Zeno spent his time posing paradoxes about time.
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120
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Mode 1 Mode 2 Mode 3

Figure 1: Two aircraft in three modes of operation: in modes 1 and 3 the aircraft follow a straight course and

in mode 2 the aircraft follow a half circle. The initial relative heading (120�) is preserved throughout.

q2

<z π

q
3

z π=

σ1 = 1

xr
yr

:=
2
π( ) xr

yr
Rot xr

yr
:=

2
π( ) xr

yr
Rot

z := 0 z := 0

xr = u d+ cos r
yr = d sin

ψ
ψr

ψr= 0
z = 0

xr = u d+ cos r + yr
yr = d sin

ψ
ψr xr

ψr= 0
z = 1

xr = u d+ cos r
yr = d sin

ψ
ψr

ψr= 0
z = 0

q1

avoid

σ1 = 0

cruise1 cruise2

Figure 2: In q1 both aircraft follow a straight course, in q2 a half circle, and in q3 both aircraft return to a

straight course.

be veri�ed that xr = cos 1(x2 � x1) + sin 1(y2 � y1); yr = � sin 1(x2 � x1) + cos 1(y2 � y1);  r =  2 �  1.

and it is easy to derive that

_xr = �v1 + v2 cos r + !1yr

_yr = v2 sin r � !1xr (5)

_ r = !2 � !1

where vi is the linear velocity of aircraft i and !i is its angular velocity. The protected zone of aircraft 2 may

be translated to the origin of this relative frame, and thus the relative position (xr; yr) must remain outside

of the disk f(xr; yr ;  r) : x
2
r
+ y

2
r
< 52g. The ight modes for this system of two aircraft are based on the

linear and angular velocities of the aircraft. We consider two possibilities: !i = 0, meaning that aircraft i

follows a straight line, and !i = 1, meaning that aircraft i follows an arc of a circle if vi is kept constant.

These maneuvers approximate closely the behavior of pilots ying aircraft: straight line segments (constant

heading) and arcs of circles (constant bank angle) are easy to y both manually and on autopilot. Consider a

maneuver in which there are three modes in sequence: a cruise mode in which both aircraft follow a straight

path; an avoid mode in which both aircraft follow a circular arc path; and a second cruise mode in which the

aircraft return to the straight path. The protocol of the maneuver is that as soon as the aircraft are within

a certain distance of each other, each aircraft turns 90� to its right and follows a half circle. Once the half

circle is complete, each aircraft returns to its original heading and continues on its straight path (Figure 1).

We assume that both aircraft switch modes simultaneously, so that the relative orientation  r is constant,

and we assume that both aircraft y an arc with the same radius at the same velocity. These assumptions

simply allow us to display the evolution of the continuous state in two dimensions, making the results easier to

present: in a true conict resolution scenario these assumptions would be removed. This maneuver generalizes

to n-aircraft as a \roundabout" maneuver, discussed in [12].

The dynamics of the maneuver can be encoded by the hybrid automaton of Figure 2, where q1 corresponds

to cruising before the avoid maneuver, q2 corresponds to the avoid mode, and q3 corresponds to cruising after

the avoid maneuver has been completed. There is one discrete control input �1, such that the switch from

�1 = 0 to �1 = 1 triggers the transition from q1 to q2. The transition from q2 to q3 is required to take place
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Figure 3: The longitudinal dynamics of a conventional take-o� and landing (CTOL) aircraft in ight with

attached axes about its center of mass.

after the aircraft have completed a half circle: note that with !i = 1, for i = 1; 2, it takes � time units to

complete a half circle. The continuous state space is augmented with a timer z 2 R+ to force this transition.

Let x = (xr; yr;  r; z)
T . At each transition, both aircraft change heading instantaneously by �=2 radians; we

represent this with the standard rotation matrix Rot(�
2
). Assuming computation in the ight management

system of aircraft 1, we assume that v1 is controllable, and v2 is known to within some uncertainty. Safety is

de�ned in terms of the relative distance between the two aircraft:

G = fq1; q2; q3g � fx 2 X : x2
r
+ y

2
r
� 52g (6)

Thus the state space of this two aircraft system is Q �X = fq1; q2; q3g � (R2
� [��; �)�R+). The discrete

input space is � = �1 = f0; 1g (�2 = ;), and the continuous input space is V = U �D, where U = fv1g

and D = fv2g (we assume in this example that v1 and v2 are �xed, the more general case is presented in

[12, 16]). We assume Init = q1 � (G�)c, that f is described by the relative aircraft dynamics (5) augmented

with a timer, as shown in Figure 2, and that Inv is given as follows:

Inv = (q1;X; 0;V)[ (q2; fx 2 X j 0 � z � �g;�;V)[ (q3;X;�;V)

The mapR which resets xr; yr in transitions from q1 to q2 and q2 to q3 is described in Figure 2. The controller

synthesis problem is therefore to generate the relative distance between aircraft at which the aircraft may switch

safely from mode 1 to mode 2, and the minimum turning radius R in mode 2, to ensure that the 5 nautical

mile separation is maintained.

3.2 Aerodynamic Envelope Protection

The example is inspired by the work of [31], in which the ight modes for the airspeed and ight path angle

dynamics of an aircraft are derived. We consider a nonlinear model of the longitudinal axis dynamics of a

conventional take-o� and landing (CTOL) aircraft in normal aerodynamic ight in still air [32, 33], shown in

Figure 3. The horizontal and vertical axes are respectively the (xinertial; hinertial) (denoted x, h) axes and the

pitch angle � is the angle made by the aircraft body axis, xbody with the x axis. The ight path angle  and the

angle of attack � are de�ned as:  = tan�1(
_h
_x
), � = �� . Expressions for the lift (L) and drag (D) forces are

given by L = aL( _x
2+ _h2)(1+c�); D = aD( _x

2+ _h2)(1+b(1+c�)2), where aL; aD are dimensionless lift and drag
coe�cients, and b and c are positive constants. We assume that the autopilot has direct control over both the

forward thrust T (throttle) and the aircraft pitch � (elevators), thus there are two continuous control inputs

(u1; u2) = (T; �). Physical considerations impose constraints on the inputs: u 2 [Tmin; Tmax] � [�min; �max].

The longitudinal dynamics may be modeled by the Newton-Euler equations:

M

�
�x
�h

�
= Rot(�)

�
RotT (�)

�
�D

L

�
+

�
T

0

��
+

�
0

�Mg

�
(7)
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(rad)

Vmin

maxγ

minγ

γ

V (m/s)

V (m/s)

h (m)F

(a) (b)

Vmax

FVγ hVh

h (m/s)

Figure 4: (a) Simpli�ed Aerodynamic Flight Envelope in (V; )-space: axes are airspeed V , ight path angle

; (b) Simpli�ed Aerodynamic Flight Envelope in (h; V; _h)-space: axes are altitude h, airspeed V , vertical

speed _h.

where Rot(�) and Rot(�) are standard 2 � 2 rotation matrices, M is the mass of the aircraft, and g is

gravitational acceleration. The simpli�ed ight management system (FMS) studied in this paper uses control

inputs T and � to control combinations of the speed V =
p

_x2 + _h2, ight path angle , and altitude h. The

linear and angular accelerations ( _V ; V _) may be derived directly from (7):

_V = �
D

M
� g sin  +

T

M
cos� (8)

V _ =
L

M
� g cos  +

T

M
sin� (9)

Note that these dynamics are expressed solely in terms of (V; ) and inputs (T; �), where � = � � ; thus

equations (8), (9) are a convenient way to represent the dynamics for modes in which h is not a controlled

variable. Safety regulations for the aircraft dictate that V; , and h must remain within speci�ed limits:

Vmin � V � Vmax min �  � max hmin � h � hmax (10)

where Vmin; Vmax; min; max; hmin; hmax are functions of such factors as airspace regulations, type of aircraft,

and weather. For aircraft ying at cruise altitude, we assume that these limits are constants, and thus the

aerodynamic ight envelope F is as illustrated in Figure 4 as projections in the (V; )-space and (h; V; _h)-space,

where _h = V sin. The state trajectory must remain within F at all times within cruise mode (this is called

aerodynamic envelope protection). The system may be discretized into �ve ight modes, depending on the

state variables being controlled:

� Mode 1: (Speed, Flight Path), in which the thrust T is between its speci�ed operating limits (Tmin <

T < Tmax), the control inputs are T and �, and the controlled states are the speed and the ight path

angle of the aircraft (V; )T ;

� Mode 2: (Speed), in which the thrust saturates (T = Tmin_T = Tmax) and thus it is no longer available

as a control input; the only input is �, and the only controlled state is V ;

� Mode 3: (Flight Path), in which the thrust saturates (T = Tmin_T = Tmax); the input is again �, and

the controlled state is ;

� Mode 4: (Speed, Altitude), in which the thrust T is between its speci�ed operating limits (Tmin < T < Tmax),

the control inputs are T and �, and the controlled states are the speed and the vertical position of the

aircraft (V; h)T ;

� Mode 5: (Altitude), in which the thrust saturates (T = Tmin _ T = Tmax); the input is �, and the

controlled state is h.

Modeling this system as a hybrid automaton, the discrete state may take on one of �ve possible values, Q =

fq1; : : : ; q5g, corresponding to the �ve ight modes. The continuous state of the system is x = (x; _x; h; _h)T 2

10



E F

C A B

xA D LB

xB

AB

Figure 5: AHS model with �ve platoons and distances as marked.

X = R4, with continuous dynamics speci�ed by equation (7). The control inputs are the throttle T and pitch

� with input constraint set U = [Tmin; Tmax]� [�min; �max], and we assume for simplicity that there are no

continuous disturbance inputs (D = ;) (a possible extension to this problem would be to consider wind as

a continuous disturbance). The controllable discrete inputs label transitions from each mode to every other

mode: let �
ij

1 , for i 2 f1; : : : ; 5g and j 2 f1; : : : ; 5g be the action labeling the transition from qi to qj. We

assume that there are no disturbance actions (�2 = ;) (although it will be a very nice extension to introduce

disturbance actions representing pilot error in manually switching modes). The safe set F is illustrated in

Figure 4. In our calculations we use parameter values corresponding to a DC-8 at cruising speed, the details

are described in [16, 34]. The controller synthesis problem is therefore to generate the continuous control

inputs (T; �) to use in each ight mode, as well as the allowable mode transitions between modes, so that

ight envelope protection is guaranteed.

3.3 Vehicle Collision Avoidance

The need to ensure the safety of the vehicles on an automated highway system (AHS) dictates that formal

methods have to be used to design and analyze the hybrid interactions. In [13], the design methodology

presented in this paper was used to derive safety conditions for the longitudinal movement of the vehicles in a

multi-lane AHS. Here we highlight a simple example from that study. Consider two platoons, labeled A and

B, moving on an AHS (Figure 5) with A following B. Let Li denote the length of platoon i = A;B, and xi
its position from a �xed road-side reference frame. Since neither the dynamics nor the safety requirements

depend on the absolute position of the platoons, we introduce a variableDAB = xB�xA�LB to keep track of

the spacing between platoons A and B. We assume that (after feedback linearization) the controller of vehicle

A can directly a�ect the acceleration of A, u = �xA through brake and throttle actuators. We also assume

that vehicle A is equipped with sensors to measure its own velocity and the spacing and relative velocity with

respect to vehicle B. The acceleration of vehicle B, �xB, is assumed to be unknown to vehicle A and is treated

as a disturbance. The continuous dynamics can now be described by a state vector x = [x1 x2 x3]
T =

[ _xA DAB
_DAB ]

T
2 R

3 with:

_x =

2
4 0 0 0

0 0 1

0 0 0

3
5x+

2
4 1

0

�1

3
5u+

2
4 0

0

1

3
5 �xB = Fx+G1u+G2�xB (11)

Physical considerations impose constraints on u and �xB: vehicles are not allowed to move in reverse, and are

required to keep their speed below a certain speed limit, vmax. To enforce these requirements we assume that

u and �xB satisfy

u 2

8<
:

[0; amax

A
] if x1 � 0

[amin

A
; a

max

A
] if 0 < x1 < v

max

[amin

A
; 0] if x1 � v

max

and �xB = �xB 2

8<
:

[0; amax

B
] if x1 + x3 � 0

[amin

B
; a

max

B
] if 0 < x1 + x3 < v

max

[amin

B
; 0] if x1 + x3 � v

max

(12)

To ensure that the dynamics of the system are physically meaningful, we assume that the set of initial states

is such that _xA(0) = x1(0) 2 [0; vmax], _xB(0) = x1(0) + x3(0) 2 [0; vmax], and that the constants satisfy

a
min

A
< 0 < a

max

A
and amin

B
< 0 < a

max

B
. In this case _xA(t); _xB(t) 2 [0; vmax] for all t � 0.

Even though the model of this two platoon system seems continuous, there are a number of sources of discrete

behavior. The �rst is the mode switching necessary to enforce the constraints on the velocities. Three discrete
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q0 q1

q2 q3

CollB = 0
CollA = 0

CollB = 1
CollA = 1

CollA = 0

Coll = 0B

x  := x  -   vB3 3 δ

x  := x  -   vB3 3 δ

δ1 1x  := x  +   vA
3 3 δ Ax  := x  -   v

δ1 1x  := x  +   vA
3 3 δ Ax  := x  -   v

δ1 1x  := x  +   vA
3 3 δ Bδx  := x  -   v  -   vA

CollA = 1

CollB = 1

CollB = 1

CollA = 1

Figure 6: Hybrid automaton modeling intra-platoon collisions in platoons A and B. The discrete states are

q0 for no collisions, q1 for collision inside platoon B, q2 for collision inside platoon A, and q3 for simultaneous

intra-platoon collisions in A and B. The continuous dynamics within each discrete mode are given by (11).

states are introduced for each platoon to account for this, one for _xi = 0, one for _xi 2 (0; vmax) and one for

_xi = v
max, i = A;B. This gives rise to a total of nine discrete states. Additional discrete phenomena are

introduced by the intra-platoon collisions that A and B may experience in case of emergency. From the point

of view of platoon A these collisions can be treated as a source of disturbance, and can be modeled as discrete

events that instantaneously reset the velocities of certain vehicles. For simplicity, we assume that the �rst

vehicle of platoon A (leader of A) can experience at most one collision with the vehicle immediately behind

it (�rst follower in A), and parameterize the disturbance by the time at which the collision occurs (TA) and

the resulting increase in the velocity of the leader (�vA). Likewise, we assume that the last vehicle of platoon

B can experience at most one collision, and use the time at which the collision occurs (TB) and the decrease

of the velocity of the last vehicle (�vB) to parameterize the disturbance. Since the vehicles are not allowed to

move in reverse, it is natural to assume that collisions within a platoon will not result in negative velocities,

or, in other words, that �vB � x1(TB) + x3(TB). Likewise, since vehicles are not allowed to move faster than

the speed limit, it is natural to assume that collisions within a platoon will not result in velocities greater than

v
max, or, in other words, �vA � v

max
�x1(TA). Finally, if the intra-platoon controllers are designed properly,

it is natural to assume that all intra-platoon collisions will be at low relative velocities, below a certain \safe"

value, vS � 3m=s. Under these assumptions, which are reasonable if the vehicles have roughly equal masses

and coe�cients of restitution, the discrete disturbance caused by intra-platoon collisions can be parameterized

by

TA � 0; TB � 0; �vA 2 [0;minfvS ; vmax
� x1(TA)g]; �vB 2 [0;minfvS ; x1(TB) + x3(TB)g] (13)

The hybrid automaton used to capture the intra-platoon collisions in platoons A and B is shown in Figure 6.

The discrete states q0 to q3 represent: no collisions in either platoon; collision in platoon B; collision in platoon

A; two simultaneous collisions, one in platoon A and one in platoon B. Two discrete disturbance inputs (CollA
and CollB) are introduced to trigger the collisions, and four continuous disturbance inputs (TA, TB , �vA, �vB)

are introduced to capture their e�ect. The discrete states introduced to model the velocity constraints have

been suppressed to simplify the �gure; with these states, the total number of discrete states is thirty-six. To

simplify the notation we use d = (�xB ; TA; TB; �vA; �vB) to denote the continuous disturbance inputs, even

though, strictly speaking, TA and TB encode the times at which the discrete disturbance inputs CollA and

CollB change values and �vA and �vB are only relevant at those times. It is easy to show that for each initial

condition (q0; x0) and each control u and disturbance d, there exists a unique state trajectory. Moreover,

this state trajectory satis�es _xA(t); _xB(t) 2 [0; vmax] for all t � 0. Finally, an additional source of discrete

dynamics is the communication protocols proposed in [17] to coordinate the actions of neighboring platoons.

The methods discussed in this paper can also be used to establish conditions that ensure the safety of the
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interaction between the discrete communication protocols and the low level, continuous controllers. This issue

will not be addressed here because of the complicated notation needed. The interested reader is referred to [13]

for details.

Recall that, even though intra-platoon collisions within A and B are acceptable in case of emergency, inter-

platoon collisions should be avoided at all costs. Thus, for safety, we would like to prevent collisions between

platoons A and B. In other words, we would like to ensure that x2(t) � 0 for all t � 0. Notice that the limiting

case x2(t) = 0 is considered acceptable, since the vehicles just touch at zero relative velocity. Summarizing,

the controller synthesis problem we would like to solve involves selecting the continuous control variable u

such that for all actions of the disturbance d the two platoons are guaranteed not to collide.

4 Reachability Analysis and Controller Design

A state of a dynamical system is de�ned to be reachable if there is an execution of the system which touches it.

A subset of the state space is said to be controlled invariant if there exists a controller which guarantees that

if the execution starts in the subset, the execution stays in the subset for all future time. For a hybrid system

H, we seek to design a controller that prunes away executions which reach unsafe states. For such a problem,

the initial state or set of initial states is usually left unspeci�ed. We therefore pose the controller synthesis

problem as: Given a safe set F , determine (i) the maximal controlled invariant set contained in F , and (ii)
the controller which renders this set invariant. In this paper, we restrict ourselves to safety speci�cations and

consequently safety games alone. For more general speci�cations such as 23, 32, or others, the games to be

considered are referred to as B�uchi games and include nested versions of the games that we will discuss here.

In this section, we solve the controller synthesis problem for safety speci�cations in hybrid automata. Our

method is based on computing the backwards-reachable set from F . As before, we present the algorithm �rst

on the �nite state automata and continuous state control systems.

4.1 Finite Automata

The problem of synthesizing control laws g : Q! 2�1 in the presence of uncertain actions �2(�) 2 �!

2 for the

�nite automaton described by (1) was �rst posed by Church in 1962 [8], who was studying problems in digital

circuit design, and was solved by B�uchi and Landweber [9] and Rabin [35] in the late 1960's and early 1970's

using a version of the von Neumann-Morgenstern discrete game [36]. More recently, Ramadge and Wonham

[37] added new insight into the structure of the control law. A temporal logic for modeling such games is

introduced in [38]. We de�ne the winning states W � for the controller as the subset of F from which the

system has a sequence of control actions �1(�) which can force the system to remain in F despite the actions

of the environment �2(�). The set W
� can be calculated as the �xed point of the following iteration (where a

negative index i 2Z� is used to indicate that each step is a predecessor operation):

Algorithm 1 (Maximal Controlled Invariant Set for Finite State Automata)

initialization: W 0 = F , W�1 = ;, i = 0.

while W i
6= W

i�1 do

W
i�1 = W

i
\ fq 2 Q j 9�1 2 �1 8�2 2 �2 R(q; �1; �2) �W

i
g

i = i � 1

end while

The iteration terminates when W i = W
i�1 �

= W
�. At each step of the iteration, W i�1

� W
i. Since jQj is

�nite the iteration terminates in a �nite number of steps. The set W i contains those states for which the

controller has a sequence of actions which will ensure that the system remains in F for at least i steps, for

all possible sequences �2(�) 2 �2. In order to characterize this iteration mathematically, we associate a value
function J(q; i) to each state at each iteration, representing the future reward or cost to be incurred by the
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system given that its current state is q and iteration i:

J(q; i) : Q�Z�! f0; 1g such that J(q; i) =

�
1 q 2W

i

0 q 2 (W i)c
(14)

Therefore, W i = fq 2 Q j J(q; i) = 1g. Since the most logical action of the controller is to keep the system

inside F in the face of unknown and therefore possibly hostile actions of the environment:

max
�12�1

min
�22�2

min
q02R(q;�1;�2)

J(q0; i) =

�
1 if 9�1 2 �1 8�2 2 �2; R(q; �1; �2) � W

i

0 otherwise
(15)

The \minq02R(q;�1;�2)" in the above compensates for the nondeterminism in R; the order of operations

max�1 min�2 means that the controller plays �rst, trying to maximize the minimum value of J(�). This

representation gives the environment the advantage, since it has \prior" knowledge of the controller's action

when making its own choice. Therefore, in general,

max
�12�1

min
�22�2

min
q02R(q;�1 ;�2)

J(�) � min
�22�2

max
�12�1

min
q02R(q;�1;�2)

J(�) (16)

with equality occurring when the action (�1; �2) is a saddle solution, or a no regret solution for each player.

Here, we do not need to assume the existence of a saddle solution, rather we always give advantage to the

environment, the player doing its worst to drive the system out of F , in order to ensure a conservative solution.

Strictly speaking this is a Stackelberg solution of the game with the controller as leader.

The iteration process in Algorithm 1 may be summarized by the di�erence equation:

J(q; i� 1)� J(q; i) = minf0; max
�12�1

min
�22�2

[ min
q02R(q;�1 ;�2)

J(q0; i)� J(q; i)]g (17)

We refer to equation (17) as a \discrete Hamilton-Jacobi equation." The �rst \min" in the equation ensures

that states outside W i that can be forced by the controller to transition intoW i are prevented from appearing

in W
i�1. This means that once a state has associated to it a value of zero, the value stays at zero for all

subsequent iterations: enforcing the requirement that \once a state becomes unsafe, it remains unsafe".

Proposition 1 (Winning States W �) For �nite sets Q and �, a �xed point J�(q) of (17) is reached in a
�nite number of steps. The set of winning states for the controller is W � = fq 2 Q j J

�(q) = 1g. W � is the
largest controlled invariant subset of F .

4.2 Continuous-Time Dynamics

For the continuous nonlinear dynamics, described by (2), the solution of an optimal control law u(�) in the

presence of environmental uncertainties d(�) was solved as a zero-sum dynamic game by Isaacs in the early

1950's [39]2. Solutions for linear di�erential games were presented by Pontrjagin in [40]. An excellent modern

reference is [11]. To conform with convention in the dynamical games literature, we represent the speci�cation

in terms of the unsafe set G: the controller wins if it can keep the system from entering the interior of the set

G, denoted G� = fx 2 X j l(x) < 0g for a di�erentiable function l : X ! R, with boundary @G. Conversely,

the environment wins if it can drive the system into G�. The winning states for the controller are those states

W
�
� X from which there exists a control law u(�) 2 U which can keep the system outside G� despite the

disturbance d(�) 2 D.

Consider the system over the time interval [t; 0], where t < 0. The value function of the game is de�ned by:

J : X� U � D �R�! R with J(x; u(�); d(�); t) = l(x(0)) (18)

and is interpreted as the cost of a trajectory x(�) which starts at x at initial time t � 0, evolves according to

(2) with input (u(�); d(�)), and ends at the �nal state x(0), with cost l(x(0)). Note that the value function

2Isaacs was then a researcher at the Rand Corporation and was motivated by tactical issues for U.S. Air Force pilots (dog

�ghts, missile evasion).
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depends only on the �nal state: there is no running cost, or Lagrangian. This is because, for proving safety of

the system, we are only interested in whether or not the system trajectory enters G�, and we wish to compute

the control law which maximizes the set of initial states from which the system trajectory is guaranteed to

remain outside of G�. Thus, we do not restrict the trajectories further with a running cost. The game is won

by the environment if the terminal state x(0) is in G� (i.e. J(x; u(�); d(�); t)< 0), and is won by the controller

otherwise.

The optimal action of the controller is one which tries to maximize the minimum cost, to try to counteract

the optimal disturbance action of pushing the system towards G. As in the discrete game, the disturbance is

given the advantage: the control u(�) plays �rst and disturbance d(�) plays second with the knowledge of the

controller's play. This kind of solution is referred to as a Stackelberg solution; in the event that the (max min)

solution is equal to the (min max) solution then the solution is also the saddle solution of the game. The

Stackelberg solution corresponds to maxu(�)2U mind(�)2D J(x; u(�); d(�); t). and we de�ne J�(x; t), the optimal

cost, as

J
�(x; t) = max

u(�)2U
min
d(�)2D

J(x; u(�); d(�); t) (19)

and the corresponding optimal input and disturbance as

u
�(�) = arg max

u(�)2U
min
d(�)2D

J(x; u(�); d(�); t) d
�(�) = arg min

d(�)2D
J(x; u�(�); d(�); t)

What is not explicit in this formulation is the \information patterns" used by the input and disturbance.

In the event that the input and disturbance choices are causal (i.e., based only on past values of the input,

disturbance, and state) the solution to the game can be characterized using Hamilton-Jacobi (Isaacs) theory.

More precisely, the Hamiltonian of the system is H(x; p; u; d)
�

= p
T
f(x; u; d), where p 2 Rn is the costate

vector [41, 11]. Standard results in optimal control theory [41], [42], [43], may be extended [11, 16] to yield

the optimal solution

u
� = argmax

u2U
min
d2D

H(x; p; u; d) (20)

d
� = argmin

d2D
H(x; p; u�; d) (21)

The optimal Hamiltonian is therefore given by

H
�(x; p) = max

u2U
min
d2D

p
T
f(x; u; d) (22)

The Hamilton-Jacobi partial di�erential equation for the evolution of the value function J in backwards time

is derived [41, 16] to be

�
@J

�(x; t)

@t
= H

�(x;
@J

�(x; t)

@x
) (23)

with boundary condition J�(x; 0) = l(x). However, the solution J�(x; t) to equation (23) includes as safe states

those states for which optimal trajectories pass through G� and end up outside G� at time 0. To prevent this

from happening, we modify equation (23) to guarantee that, if for some x 2 X there exists an s 2 [t; 0] such

that J�(x; s) < 0, then J�(x; t) is non-increasing for time less than s. We do this by requiring that

�
@J

�(x; t)

@t
=

(
H
�(x;

@J
�(x;t)

@x
) for fx 2 X j J

�(x; t) > 0g

minf0;H�(x;
@J

�(x;t)

@x
)g for fx 2 X j J

�(x; t) � 0g
(24)

with boundary condition J
�(x; 0) = l(x). It is easy to show [16] that if J�(x; t) is a smooth solution to

equation (24), then the subset of the state space enclosed by the zero level set of J�(x; t) cannot decrease as

time marches backwards, that is, for all t2 � t1 � 0, fx 2 X j J
�(x; t1) � 0g � fx 2 X j J

�(x; t2) � 0g.

Equation (24) is the continuous analog to equation (17) of the preceding discrete game, and describes the

relationship between the time and state evolution of J�(x; t). We claim that fx 2 X j J
�(x; t) < 0g, where

J
�(x; t) is the solution to (24), is the set of states from which the environment can force the system into G�
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Figure 7: (a) The sets fx 2 X j J
�(x; 0) = 0g, fx 2 X j J

�(x; t1) = 0g, fx 2 X j J
�(x; t2) = 0g for 0 > t1 > t2.

(b) The �xed point fx 2 X j J
�(x) < 0g, fx 2 X j J

�(x) = 0g, and fx 2 X j J
�(x) > 0g.

in at most jtj seconds. The pictorial explanation of this is given in Figure 7. The part of the boundary of

J
�(x; 0) where

@J
�(x;0)

@t
� 0 does not grow with negative time as shown by point 1 in Figure 7(a). Part (b)

of the same �gure shows the existence of a stationary solution as t ! �1. Questions about the smoothness

of solutions to the Hamilton-Jacobi equation, shocks, and what to make of the solutions in this instance are

subtle ones and the interested reader is referred to Section 6 and [16] for details on these points.

Proposition 2 (Winning States W �) Assume that J�(x; t) satis�es the Hamilton-Jacobi equation (24) for
all t, and that it converges uniformly in x as t!�1 to a function J�(x). Then the set of winning states for
the controller is

W
� = fx 2 X j J

�(x) � 0g (25)

W
� is the largest controlled invariant set contained in F = (G�)c.

The least restrictive feedback controller for u that renders W � invariant can now be constructed. The controller

g(x) is de�ned to be:

g(x) =

�
fu 2U : mind2D

@J
�(x)

@x
f(x; u; d) � 0g if x 2 @W �

U if x 2 (W �)�

Thus, in the interior of W �, u is free to take on any value in U. Existence of such u for x 2 W � is guaranteed

by construction.

4.3 Hybrid Systems

Consider the nonlinear hybrid automaton (3) with safety property 2F , where F � Q � X. We seek to

construct the largest set of states for which the control (�1(t); u(t)) can guarantee that the safety property is

met despite the action of the disturbance (�2(t); d(t)). For a given set K � Q�X, we de�ne the controllable
predecessor Pre1(K) and the uncontrollable predecessor Pre2(K

c) by

Pre1(K) = f(q; x) 2 K : 9(�1; u) 2 �1 �U 8(�2; d) 2 �2 �D (q; x; �1; �2; u; d) =2 Inv ^R(q; x; �1; �2; u; d) � Kg

Pre2(K
c) = f(q; x) 2 K : 8(�1; u) 2 �1 �U 9(�2; d) 2 �2 �D R(q; x; �1; �2; u; d)\K

c
6= ;g [K

c

(26)

Therefore Pre1(K) contains all states in K for which controllable actions (�1; u) can force the state to remain

in K for at least one step in the discrete evolution. Pre2(K
c), on the other hand, contains all states in Kc,

the complement of K, as well as all states from which uncontrollable actions (�2; d) may be able to force
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the state outside of K. In the de�nition of Pre1, the controllable actions are required to be able to force a
transition (hence the Inv in the formula). In contrast, for Pre2, we simply require that a transition be possible,

giving the advantage to the uncontrollable actions. The controllable and uncontrollable predecessors will form

the discrete part of the algorithm for computing controlled invariant sets. For the continuous part of the

algorithm, we need the Reach operator:

De�nition 4 (Reach) Consider two subsets G � Q�X and E � Q �X such that G \E = ;. The Reach
operator is de�ned as

Reach(G;E) = f(q; x) 2 Q�X j 8u 2 U 9d 2 D and t � 0 such that
(q(t); x(t)) 2 G and (q(s); x(s)) 2 �(Inv) nE for s 2 [0; t]g

(27)

where (q(s); x(s)) is the continuous state trajectory of _x = f(q(s); x(s); u(s); d(s)) starting at (q; x) and �(Inv)

represents the state space components of Inv. The set Reach(G;E) describes those states from which, for all
u(�) 2 U , there exists a d(�) 2 D, such that the state trajectory (q(s); x(s)) can be driven to G while avoiding
an \escape" set E.

The following algorithm describes the construction of the maximal controlled invariant set for hybrid systems.

Algorithm 2 (Maximal Controlled Invariant Set for Hybrid Systems)

initialization: W 0 = F , W�1 = ;, i = 0.

while W i
6= W

i�1 do

W
i�1 = W

i
nReach

�
Pre2((W

i)c);Pre1(W
i)
�

i = i � 1

end while

In the �rst step of this algorithm, we remove fromF all states fromwhich there is a disturbance d(�) 2 D forcing

the system either outside F or to states from which an environment action �2 2 �2 may cause transitions

outside F , without �rst touching the set of states from which there is a control action �1 2 �1 keeping the

system inside F . Since at each step, W i�1
� W

i, the set W i decreases monotonically as i decreases. If the

algorithm terminates, we denote the �xed point as W �.

Proposition 3 (Winning States W �) If the algorithm terminates after a �nite number of steps, the �xed
point, W �, is the maximal controlled invariant subset of F .

In order to implement this algorithm, we need to calculate Pre1, Pre2, and Reach. The computation of Pre1
and Pre2 requires inversion of the transition relation R subject to the quanti�ers 9 and 8; existence of this

inverse can be guaranteed subject to well understood conditions on the map R. The computation of Reach
requires the development of a new algorithm for determining the set of initial conditions from which trajectories

can reach one set, avoiding a second set along the way. In the following analysis, we describe this calculation

for a single discrete state q.

Recall that along continuous evolution the value of the discrete state remains constant. Therefore, since the

computation of the Reach operator involves only continuous evolution it can be carried out for each discrete

state separately. Fix the value of q 2 Q and let lG : X ! R and lE : X ! R be di�erentiable functions such

that G
�

= fx 2 X : lG(x) � 0g and E
�

= fx 2 X : lE(x) � 0g. Consider the following system of interconnected

Hamilton-Jacobi equations:

�
@J

�
G
(x; t)

@t
=

(
H
�
G
(x;

@J
�

G(x;t)

@x
) for fx 2 X j J

�
G
(x; t) > 0g

minf0;H�
G
(x;

@J
�

G(x;t)

@x
)g for fx 2 X j J

�
G
(x; t) � 0g

(28)

and

�
@J

�
E
(x; t)

@t
=

(
H
�
E
(x;

@J
�

E
(x;t)

@x
) for fx 2 X j J

�
E
(x; t) > 0g

minf0;H�
E
(x;

@J
�

E(x;t)

@x
)g for fx 2 X j J

�
E
(x; t) � 0g

(29)
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E (x, t) = 0∗J

G (x, t) = 0∗J

EG

Reach(G,E)

Figure 8: The computation of Reach(G;E) in a single discrete state q.

where JG(x; u(�); d(�); 0) = lG(x) and JE(x; u(�); d(�); 0) = lE(x), and

H
�
G
(x;

@J
�
G

@x
) =

�
0 for fx 2 X j J

�
E
(x; t) � 0g

maxu2Umind2D
@J

�

G

@x
f(x; u; d) otherwise

(30)

H
�
E
(x;

@J
�
E

@x
) =

�
0 for fx 2 X j J

�
G
(x; t) � 0g

minu2Umaxd2D
@J

�

E

@x
f(x; u; d) otherwise

(31)

Equation (28) describes the evolution of the set G under the Hamiltonian H�
G
(30). This is the \maxumind"

game of the previous section, with the modi�cation that H�
G
= 0 in fx 2 X j J

�
E
(x; t) � 0g which ensures

that the evolution of J�
G
(x; t) is frozen in this set. Similarly, equation (29) describes the evolution of the set E

under the HamiltonianH�
E
. Here a \minumaxd" is used, since it is assumed that the control tries to push the

system into E, to escape from G. H�
E
= 0 in fx 2 X j J

�
G
(x; t) � 0g to ensure that the evolution of J�

E
(x; t)

is frozen in this set. Note that in both games, the disturbance is given the advantage by assuming that the

control plays �rst. Figure 8 illustrates a sample evolution.

It is proven in [16] that the resulting set fx 2 X j J
�
G
(x; t) < 0g contains neither E nor states for which there

is a control u(�) 2 U which drives the system into E; and the set fx 2 X j J
�
E
(x; t) < 0g contains neither G

nor states for which there is a disturbance input d(�) 2 D which drives the system into G. Our Theorem states

that fx 2 X j J
�
G
(x; t) < 0g is the set Reach(G;E) [16]:

Theorem 1 (Characterization of Reach) Assume that J�
G
(x; t) (J�

E
(x; t) respectively) is a smooth func-

tion of x and t, that it satis�es the Hamilton-Jacobi equation (28) ((29) respectively), and that it converges

uniformly in x as t!�1 to a function J�
G
(x) (J�

E
(x) respectively). Then,

Reach(G;E) = fx 2 X j J
�
G
(x) < 0g (32)

The least restrictive controller which renders W � invariant is:

g(q; x) =

8>><
>>:

f(�1; u) 2 �1 �U : 8(�2; d) 2 �2 �D R(q; x; �; v) � W
�
g if (q; x) 2 (W �)�

f(�1; u) 2 �1 �U : 8(�2; d) 2 �2 �D
@J

�

G
(x)

@x
f(q; x; u; d) � 0^

(q; x; �; v) 2 Inv _R(q; x; �; v) � W
�
^ (q; x; �; v) =2 Invg if x 2 @W �

�1 �U if x 2 (W �)c

(33)

4.4 Remarks

In general, one cannot expect to solve for W � using a �nite computation. The class of hybrid systems for

which algorithms like the one presented here are guaranteed to terminate is known to be restricted [44]. In
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general, Algorithm 2 is semi-decidable when the operators Pre1;Pre2;Reach are computable. For example,

when the continuous state dynamics are constant and the guards and resets are polyhedra, then the operators

Pre1;Pre2;Reach map polyhedral sets back into polyhedral sets. These hybrid systems are referred to as linear
hybrid automata. When the hybrid system is a timed automaton the synthesis procedure is actually decidable

[45]. The main reason for the somewhat pessimistic news about the decidability of the controller synthesis

algorithm has to do with the fact that at heart these algorithms involve quanti�er elimination for entry into

\bad" sets or steering around \good" sets. However, thanks to some recent activity in mathematical logic in

what are known as O-minimal systems, one can extend the class of systems for which the synthesis algorithm

is semi-decidable, to so-called \O-minimal hybrid systems" (see [46]).

However, our main focus in the rest of this paper is to show how one can make progress in getting approximate

solutions even when the given application does not belong to a general class of hybrid systems for which the

algorithm is semi-decidable. In practice, we are helped by the fact that we are usually interested in �nite time

computations, rather than computing for t!�1 or until a �xed point is reached. Numerical techniques are

discussed in Section 6.

Another problem is the requirement that the controller resulting from our algorithm be non-Zeno (does not

enforce the safety requirement by preventing time from diverging). The algorithm proposed here has no way

of preventing such behavior, as will be illustrated in the third example which we solve in the next chapter.

There are several ways of removing Zeno behavior. One which we discuss in the next section is a practical

method of resolving the Zeno e�ect, by adding a requirement that the system must remain in each discrete

state for a non-zero amount of time. For a further discussion of how to regularize hybrid systems which have

Zeno behavior and to classify Zeno behaviors see [47, 48].

5 Solutions to the Examples

In this section, we apply our techniques to the three examples previously introduced. For each example,

we �rst derive and solve the Hamilton-Jacobi equation, and then apply the controller synthesis algorithm to

compute the maximal controlled invariant set and corresponding control law so that each system satis�es its

speci�ed safety requirement. For these examples, the Hamilton-Jacobi equations are simple enough, and the

dimensions of the discrete and continuous state spaces small enough, to permit solutions using the method of

characteristics. We discuss computational issues for larger systems in Section 6.

5.1 Aircraft Conict Resolution

Consider the three-mode conict resolution example pictured in Figure 1, and modeled in Section 3.1. We

assume that for this example the speeds (v1; v2) of both aircraft are constant even in the straight modes, so

that the input and disturbance sets are singletons (U = v1;D = v2) and u
� = v1; d

� = v2. The general case,

in which U and D are ranges of possible speeds, is considered in the examples in [12, 16]. Recall that our goal

is to calculate the relative distance at which the system may safely switch from mode 1 to mode 2, and the

minimum turning radius R in mode 2, to ensure that separation between aircraft is maintained. The evolution

of the protected zone in each mode, assuming no switches, is computed using the continuous-time Hamilton-

Jacobi method. The unsafe set G is de�ned as: G = fq1; q2; q3g�fx 2 X j l(x) � 0g where l(x) = x
2
r
+y2

r
�52.

Let Gi = (qi; fx 2 X j l(x) � 0g) represent the unsafe set in mode i. Thus the set fx 2 X j J
�
Gi
(x) � 0g where

J
�
Gi

is the optimal cost, is the backwards evolution of the protected zone in mode i, assuming no switches

between modes. These sets are shown in Figure 9. In both cases, the relative heading between aircraft is

assumed �xed at  r = 2�=3 (because of our assumption that aircraft switch modes instantaneously). We

implement Algorithm 2 for this example, at each step computing the sets Pre1, Pre2, and Reach(Pre2;Pre1).

In the �rst step, W 0 = F
�

= G
c, the complement of G:

W
0 = ((q1; fx 2 X j l(x) � 0gc \ fx 2 X j z = 0g) [ (q2; fx 2 X j l(x) � 0gc)

[(q3; fx 2 X j l(x) � 0gc \ fx 2 X j z = 0g)) (34)
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xrx
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(b)(a)

Figure 9: J�
Gi
(x) � 0 for (a) Modes 1 and 3 (i = 1; 3), !1 = !2 = 0 (the jagged edge means the set extends

in�nitely), (b) Mode 2 (i = 2), !1 = !2 = 1. In both cases,  r = 2�=3, and v1 = v2 = 5.
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Figure 10: (W 0)c.

as shown in Figure 10 (the complement is shown in the �gure).

Pre1(W
0) = (q1; fx 2 X j l(x) � 0gc \ fx 2 X j z = 0g) (35)

Pre2((W
0)c) = G (36)

Note that Pre1(W
i) � f(q1;X)g for all i, since �1 labels transitions from q1. The set W

�1 (Figure 11) is

W
�1 = W

0
nReach(Pre2((W

0)c);Pre1(W
0)) (37)

The set W�2 involves computing Reach(Pre2((W
�1)c);Pre1(W

�1)), this computation is illustrated in Figure

12(a) and the set is shown in Figure 12(b) as the shaded region. Continuing, a �xed point is reached after 3

iterations: Figure 13 illustrates this �xed point W � = W
�3 in q1. Since we assumed in this example that the

continuous control input u = v1 is �xed, we need only design the discrete part of the controller �1 and the

radius of the maneuver R. The design is as illustrated in Figure 13(a): the enabling and forcing of �1 occurs

at the boundary of W � as shown, as explained below. The transition from q1 to q2, governed by �1, must be

disabled until the relative position of the two aircraft reach the dashed line as shown, otherwise the aircraft

will lose separation with each other either during the maneuver or after the maneuver is complete. At the

y

r

r

rx

ry

3q
1

x

q 2q

xr

ry

z

Figure 11: (W�1)c. The jagged edge in q3 means that the set extends in�nitely.
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Figure 12: (a) Pre1(W
�1) and Pre2(W

�1) in q1; (b) Reach(Pre2(W
�1);Pre1(W

�1)) in q1.

>2 1R

1R
2

R

R

(a) (b)

forced1σ

σ1 disabled

σ1 enabled

Figure 13: Showing the enabling and forcing boundaries for �1 in state q1; and the result of increasing the

radius of the turn in the avoid maneuver to increase W �.

dashed line, �1 is enabled, meaning the transition from q1 to q2 may occur at any time. �1 remains enabled

until the dynamics reach the solid line (boundary of W �), at which point it must be both enabled and forced:

otherwise the aircraft lose separation immediately. Note that there are states (xr ; yr) which are not rendered

safe by the maneuver. Indeed, if the initial state is in the darker shaded region shown in Figure 13(a), then

the aircraft are doomed to collide. Figure 13(b) displays the result of increasing the radius of the turn in q2.

Notice that the set W � (the complement of the shaded region) increases as the turning radius increases. This

implies that the maneuver renders a larger subset of the state space safe. Figure 13(b) shows the critical value

of the turning radius, for which the maneuver is guaranteed to be safe, provided the conict is detected early

enough. Thus, the controller synthesis procedure presented in Section 4, applied to this example, generates

conditions for the enabling and forcing of �1, and also the turning radius R.

5.2 Aerodynamic Envelope Protection

Consider the longitudinal dynamics of the CTOL aircraft (7) in which the state x = (x; _x; h; _h)T is required to

stay in the envelope F , shown in Figure 4(a) in (V; )-space, and 4(b) in hV _h-space. In contrast to the previous

example, this example has a range of possible continuous input variables: U = [Tmin; Tmax] � [�min; �max],

and thus we will exemplify the continuous Hamilton-Jacobi calculation of Section 4 in some detail below.

The speci�cation may be decoupled according to FV  and F
hV _h: the airspeed V and ight path angle  must

remain in the envelope FV  at all times; and the airspeed, altitude h and vertical speed _h must remain in

the envelope F
hV _h at all times. In the speed and ight path modes (modes 1; 2; 3) V and  are the only

controlled variables, therefore we may derive the maximal controlled invariant set contained in FV  , using the

(V; )-dynamics (8), (9). Let

FV  = f(V; ) j 8i 2 f1; 2; 3; 4g; li(V; ) � 0g (38)
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where

l1(V; ) = V � Vmin l2(V; ) = � + max l3(V; ) = �V + Vmax l4(V; ) =  � min

Thus, @FV  is only piecewise smooth, yet for this example we can prove that the calculation can be performed

one edge of the boundary at a time: we can derive a Hamilton-Jacobi equation for each li, and prove that the

intersection of the resulting sets is the maximal controlled invariant subset of FV  . The subscript i in each

Ji;Hi will indicate that the calculation is for boundary li. In the following we describe how the computation

is performed by looking at one edge of the boundary, l1. The details of the proofs of controlled invariance are

presented in [16].

The optimal Hamiltonian in this case (there is no disturbance, hence this is not a game but an optimal control

problem) is given by the following, where we have substituted into the dynamics the expressions for the lift L

and drag D forces (neglecting the quadratic term in D):

H
�
1 ((V; ); p) = max

u2U

�
p1

�
�
aDV

2

M
� g sin  +

1

M
T

�
+ p2

�
aLV (1� c)

M
�
g cos 

V
+
aLcV

M
�

��
(39)

where p = (p1; p2) 2 R
2. The Hamilton-Jacobi equation describing the evolution of J�1 ((V; ); t) is obtained

from (24):

�
@J

�
1 (x; t)

@t
=

(
H
�
1 ((V; );

@J
�

1
((V;);t)

@(V;)
) for f(V; ) 2 X j J

�
1 ((V; ); t) > 0g

minf0;H�
1((V; );

@J
�

1
((V;);t)

@(V;)
)g for f(V; ) 2 X j J

�
1 ((V; ); t) � 0g

(40)

with boundary condition J�1 ((V; ); 0) = l1((V; )).

The optimal control at t = 0 is computed from equation (39). The optimal throttle input T may be calculated

directly from this equation: u
�
1(0) = Tmax (since p1 > 0 for the inward pointing normal). The optimal

pitch input u�2 = �min is calculated indirectly [16], since H�
1 ((V; ); p) loses dependence on u2 on the set

f(V; ) j l1(V; ) = 0g. De�ne (Vmin; a) = f(V; ) j l1(V; ) = 0 \H�
1 (V; ) = 0g. Then:

a = sin�1
�
Tmax

Mg
�
aDV

2
min

Mg

�
(41)

Integrate the system dynamics (8), (9) with (V (0); (0)) = (Vmin; a), u = (u�1; u
�
2), backwards from t = 0 to

t = �T , where T is chosen to be large enough so that the solution intersects f(V; ) j l2(V; ) = 0g. Now denote

this point of intersection as (Va; max), and the solution to (8), (9) between (Vmin; a) and (Va; max) as @J
a, as

shown in Figure 14. Repeating this calculation for the remaining three boundaries, only f(V; ) j l3(V; ) = 0g

contains a point at which the associated optimal Hamiltonian, H�
3 ((V; ); p), becomes zero. We denote this

point as (Vmax; b) where:

b = sin�1
�
Tmin

Mg
�
aDV

2
max

Mg

�
(42)

and similarly calculate @Jb and Vb, as shown in Figure 14. In summary, for the aircraft dynamics (8), (9)

with ight envelope FV  given by (38), and input constraints, the maximal controlled invariant subset of FV  ,

denoted W �
V 

, is the set enclosed by

@W
�
V 

= f(V; ) j (V = Vmin) ^ (min �  � a) _ (V; ) 2 @Ja_

( = max) ^ (Va � V � Vmax) _ (V = Vmax) ^ (b �  � max)_

(V; ) 2 @Jb _ ( = min) ^ (Vmin � V � Vb)g

(43)

The least restrictive controller that renders W �
V 

controlled invariant is g(V; ) = U \ ĝ(V; ), where:

ĝ(V; ) = f ; if (V; ) 2 (W �
V 

)c

T � Ta() if (V = Vmin) ^ (min �  � a)

� = �min ^ T = Tmax if (V; ) 2 @Ja

� � �c(V ) if ( = max) ^ (Va � V � Vmax)

T � Tb() if (V = Vmax) ^ (b �  � max)

� = �max ^ T = Tmin if (V; ) 2 @Jb

� � �d(V ) if ( = min) ^ (Vmin � V � Vb)g

(44)
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Figure 14: The set W �
V 

in (V; )-space, with control law as indicated. Values used are for a DC-8: min =

��=8 rad, max = �=8 rad, Vmin = 180 m/s, Vmax = 240 m/s, �min = ��=8 rad, �max = �=8 rad, Tmin = 40

kN, Tmax = 80 kN.

with

Ta() = aDV
2
min

+Mg sin  Tb() = aDV
2
max

+Mg sin 

�c(V ) =
M

aLV c

�
g cosmax

V
�

aLV (1�cmax)

M

�
�d(V ) =

M

aLV c

�
g cosmin

V
�

aLV (1�cmin)

M

�
(45)

In Figure 14, the portions of W �
V 

for which all control inputs are safe (g(V; ) = U) are indicated with

solid lines; those for which only a subset are safe (g(V; ) � U) are indicated with dashed lines. The map

de�nes the least restrictive safe control scheme and determines the mode switching logic. On @Ja and @Jb,

the system must be inMode 2 orMode 3. Anywhere else in W �
V 

, any of the three modes is valid as long as

the input constraints of equation (44) are satis�ed. In the regions FV nW
�
V 

(the upper left and lower right

corners of FV ), no control inputs will keep the system inside of FV  . Repeating these calculations for the

speed and altitude modes (modes 4; 5), using the dynamics (7) and envelope illustrated in Figure 4(b), the

controlled invariant subset W �

hV _h
is computed and shown in Figure 15, and the least restrictive control scheme

is as indicated. This calculation incorporates the limits on the altitude h into the previous calculation: at

h = hmax, the control must be chosen so that �h � 0, whereas at h = hmin, the control is restricted to force
�h � 0.

We would now like to apply Algorithm 2 to generate the controllable actions �
ij

1 which force transitions between

discrete states to ensure safety. However, we quickly run into a problem. At the �rst step of the algorithm,

W
0 = F , and since there are no uncontrollable actions, Pre2(F

c) = F
c. However, since the controllable

actions are always enabled, Pre1(F ) = F . Thus Reach(Pre2(F
c);Pre1(F )) = F

c so that W�1 = FnF
c = F .

Similarly, W�2 = F , W�3 = F , and the �xed point is W � = W
0, meaning that the maximal controlled

invariant set contained in F is F itself! This is clearly incorrect for the real system: the calculations to

produce Figures 14 and 15 showed that certain \corners" of F are not controlled invariant. The error lies in

the fact that this system is Zeno: if forced into one of these corners, the system could avoid owing out of F

by switching in�nitely often in zero time between discrete states. Unlike the previous examples, there is no

speci�ed minimum time for the system to stay in each discrete state. A possible remedy is to enforce that the

system remain in each discrete state for some minimum time T > 0. If this is the case, then the algorithm

calculates W � as the union of W �

hV _h
and W �

V 
for their applicable discrete modes. The mode switching logic

is implicit in these calculations: as the aircraft approaches maximum or minimum altitude, the FMS must

force the autopilot to switch to modes 4 or 5 and choose a control scheme which satis�es the limits on �h. As

the aircraft approaches its maximumor minimum speed and ight path angle, the FMS must force the system

into modes 1, 2 or 3 and select those control inputs which either drive the aircraft back inside the envelope,
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Figure 15: The set W �

hV _h
in (h; V; _h)-space, with control law as indicated. Altitudes are hmin = 10kft,

hmax = 51kft.

or keep it on the boundary of the envelope.

In summary, this example uses the Hamilton-Jacobi formulation of Section 4 to calculate the maximal con-

trolled invariant set within the speci�ed aerodynamic ight envelope, as well as the least restrictive control

scheme which renders this set invariant.

5.3 Vehicle Collision Avoidance

The design of safe controllers for AHS platoon leaders can be cast as a game between the control (representing

the acceleration of platoon A) and the disturbance (representing the acceleration of platoon B and the e�ect

of intra-platoon collisions within platoons A and B) , over a cost function

J(q0; x0; u; d) = inf
t�0

x2(t)

that encodes the requirement that the two platoons should not collide. Notice that since the model of the

two platoon system is non-blocking and deterministic the above cost function is well de�ned for each initial

condition, input and disturbance trajectory.

Fortunately, the system is simple enough that physical intuition allows us to guess the optimal strategy for

both the control and the disturbance. The worst that can happen from the point of view of platoon A is that

both collisions take place immediately and at the maximum possible relative velocity, and then platoon B

decelerates as hard as possible until it comes to a stop. The best that platoon A can do in response, is also

to decelerate as hard as possible until it comes to a stop3. In other words d� = (�x�
B
; T

�
A
; T

�
B
; �v

�
A
; �v

�
B
) with

T
�
A
= T

�
B
= 0, �v�

A
= minfvS ; vmax

� x1(0)g, �vB = minfvS ; x1(0) + x3(0)g and

u
�(q; x) =

�
a
min

A
if x1 > 0

0 if x1 = 0
and �x�

B
(q; x) =

�
a
min

B
if x1 + x3 > 0

0 if x1 + x3 = 0

Notice that the inputs are in feedback form and can naturally be encoded by a trivial hybrid controller. By

direct computation, one can show that u� and d
� not only satisfy the conditions of Section 4, but are in

3It should be noted that, physical intuition may lead to erroneous conclusions even for small changes in the speci�cation. For
example, one can show [13] that if the safety speci�cation is relaxed from requiring no inter-collisions between A andB to allowing
collisions at low relative velocity, maximum deceleration may no longer be the optimum strategy for the control or disturbance.
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addition a saddle equilibrium for the two player game, that is for all (q0; x0), u, and d:

J(q0; x0; u; d�) � J(q0; x0; u�; d�) � J(q0; x0; u�; d):

In other words, a player can never improve his/her situation by changing unilaterally away from the saddle

equilibrium. Let J�(q0; x0) = J(q0; x0; u�; d�).

The computation used to show that (u�; d�) is a saddle equilibrium also allows us to analytically characterize

the maximal controlled invariant set

W
� = f(q; x) 2 XjJ�(q; c) � 0g (46)

The boundary of the set for amin

A
= �5m=s2, amin

B
= �6m=s2, vS = 3m=s, and v

max = 40m=s is shown

pictorially in Figure 16 for q = q0 (the safe set is everything \above" the boundary shown in the �gure). The

least restrictive controller that renders W � invariant is

g
�(q; x) =

8>><
>>:

u
� if J�(q; c) = 0

[0; amax

A
] if (J�(q; x) > 0) ^ (x1 = 0)

[amin

A
; a

max

A
] if (J�(q; x) > 0) ^ (0 < x1 < v

max)

[amin

A
; 0] if (J�(q; x) > 0) ^ (x1 � v

max)

(47)

If additional requirements, such as passenger comfort, fuel e�ciency, emission reduction, are imposed, con-

trollers that optimize the system performance with respect to these objectives can be sought among the class

of controllers de�ned by g�.

Similar computations lead to maximal controlled invariant sets and least restrictive controllers to implement

the remaining functions that an automated vehicle may be called upon to perform: join a platoon, split from

a platoon, change lanes, etc. In addition to characterizing the safe inputs for each maneuver, the controlled

invariant sets also provide guidelines for the switching among the di�erent controllers that is carried out by

the communication protocols that coordinate the actions of neighboring platoons. A controller should not be

switched on unless the state is in the corresponding controlled invariant set. For technical details on how this

can be accomplished the reader is referred to [13].

6 Computational Methods

The algorithm for reachability analysis and controller synthesis for hybrid systems presented here provides

the complete necessary and su�cient conditions for design of the controller provided that the operators

Pre1; P re2; Reach can be computed. As we pointed out, the set of systems for which these can be computed

is very restrictive: timed or linear hybrid automata. Here we discuss computational techniques for approxi-

mating the optimal control and disturbance inputs (u�(�); d�(�)), as well as solutions to the Hamilton-Jacobi

partial di�erential equation.

Numerical solutions are potentially complicated by the facts that the right hand side of the Hamilton-Jacobi

equation is non-smooth and that the initial data may have non-smooth boundary, that (u�(�); d�(�)) may

be discontinuous, and that J�(x; t) may not remain a continuous function of x and t even if the boundary

condition J
�(x; 0) = l(x) is di�erentiable (this is known as a shock). The discontinuity on the right hand

side of equation (24) further complicates the solution, as does the discontinuous switching of the optimal

control and disturbance u� and d�. In addition, we are often interested in cases in which G has non-smooth

boundary, so that the boundary conditions of the Hamilton-Jacobi equation are not di�erentiable. In order to

admit discontinuous solutions, a \weak" derivative and \weak" solution to the Hamilton-Jacobi equation was

developed by Crandall, Lions, and Evans in the early 1980's [49, 50]. A viscosity solution to (24) is de�ned as

the limit as � goes to zero of solutions J�
�
(x; t) to the Hamilton-Jacobi equation regularized by adding ��J�

�

to the right hand side; here �J� refers to the Laplacian of J�. For � > 0 and for smooth Hamiltonians it

may be shown [49, 50] that there exists a unique continuous solution to the Hamilton-Jacobi equation: the

second derivative term �J�(x; t) acts like a smoothing term and is called a \viscosity" term for that reason.

As �! 0, the solution J�(x; t) approaches the viscosity solution to the Hamilton-Jacobi equation. Thus, even

when classical smooth solutions do not exist, solutions in this \weak sense" exist.
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Figure 16: The boundary of the maximal controlled invariant set for vehicle collision avoidance in q = q0.

6.1 Level Set Methods for Computing Solutions to Hybrid Systems

We discuss a numerical technique developed by Osher and Sethian [51] which computes the viscosity solution

to the Hamilton-Jacobi equation, ensuring that discontinuities are preserved. We conclude with a discussion

of its application to the reachability analysis of hybrid systems. The level set methods of Osher and Sethian

compute the solution of the Hamilton-Jacobi equation to be the one obtained from the regularized system as

the viscosity coe�cient �! 0.

In order for the numerical scheme to closely approximate the gradient
@J

�(x;t)

@x
, especially at points of discon-

tinuity, the numerical approximation of the spatial derivative must be chosen carefully. Consider an example

in two dimensions, with X discretized into a grid with spacing �x1 and �x2. The forward di�erence operator
D

+xi at x = (x1; x2) is de�ned as (for x1, similarly for x2):

D
+x1J

�(x; t) =
J
�((x1 +�x1; x2); t)� J

�(x; t)

�x1
(48)

The backward di�erence operator D�xi is de�ned as (for x1, similarly for x2):

D
�x1

J
�(x; t) =

J
�(x; t)� J

�((x1 ��x1; x2); t)

�x1
(49)

Similarly, the central di�erence operator D0xi is de�ned as (for x1, similarly for x2):

D
0x1J

�(x; t) =
D

+x1J
�(x; t) +D

�x1J
�(x; t)

2
(50)

At each grid point x = (x1; x2), the partial derivatives
@J

�(x;t)

@x1
and

@J
�(x;t)

@x2
may be approximated to �rst order

using either the forward, backward, or central di�erence operators. The correct choice of operator depends

on the direction of f(x; u�; d�) (in our case it depends on �f(x; u�; d�) since we compute backwards in time).

If �f(x; u�; d�) ows from left to right (from smaller to larger values of x1), then D
�x1 should be used to

approximate
@J

�(x;t)

@x1
(and vice versa); and if �f(x; u�; d�) ows from bottom to top (from smaller to larger
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values of x2), then D
�x2 should be used to approximate

@J
�(x;t)

@x2
(and vice versa). Such an approximation is

called an upwind scheme, since it uses information upwind of the direction that information propagates.

The algorithm for the two dimensional example proceeds as follows. Choose a domain of interest in X and

discretize the domain with a grid of spacing �x1;�x2. Let xij represent the grid point (i�x1; j�x2) and let
~J�(xij; t) represent the numerical approximation of J�(xij; t). Using the boundary condition J�(x; 0) = l(x),

compute ~J�(xij ; 0) for each xij.

Let t = 0. While ~J�(xij; t) 6= ~J�(xij; t��t) perform the following steps:

1. Compute

u
�(xij;

@ ~J�(xij; t)

@x1
;
@ ~J�(xij; t)

@x2
) d

�(xij;
@ ~J�(xij; t)

@x1
;
@ ~J�(xij; t)

@x2
)

using the initial approximations to the derivatives

@ ~J�(xij; t)

@x1

= D
0x1 ;

@ ~J�(xij; t)

@x2

= D
0x2 (51)

2. Calculate f(xij ; u
�
; d
�).

3. If �f(xij ; u
�
; d
�) ows from larger to smaller values of x1, let

@ ~J�(xij; t)

@x1
= D

+x1 (52)

else use D�x1 .

4. If �f(xij ; u
�
; d
�) ows from larger to smaller values of x2, let

@ ~J�(xij; t)

@x2
= D

+x2 (53)

otherwise use D�x2 .

5. Compute ~J�(xij; t��t). For xij such that J�(~xij; t) > 0,

~J�(xij ; t��t) = ~J�(xij; t) + �t
@ ~J�(xij; t)

@x
f(xij ; u

�
; d
�)

For xij such that J�(~xij; t) � 0,

~J�(xij; t��t) =

8><
>:

~J�(xij; t) + �t
@ ~J�(xij;t)

@x
f(xij ; u

�
; d
�)

if
@ ~J�(xij;t)

@x
f(xij ; u

�
; d
�) < 0

~J�(xij; t) otherwise

We have recently designed a tool for computing reachable sets for hybrid systems based on this level set

technique [52], have implemented it in Matlab 5.3, and have used it to compute reachable sets for several

examples, including the �rst example in this paper. Using a grid spacing of �x = 0:1 (or about 90000 grid

points) each iteration of this example required about 1400 timesteps on a Sun UltraSparc 10 (a 300 MHz

UltraSparc processor with 512 KB cache and 128 MB main memory). This translated to about 75 minutes.

Computation time will decrease signi�cantly with our new version in C, which exploits opportunities for

parallelism in the algorithm. In addition, our current version used the very basic idea in level set methods

presented above; for special forms of the Hamilton-Jacobi equation, many extremely e�cient variants of this

method exist [53]. In particular, the narrow band and fast marching methods speed up the algorithm by

con�ning the computation to a narrow band around the evolving front.
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6.2 Other Computational Methods involving Approximations

Other methods have been presented for approximating the reach set calculation. One idea has been to use

rectangular hybrid automata to approximate conservatively the reach set of general hybrid automata. This

procedure consists of sub-dividing the state space into regions where one can �nd upper and lower bounds

for each component of the right hand side of the continuous dynamics and using the reach set analysis for

the resulting rectangular hybrid system. The package HyTech does precisely this computation provided that

the guards and invariants are polyhedra [54]. A synthesis procedure based on this appears in the paper of

Wong-Toi [23]. The main advantage of this approximation procedure is that it deals with a class of systems

for which the synthesis algorithm is semi-decidable. The main drawback is that there is an exponential growth

in the number of discrete states in approximating the continuous dynamics. The successor to HyTech is a

package called HyperTech [55] which reduces the conservativeness of HyTech by using interval arithmetic with

some systematic checks to reduce the divergence of interval arithmetic estimates to approximate reach sets.

A controller design procedure using HyperTech has yet to be completed.

Approximating Dynamics with Di�erential Inclusions. Suppose the continuous dynamics in the non-

linear hybrid automaton (3) were approximated with the di�erential inclusion

_x 2 g(q; x) (54)

where g(q; x) = ff(q; x; u; d) j 8u 2 U; d 2 Dg. A computationally e�cient method for approximating the

reach set of g(q; x) is to conservatively approximate g(q; x) by a set of constant inclusions, each of the form

_x 2 [gmin; gmax] (55)

and then to compute the reach set of the constant inclusions. This method is presented in [56], [57] where it is

proved that the approximation error can be made arbitrarily small by approximating the di�erential inclusion

arbitrarily closely (�-approximation). An advantage of this method is that the class of constant inclusions used

to approximate the di�erential inclusion is known to be decidable, thus one can guarantee that the reachable

set as t!�1 can be computed in a �nite number of steps. The amount of preprocessing required to initially

approximate the dynamics may be quite formidable however, especially to achieve a close approximation of

the true reach set.

Approximating non-smooth sets with smooth sets. We have shown that the reach set at any time

t 2 (�1; 0] may have a non-smooth boundary due to switches in (u�; d�), non-smooth initial data, or the

formation of shocks. The level set scheme propagates these discontinuities, yet its implementation may require

a very small time step to do this accurately. In [58] we present a method for over-approximating such non-

smooth sets with sets for which the boundary is continuously di�erentiable, by using smoothing functions

to derive smooth inner and outer approximations. By applying Algorithm 2 to smooth inner and outer

approximations of the sets G and E, we calculate smooth inner and outer approximations to the true reach

set.

Ellipsoidal Methods. A similar idea is to use ellipsoids as inner and outer approximations to the reach set

[59], [60]. To preserve the propagation of ellipsoids the continuous dynamics in each of the discrete locations

needs to be approximated by linear dynamics. Bounds on the conservativeness of this approximation and

their validity have not yet been worked out. However, [60] presents e�cient algorithms for calculating both

the minimum volume ellipsoid containing given points, and the maximum volume ellipsoid in a polyhedron,

using a matrix determinant maximization procedure subject to linear matrix inequality constraints.

Quanti�er Elimination and Linear Hybrid Systems. While the decidability results for the controller

synthesis algorithm gave sharp results about the class of hybrid systems for which the design procedure is

(semi)-decidable, there has been a reawakening of interest in mathematical logic which enables us to extend
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these results using so-called order-minimal or O-minimal systems. These are examples of systems which may

not admit quanti�er elimination but do nonetheless allow for semi-decidable algorithms [61]. Using these

results, we are able to perform controller synthesis for classes of hybrid systems for which the dynamics in

each discrete location is linear (in the sense that _x = A(q)x + B(q)u + E(q)d) and the guards, invariants

and resets are sub-analytic sets. This has been used in a symbolic package using QEPCAD in [46]. Finally,

for hybrid systems in which the continuous state dynamics are linear and in discrete time, techniques from

quanti�er elimination and linear programming can be used to develop semi-decidable procedures for controller

design [62].

7 Conclusions

Hybrid control design techniques are an important design tool for rapid prototyping of controller designs for

real time and embedded systems, by which one may achieve better performance, handle larger systems, and

have greater con�dence in the functioning of the system according to speci�cation.

This paper is a survey of a new method of controller design for hybrid systems, along with its application

to three interesting and topical examples from air tra�c management, automated highway systems, and

ight management systems. We have had success in applying these methods to examples in other arenas:

such as the control of unmanned aerial vehicles and communication networks. Our method represents a

rapprochement between the game theoretic synthesis techniques of computer science and the robust control

techniques of control theory. Current work focuses on computationalmethods for mechanizing the algorithm or

its approximation. This is especially challenging given the limits on decidability results that we have quoted in

the paper. Especially promising are level set methods, quanti�er eliminationmethods, and ellipsoidal methods.
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