

Materials for Optical, Magnetic and Energy Technologies

Heusler Compounds: Multifunctional Materials for Spintronics

Claudia Felser

www.superconductivity.de

- IEEE Magnetics Society Home Page: www.ieeemagnetics.org
 - 3000 full members, 300 student members

• The Society

- Conference organization (INTERMAG, MMM, TMRC, etc.)
- Student support for conferences
- Large conference discounts for members
- Local chapter activities
- Distinguished lectures
- Society awards

• IEEE Transactions on Magnetics

- ~2000 peer reviewed pages each year
- Electronic access to all IEEE Transactions on Magnetics papers
- New for 2010 IEEE Magnetics Letters;
 - a rapid-publication, primarily electronic, peer-reviewed journal dedicated exclusively to magnetics articles
- Online applications for IEEE membership: www.ieee.org/join
 - 360,000 members
 - IEEE student membership (\$30)
 - IEEE full membership (\$150)

Co-workers in Mainz and elsewhere

moment

S. Wurmehl , B. Büchner, Dresden A. Weidenkaff EMPA, Switzerland Hideo Ohno, Y. Ando et al. Sendai, M. Yamamoto, Hokkaido, Inomata, NIMS JAPAN Shou-Cheng Zhang, Xiaoliang Qi, Stanford, Parkin, Almaden, Ramesh, UCB, USA Bob Cava, Princeton, M. Greenblatt , Rutgers, D. Singh, Oakridge, N. Spaldin, R. Seshadri UCSB, USA J. Windeln, IBM, W. Mannstadt, Schott M. Köhne, Bosch, J. Schmid, FHI Dresden D. Kieven, W. Schock, R. Klenk HMI Berlin, Alex Zunger NREL, USA Synchrotron: SPring8, Japan K. Kobayashi and team ; Chuck Fadley LBNL, USA PETRAIII, Drube, Claessen, Würzburg

Santa Clara Valley, March , 2010

BOSCH

SCHOTT glass made of ideas

SIEMENS

MagnetoResistive Sensors

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Technologie

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Concept

Goal: Directed Design of new functional Materials

Preconditions for a Designer Material

- Reliable structure type Heusler structure type
- Tunable class of Materials (800 existing compounds)
- Compounds with different properties
- Understanding structure-property relationships
- Development of a properties-oriented recipe

moment

Properties

Property	Example	Discovered	Rule
Ferromagnetism	Cu ₂ MnZ	Heusler	
Half metallic ferromagnetism	NiMnSb Co ₂ YZ	De Groot, Kübler Galanakis, Felser	Slater Pauling
Magneto optical application	MnPtSb	Vanengen	22 VE
Heavy Fermions	Fe ₂ VAI, YbPtBi	Lui, Fisk	24 VE 18 VE
Superconductivity	Ni ₂ ZrSn	Felser	27 VE
Multiferroics – Shape memory	Ni ₂ MnGa, Mn ₂ NiGa	Webster, Liu	Jahn Teller
Ferrimagnets and compensated ferrimagnets	Mn_2YZ Cr_2YZ ,	Felser	Jahn Teller
Semiconductors for optoelectronics	LiZnP, LiCuS	Zunger, Felser	8 VE Wide gap
Topological Insulators	REPtBi	Felser	18VE and high Z

Goal: Directed Design of new functional Materials

Concept

Diamond		XY									XYZ							
																2		
	Η	ĺ											Z					He
	Li	Be			V				X				В	С	N	0	F	Ne
	Na	Mg	g Y	Y X							Al	Si	Р	S	Cl	Ar		
	Κ	Ca	Sc			Cr	Mŋ	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rь	Sr	Y	Zr	NЬ	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	Cs	Ba	$\left \right $	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Tl	РЬ	Bi	Po	At	Rn
	Fr	Ra	$\left \right $															
			$\backslash \rangle$	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ть	Dy	Ho	Er	Tm	Yb	Lu
			\backslash	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	$\mathbf{M}\mathbf{d}$	No	Lr

Materials: ternary semiconductors ...

Zincblende structure

Half Heusler Structure

XYZ

Semiconductors

• with the magic electron number 8

Half Heusler or Juza-Nowotny compounds

- Filled tetrahedral structures: Li⁺ [MgAs]⁻ YZ
- NaCl Lattice between XZ

Kandpal et al. , CF J. Phys. D 39 (2006) 776

moment

Half Heusler compounds XYZ with variable gaps

Ternary semiconductors ... low band gap

Low band gap semiconductor for

- Thermoelectric materials
- Topological Insulators
- the f-electrons are localized ... the compounds stay semiconducting

- ZnS lattice YZ
- NaCI Lattice between XZ

Zero gap

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells B. Andrei Bernevig, *et al.*

Science **314**, 1757 (2006); DOI: 10.1126/science.1133734

SC Zhang et al.

Santa Clara Valley, March, 2010

Semiconductor 5/10

The service of the service of the

Chadov, Qi, Kübler, Zhang, Felser arXiv:1003.0193

Zero gap: tunable ternary Heuslers

Tero gap: strain

Proof of the topological character

- Taking the borderline compound
- Applying strain
- A gap will be opened and the Dirac cone stays in the gap (a)

Chadov, Qi, Kübler, Zhang, Felser arXiv:1003.0193

Santa Clara Valley, March , 2010

Semiconductor 8/10

Tuning the propoerties with RE atom

- LaPtBi is also a topological superconductor without inversion symmetry and low charge carrier concentration n = 6*10¹⁸cm⁻³
- Antiferromagnetism with GdPtBi
- Ferromagnetism in MnPtBi
- YbPtBi is a super heavy fermion
- Fermi energy tunable with magnetic fields, e.g., CePtBi

All TI are good thermoelectrics

Goll et al. Physica B 403 1065 (2008)

Semiconductor 9/10

Important for manufacturing (same thermal expansion coefficient) p- and n-doping in the same material NiTiSb

Semiconductor 10/10

Starting point

Heusler compounds: X_2YZ

- 1903: First "Heusler" compound Cu₂MnAl by Friedrich Heusler
- 1983: De Groot and Kübler: Prediction of half metallicity
- 1999: Discovery of CCFA by us (patented with IBM)
- 2003: First TMR device with 19% room temperature effect by K. Inomata

Materials: Ternary Semiconductors ...

Moment Heusler compounds: X₂YZ

$X_2 YZ$

Y=Mn³⁺ (d⁴) (Kübler rule) or another transition element – provides a local magnetic moment $4\mu_B$

Filled tetrahedral position X leads to a second magnetic sublattice – more delocalized electrons (cobalt can carry up to 1.5 μ_B)

Materials: ... to half metallic ferromagnets

Full Heusler compounds

- magic valence electron number: 24
- valence electrons = 24 + magnetic moments
- Co₂FeAI: 2×9 + 8 + 3 = 29 Ms = 5μ_B

Kübler *et al.*, PRB **28**, 1745 (1983) Galanakis *et al.*, PRB **66**, 012406 (2002)

Curie Temperatures

Balke et al. CF Solid State Com. accepted (2010) Kübler et al. CF, Phys. Rev. B **76** (2007) 024414

Santa Clara Valley, March, 2010

Spintronic 5/15

High Curie Temperatures

Blum et al., APL 95 (2009) 161903

Floating zone crystal shows the lowest resistance

Polycrystalline and single crystal (floating zone) show the best residual resistance

Resistivity above 50K shows a T² behavior: ferromagnetic metal with one magnon scattering

Resistivity below 50K is temperature independent

Blum et al., APL 95 (2009) 161903

Tunnel junctions and more ...

Co₂Cr_{0.6}Fe_{0.4}AI : First Magneto resistance effect

Block, Felser, et al. J. Solid State Chem. 176 (2003) 646

Co₂FeSi: Halfmetallic ferromagnet with T_c 1120 K

Wurmehl, et al., APL 88 (2006) 032502.

 $Co_2Fe_{0.5}Mn_{0.5}Si$, CoFeSi_{0.5}Al_{0.5}: Tuning the Fermi energy

Fecher, Felser J. Phys. D 40 (2007) 1582

Mn₃Ga: Spin torque application

Balke et al. APL 90 (2007) 152504

 $Co_2MnSi/AI-O/Co_2MnSi-MTJ$ TMR ratio = 67%@RT, 580%@2K Sakuraba et al. APL 88 (2006) 192508

Co₂MnSi/Mg/Al-O/CoFe-MTJ TMR ratio = 93%@RT, 203%@2K Sakuraba et al. JMSJ (2006)

Co₂FeAl_{0.5}Si_{0.5}/MgO/Co₂FeAl_{0.5}Si_{0.5}-MTJ TMR ratio = 386%@RT, 832%@2K Tezuka et al. APL 94 (2009) 162504

Co₂FeAl_{0.5}Si_{0.5}/Ag/Co₂FeAl_{0.5}Si_{0.5} CPP-GMR = 12.4%@RT, 31%@12K Tezuka et al. APL 94 (2009) 162504

 $Co_2MnSi/Ag/Co_2MnSi$ CPP-GMR ratio = 28.8%@RT Iwase et al., Appl. Phys. Exp. 2 (2009) 063003 $Mn_{2.5}Ga$ with Giant perpendicular anisotropy Wu et al., APL 94, 122503 (2009)

Read-Head Fabrication w/Heusler alloy

Interface

Structure - Property – Relation

CMS

MgO

CMS

Miyajima et al., Appl. Phys. Expr. 2, 093001 (2009)

Interface

Fecher *et al.*, APL **92**, 19351 (2008)

Tuning interfaces by adjusting combination

of a half metal Co₂MnAI

a semiconductor CoMnVAI

Santa Clara Valley, March , 2010

Spintronics

Gilbert damping

Heinrich et al. (JAP2004) Yilgin et al. (IEEE2005) Yilgin et al. (JJAP2007) Oogane et al. (JAP2007)

Kandpal, et al., J. Phys. D 40 1507 (2007)

moment Gilbert damping

Kübler's Rule Slater Pauling Rule

X₂MnGa

Two magnetic sublattice •24 Valence electrons – 0 μ_B •Mn³⁺ at octahedral site – 4 μ_B •Mn compensates

 Mn_2MnGa 3*7 + 3 = 24 \Rightarrow Compensated ferrimagnet

Wurmehl, *et al.* J. Phys. Cond. Mat. 18 (2006) 6171 Balke *et al*. APL 90 (2007) 152504

Kübler et al., Phys. Rev. **B** (1983)

moment Spin Torque Application

For spin torque application

- low magnetic moment, High T_c
- low damping
- out of plane magnetization

tetragonal Heusler compounds: Mn₃Ga, FeMn₂Ga

Balke et al.CF, APL 92, 152504 (2007)

F. Wu et al., APL 94, 122503 (2009)

Winterlik et al. CF, Phys. Rev. B 77 (2008) 054406

More than 200 semiconducting Heusler compounds

Tunable – gaps and charge carriers

Summary

moment

- Multifunctional topological insulators
- Thermoelectric devices with high ZT and nano structuring Spintronics
- Materials with high spin polarization at high Curie temperature
 - ➔ TMR devices
- Materials with low magnetic damping
- Materials with low magnetic moments
- Materials with high perpendicular anisotropy

➔ spin torque oscillators – STTRAM, MAMR

- Combination of adjusted Materials as Hybrid materials
 - → spin injection into semiconductors,
- Multifunctional materials
 - ➔ new effects

