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York
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Very old city in north of 
England
Rich history from Viking, 
Roman and Medieval 
times
Middle ages –
administrative capital of 
the north
University is much 
younger – 45 years



York Minster
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Museum gardens

5



Whitby abbey (60 km from York)
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Dissolution of the monasteries
Count Dracula arrived at Whitby! 



Newton’s Apple tree!
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Summary
 Introduction to pulsed laser processes

 New (linear) magnetisation reversal mechanism

 Linear reversal is calculated to give reversal times 
as fast as 300fs !

 Dynamics and the Landau-Lifshitz- Bloch (LLB) 
equation of motion

 LLB-micromagnetics and dynamic properties for 
large-scale simulations at elevated temperatures

 Opto-magnetic reversal – the ultimate speed 
record?
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The need for atomistic/multiscale approaches to 
magnetisation dynamics 

 Micromagnetics is based on a continuum formalism 
which calculates the magnetostatic field exactly but 
which is forced to introduce an approximation to the 
exchange valid only for long-wavelength 
magnetisation fluctuations.

 Thermal effects can be introduced, but the limitation 
of long-wavelength fluctuations means that 
micromagnetics cannot reproduce phase transitions.

 The atomistic approach developed here is based on 
the construction of a physically reasonable classical 

spin Hamiltonian based on ab-initio information.
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Atomistic model

 Uses the Heisenberg form of exchange

 Spin magnitudes and J values can be 
obtained from ab-initio calculations.

 We also have to deal with the magnetostatic 
term.

 3 lengthscales – electronic, atomic and 
micromagnetic – Multiscale modelling.
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Model outline

Ab-initio information (spin, 

exchange, etc)

Classical spin Hamiltonian

Magnetostatics 

Dynamic response 

solved using 

Langevin Dynamics 

(LLG + random 

thermal field term)
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Dynamic behaviour

 Dynamic behaviour of the magnetisation is 
based on the Landau-Lifshitz-Gilbert equation

 Where g0 is the gyromagnetic ratio and l is a 
coupling constant

 Note that l is NOT identical to the 
macroscopic damping parameter (later)
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Langevin Dynamics
 Based on the Landau-Lifshitz-Gilbert 

equations with an additional stochastic field 
term h(t).

 From the Fluctuation-Dissipation theorem, the 
thermal field must must have the statistical 
properties

 From which the random term at each 
timestep can be determined. 

 h(t) is added to the local field at each 
timestep.
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FePt Hamiltonian; link to ab-initio calculations
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With new effective interactions

Single ion anisotropy

2-ion anisotropy (new term) 

And moment                   .         
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 All quantities can be determined from 
ab-initio calculations

 2-ion term (resulting from the 
delocalised Pt degrees of freedom) is 
dominant 



Important predictions of ab-initio/ atomistic model

 Unusual scaling exponent

 Due to dominant 2-ion 
anisotropy

 Important factor for HAMR

 Large finite size effect

 Due to loss of 2-ion 
anisotropy for surface 
atoms
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Unusual properties of FePt 1: 
Domain Wall directionality

Atomic scale model calculations of the equilibrium domain wall 
structure
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Unusual properties of FePt 2: 
Elliptical and linear Domain Walls

 Circular (normal Bloch 
wall); Mtot is 
orientationally invariant

 Elliptical; Mtot decreases in 
the anisotropy hard 
direction

 Linear; x and y 
components vanish
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 Walls are elliptical at non-zero temperatures

 Linear walls occur close to Tc above a critical temperature which 
departs further from Tc with increasing K

 Analogue (see later) is linear magnetisation reversal – important 
new mechanism for ultrafast dynamics.



Laser Pump-probe experiments

 High energy laser beam (pump) causes rapid heating 
of a magnetic film

 Part of the beam is split off and used to measure the 
magnetisation of the film using the Magneto-Optic 
Kerr Effect (MOKE)

 Magnetisation changes on the sub-picosecond
timescale can be demonstrated experimentally

 Very important physics

 Also, potentially important because of the possible 
use of Heat Assisted Magnetic Recording (HAMR)
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2 temperature model
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Ultrafast demagnetisation

 Experiments on Ni (Beaurepaire et al 
PRL 76 4250 (1996)

 Calculations for peak temperature of 
375K

 Normalised M and T. During 
demagnetisation M essentially follows T
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Pump-probe simulations –
continuous thin film

 Rapid disappearance of the magnetisation

 Reduction depends on l (coupling constant)
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Dependence on l

 l governs the rate at which energy can be 
transferred into as well as out of the spin 
system. 

 A characteristic time to disorder the 
magnetisation can be estimated as

 During a laser pulse of duration, t<tdis the spin 
system will not achieve the maximum electron 
temperature
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Experiments

 Rare Earth doping increases the damping 
constant
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Radu et al PRL 102, 117201 (2009)

 Experimental demagnetisation times increase with damping!

 Consistent with spin model if energy transfer predominantly via the FM spins

 No effect of Gd (isotropic). 

 ‘dominant fast relaxation process is slowed down by adding slow relaxing 
impurities.’ (Radu et al)

 Complex energy transfer channels
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Multiscale calculations and the 
LLB equation

 Large scale (micromagnetic) simulations 
essentially work with one spin/computational 
cell

 Single spin LLG equation cannot reproduce 
ultrafast reversal mechanisms at elevated 
temperature (conserves |M|)

 Pump- probe and HAMR simulations require 
an alternative approach

 Landau-Lifshitz-Bloch (LLB) equation?
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LLB equation Transverse (LLG) term

Longitudinal term introduces 
fluctuations of M
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 Precessional dynamics for atomistic model 
(left) and (single spin) LLB equation (right)



Relaxation times

• Critical slowing down at Tc

• Atomistic calculations remarkably 
well reproduced by the LLB 
equation

• Longitudinal relaxation is in the ps
regime except very close to Tc

30

•Effective a increases with T (observed in FMR experiments)

•NB – single (temperature independent) value of l. Increased damping 

arises from transfer of energy into spinwave modes.

•LLB equation seems a good candidate to replace LLG equation in 
micromagnetic models of ultrafast processes.

‘LLG a’

Relaxation of M
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LLB parameters

 Important parameters are;
 Longitudinal and transverse susceptibility

 K(T), M(T)

 These can be determined from Mean Field 
theory.

 Also possible to determine the parameters 
numerically by comparison with the Atomistic 
model.

 In the following we use numerically 
determined parameters in the LLB equation 
and compare the dynamics behaviour with 
calculations from the atomistic model. 
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Opto-magnetic reversal

 What is the reversal mechanism?

 Is it possible to represent it with a spin 
model?
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Fields and temperatures

 Simple ‘2-temperature’ model 

 Problem – energy associated with the laser pulse (here 
expressed as an effective temperature) persists much longer 
than the magnetic field.

 Equlibrium temperature much lower than Tc
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Magnetisation dynamics 
(atomistic model)

 Reversal is non-precessional – mx and my remain zero. Linear 
reversal mechanism

 Associated with increased magnetic susceptibility at high temperatures

 Too much laser power and the magnetisation is destroyed after 
reversal

 Narrow window for reversal
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Linear reversal

New reversal mechanism via a strongly non-uniform 
(demagnetised) state.
VERY fast (timescale of longitudinal relaxation)
Micromagnetics with LLG equation cannot reproduce 
behaviour
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Transition from circular to linear reversal
(J Barker et. al, Appl. Phys Lett., 97, 192504 (2010))

 At 620K KV/kT=85 – no   
reversal 

 NB, timescale of calculation 
is 1 ns – KV/kT needs to be 
around 2 for reversal!

 Reversal occurs at 670K, 
where KV/kT=60. 

 Effective energy barrier for 
linear reversal much lower 
than for coherent rotation.
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Energy barriers (constrained MC method,
P. Asselin et. al. Phys. Rev. B, 82, 054415 (2010))
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600K 650K

670K
Rapid reduction in 
energy barrier in linear 
reversal regime



 Calculated relaxation times in good 
agreement with analytical theory (N. 
Kazantseva at. al., Europhys. Lett., 
86, 27006 (2009)) – solid lines.
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Optomagnetic‘Reversal window’

 Well defined temperature range for reversal

 Critical temperature for the onset of linear reversal

 BUT atomistic calculations are very CPU intensive

 LLB micromagnetic model used for large scale calculations
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Reversal ‘phase diagram’ 
Vahaplar et al Phys. Rev. Lett., 103, 117201 (2009)

 Note the criticality of the experimental results

 Characteristic of linear reversal
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Further evidence
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Large scale simulations (LLB micromagnetics)

 Top – LLB -Mag model predictions

 Bottom – experiments (Nijmegen group)
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Linear reversal and HAMR

 Transition to linear 
reversal gives sharp 
increase in probability of 
reversal into the field 
direction

 Good way to record

 Needs LLB-
micromagnetic approach 
rather than LLG for 
recording models
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 Sharp transition at onset of linear
reversal mechanism



Relaxation times; 6nm diam FePt

 Rapid decrease in linear reversal regime

 Note the failure of the Arrhenius-Néel law
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Arrhenius-Néel law



Implications for HAMR

 Rapid decrease of energy barrier due to 
linear reversal could be important

 Recording models should use LLB 
formalism

 Fast switching via linear reversal –
possibility of extremely high data rates.

 All optical recording using the 
optomagnetic effect?
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What if ........

 It seems that the optomagnetic effect is 
biggest for intense pulses and very 
optically active materials

 What if

 A smaller field were present in FePt

 The direction of the laser were oriented at 
some angle to the perpendicular

 We have done calculations assuming a field 
of 1T oriented at 45 deg.



TOASTR
(Thermally and Optically Assisted Switching TRansitions) 

 The maximum temperature was 600K

 successful reversal for conventional HAMR requires at 
least Tc (660K)

 Would require localised circularly polarised light – big 
challenge



Linear reversal in GdFeCo
(I. Radu et. al., Nature, 472, 205 (2011))

 Experiments (left) in good agreement with 
atomistic model calculations (right)
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Differential sublattice demagnetisation

 TM and RE sublattices demagnetise at different 
rates irrespective of the exchange interaction.

 According to N. Kazantseva et. al., Europhys. 
Lett., 81, 27004 (2008), the demagnetisation time 

tD = s / a

where s is the atomic spin and a is the damping 
constant

 Consistent with experiments
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BUT

 Sublattices do not act independently

 Remarkable transient FM state produced for 
about 400fs!

 Seems to drive magnetisation reversal………
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Conclusions
Atomistic model has been developed using Heisenberg 
exchange.

The Landau-Lifshitz-Bloch (LLB) equation incorporates 
much of the physics of the atomistic calculations

LLB-micromagnetics is shown to be successful in 
simulating ultrafast dynamics at elevated temperatures. 
Important for pump-probe simulations and models of 
HAMR. Also thermally assisted MRAM?

New (linear) reversal demonstrated with sub-picosecond
reversal times

Demonstrates the probable thermodynamic origin of Opto-
Magnetic reversal.

Atomistic model also predicts transient FM state in the 
ultrafast reversal of GdFeCo



End of the story? Not quite!

 Calculations suggest a thermodynamic contribution to 
ultrafast dynamics (linear reversal).

 But

 Energy transfer channels are not well represented

 What is the origin of the field – Inverse Faraday Effect?

 Electron/phonon coupling plays a role

 Role of the R-E – is this important?

 These require detailed studies at the ab-initio level –
the multiscale problem still remains!
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