IEEE Santa Clara Valley Chapter Oct. 25, 2011

EVOLUTION OF PERPENDICULAR MAGNETIC RECORDING MEDIA AND UPCOMING CHALLENGES

Gerardo Bertero

Collaborators: Mike Mallary, Ram Acharya, Kumar Srinivasan, Mrugesh Desai, Alex Chernyshov, Hua Yuan, David Treves, Mike Madison, Bogdan Valcu, Eric Champion

Western Digital Corporation, San Jose, California, USA

Outline

Introduction

PMR Media

- Evolution by Product Generation
- Limitations Going Forward

Recording Technology Options

- Microwave Assisted Magnetic Recording
- Heat Assisted Magnetic Recording
- □ HAMR Media Challenges
- Bit Pattern Media (not covered here)
- □ ASTC Industry Consortium
- Summary and Discussions

Introduction

- Introduced commercially in 2005, conventional perpendicular recording can now be considered a mature technology in its 6th (or 7th) product generation.
- Alternative technologies such as Energy Assisted Recording and Bit Patterned Media Recording are not yet ready for productization.
- Here we will address the key technical challenges regarding media extendibility for CMR and will also discuss the main issues in the development of media for the next likely technologies.

Cross-Section TEM of Typical PMR Media Structure

PMR Media Design By Generation

Hard Magnetic Layers Only

From the simple 2-layer capping layer media to the latest 7-8 layer magnetic structures, PMR media has increased significantly in complexity since it was first adopted.

ECC and Exchange-Spring Media

Inspired by the "tilted media" concept
Incoherent switching through column of grain
Compared to "Stoner-Wahlfarth" media, in its simplest rendition it provides twice the energy barrier with same switching field.

R.H. Victora and X. Shen, *IEEE Transactions on Magnetics*, **41**, NO. 2, 537-542, (2005). D. Suess *et al.*, *J. Magn. Magn. Mat*, **551**, 290-291, (2005).

Dynamic-Spring Media (Media Write Field Boost)

Effective field to reverse storage layer is a combination of:

- 1) Head Field
- 2) Assist Layer Ms*t
- 3) Interface Exchange

Assist layer high Ms/low Ku

Storage layer low Ms/high Ku

Dynamic-spring media is an intrinsic magnetic self-assisted switching stack

- The high Ku portion of the media provides for the required thermal stability
- The softer portion of the media is used to adjust (lower) the switching field
- This technology is currently being introduced into high volume manufacturing

Graded Anisotropy Media

- Micro-magnetic simulations predict further gains in performance by extending the single ECC or Exchange-Spring concept to a system where the anisotropy is graded.
- Caveat is that switching has to take place by incoherent rotation for advantage to be realized.

Advanced ECC Media

Hs and KuV/kT as function of EBL 1/2

Double ECC structures allow for higher degree of freedom when optimizing Hs and KuV/kT (i.e., writability and thermal stability)

ECC PMR Media

- Double exchange-break layer media is latest generation media structure
- It allows higher degree of incoherent switching through the grain column.
- □ Provides higher design and performance optimization flexibility
- Allows higher anisotropy (Ku) media to be used yet maintaining good writability
- □ Can result in thinner overall media stacks
- It should be a key enabler for smaller media grains which is required for extending conventional PMR recording past the 1 Tb/in² mark.

Magnetic Grains and Bit Size

To maintain SNR, number of grains per bit should *ideally* be kept constant

Magnetic Grains and Bit Size

Presented at TMRC 2010

To maintain SNR, number of grains per bit should *ideally* be kept constant

iŵD

Simple Picture of Grain Size Scaling in Media

Simple Picture of Grain Size Scaling in Media

Grain Size Progression vs. Areal Density

- □ ECC media structure was expected to yield higher areal density capability by enabling smaller grain size in media.
- □ In practice, grain size has remained practically unchanged since PMR introduction.
- Instead, the trade-off of choice was to use ECC media to improve writability, maintain acceptable adjacent track erasure, and optimize transition parameter with utilization of higher Ku alloys and optimization of lateral exchange coupling through the various layers.

Grain Size and K_u Scaling

HDD Industry Historical Areal Density Trend

Current Technology Is Reaching Maturity

Technology Options

SMR/TDMR

Energy Assisted Recording Bit Patterned

• Continued scaling requires innovations in systems technologies, materials science and process engineering to advance areal density

Technology Options for > 1.5 Tb/in²

MAMR: Spin-Torque Oscillator Physics

Hitachi/NEDO STO Demonstration

WD Confidential

MAMR Technology and Media

- MAMR can extend the use of conventional PMR media. Higher Ku in CoPtX-Oxide alloys must be realized.
- With the higher Ku materials, media grain size must be decreased aggressively for this technology to show its promise.
- If MAMR is extendible to >2Tb/in², new high Ku material systems will be required
 - ...but could be simpler than HAMR media as Curie temperature is not part of the design criteria.
- Companies now assessing MAMR's potential. Not much energy has been devoted to it across industry.

Grain Size Expectations

Grain size <u>must</u> come down to enable higher areal densities. HAMR has potential to switch extremely high Ku materials.

By knowing T(x), M(x), Ku(x), Hk(x) and Happ (x) we can make simple observations of the recording process for grains of different size.

20 nm

Heat Assisted Media Challenges

Grain Size and Morphology

- Grain Size Uniformity
- H_K Uniformity
 - Grain-to-grain L1₀ atomic ordering uniformity
 - Grain-to-grain compositional uniformity
- Intergranular Magnetic Exchange Uniformity
 - E.g., grain boundary width uniformity

Roughness

Thermal Design

- Heat-sink and thermal barriers
- Tc tailoring

Overcoat/Lubricant

Magnetization and Anisotropy as Function of Temperature

Knowing Ms(T) and Ku(T) allow us to estimate many aspects of the writing process

EAMR Recording: Grain Size Effect on Transition Location

Energy Balance for Grains at Either Side of Transition

Magnetocrystalline: Zeeman : Demagnetizing: $K_u \times Sin^2(\theta) \times Vol$ **M**.**H**= M × H × (Cos ψ) × Vol 2 × π × N × M² × Vol

Applied Field

Magnetocrystalline + Zeeman - Demag

Applied Field

Magnetocrystalline - Zeeman - Demag

For a particle (grain) to freeze magnetically its Energy Barrier/ K_b T must be larger than a certain value.

Energy Barriers During Writing

Distance from NFT Center (nm)

What Energy Barrier to Freeze Grains in Their State?

Contrary to conventional recording in HAMR, grains freeze magnetically once their energy barrier is as low as 1.5-4 times k_B T. Media grain volume difference effects are magnified by this fact. Thermal gradients must be steep enough to guarantee the freezing of all grains within a short distance from the intended transition location.

Grain Size Sensitivity to Magnetization Freezing

As grain mean size is reduced, grain size distribution sigma must be reduced <u>significantly</u> for linear density capability. *Smaller grain size does not automatically result in better performance.*

FePt-L1₀ Coherency Length as Function of Temperature

At high temperature the domain wall width is significantly larger than at RT.

Increasing thickness beyond 10 nm may not necessarily increase energy barrier based on this estimate of coherency length for FePt.

HAMR Media Grain Size Observations

- Grains of smaller size require lower temperatures to magnetically freeze.
- Under typical HAMR recording conditions freezing takes place near $E_B/k_BT \sim 1-3$.
- Grain size effects are magnified under EAMR (high T) conditions.
- For grains in a given distribution to freeze within a distance corresponding to a fraction of the bit length, they must meet <u>very tight</u> size sigma requirements.
- Sigma requirements for grain sizes in the 2-4 Tb/in² are very stringent if Eb/k_BT>>2. What is the correct energy barrier to use ? (strongly dependent on media design).
- Physics of high speed switching near Tc have not been sufficiently studied.

Hk Fluctuations near Tc

- The promise of heat assisted recording is rooted on the premise of extremely high thermal gradients to write transitions much sharper than possible by just magnetic means.
- In order to capitalize on the high switching effective gradients and achieve high recording linear density,
 - The magnetic anisotropy of the media must be as high as possible
 - The Curie point of the media must be as low as possible (but safely higher than RT for archivability)
 - \rightarrow FePt is an nearly ideal system for satisfying both conditions above.
- However, we assume <u>time averaged</u> properties for anisotropy vs. temperature of the media.
- There are some suspicions that temporal fluctuations in Hk near Tc can be large and relevant during the writing process.
- Modeling by R.Victora, UMN, support this conjecture, with particle size being a big factor.
- If experiments confirm this behavior, ways to minimize the negative effects through novel layer structure designs will be needed.

Ultrafast Measurements at LCLS

Experimentally, these fluctuations could be time resolved by new tools such as the LCLS facility at Stanford with femto-second resolution.

New Industry Consortium

"Advanced Storage Technology Consortium"

IDEMA

- New consortium created to expand and enhance the power of R&D funding
 - Acceleration of technology development by targeted collaborations between storage industry participants, suppliers, universities, laboratories, and institutes
- Mission: member-directed, scalable R&D organization to address fundamental technology challenges
- Supply chain involvement
- HDD technology roadmap

Why Do We Need Something Different ?

- Pace of technology transitions and scope of change required means <u>business as usual</u> <u>approach won't work</u>
- Need to <u>collimate and focus</u> entire industry R&D to be successful
- Need <u>coordinated transitions</u> in supply base components, equipment, and materials

Expected Outputs from ASTC

- Focused, collaborative research projects that will enable better understanding of key scientific challenges
- Shared, realistic roadmap for the Industry
- Solutions <u>science</u> to <u>engineering</u> to <u>manufacturing</u> options – *that will shorten time from invention to productization*

ASTC Funding Allocations

29 projects preselected for 1st year of funding

Summary And Conclusions

- Conventional perpendicular media will continue to evolve to higher Ku and smaller grain size as we extend CPR technology.
- Magnetic head fields and Ku limits of CoPtX-Oxide media will limit densities to 1-1.5 Tb/in² range. Shingling may help extend that range.
- Media for heat assisted recording based on FePt has improved significantly but big challenges remain.
 - Reducing grain size and size distributions while preserving columnar morphology remain challenging given the high processing temperatures required for L1₀ ordering.
 - Optimum heat-sink design of media to enhance thermal gradients is limited somewhat by other functional requirements such as low surface roughness.
- Pace of development needs to increase in order to productize these new technologies as per roadmaps.
- New ASTC consortium provides a forum for more open collaboration in addressing the most challenging industry problems.

