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What is spintronics ?

Electric Charge

Electronics
poweramplification
logic operation

basically volatil

el

Transistor, LSI

Magnetics

magnetic recording
non-volatile

\

Hard Disk Drive (HDD)

Spintronics

Both charge and spin of
electrons are utilized for
new functions.




Difference between conventional magnetics and spintronics ?

.

—
R Magnetics
fUW{N\ I > suxx Coupling between charge and spin
j by /induction coil
—11{s N Most of the energy Is wasted.
/

N Spintronics

\

Coupling between charge and spin
by quantum mechanical effects
(e.g.tunnel magnetoresistance, spin-transfertorque)

Highly efficient ! /
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Magneto-Resistance (MR)

Changein electricresistance induced by magnetic field.

IMagneto-resistance ratio
(MR ratio)

\4

<€ >
Magnetic field H

required to induce MR

Resistance, R

N

>
Magnetic field, H

0

MR converts magnetic signals into electric signals.

(cf. STT converts electric signals into magnetic signals.)

MR ratio at RT & alow H (=1 mT) is important for device applications.




Magnetoresistance
VR ratio @ RT&lowH

Year
AMR effect :
1857 VIR=1 - 20, | Lord Kelvin
N
1985 ........................................................................................................................
GMReffect | A Fert, P.Grlnberg ' &
MR=5-15% | ( ) _
1990 } ' Y/
ﬁ
TMReffect : :
1995 (A|-O barrier) T M|yazak|, J. Moodera
MR =20 - 70% 155
2000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2005 ................................................................................... i e ST OPORROPOPPOOON

2010 |-
\4
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Tunnel MagnetoResistance (T MR) effect in magnetic tunnel junction (MTJ)

1 Ferromagnetic 1
—— electrode I —
©© OO | nsulator (m-thicky L | © ©
T Y Y Y V (tunnel barrier) T Y Y
s> | Ferromagnetic S
g electrode T
Parallel (P) state Antiparallel (AP) state
Resistance Rp : low Resistance R,p : high

MR ratio = (R p — Rp) / Rp><100% (performance index)

3d ferromagnet

Amorphous Al-O ::> MR ratios of 20— 70% at RT

3d ferromagnet




Recording density Gbit/in?
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1990 19

Read head of hard disk drive (HDD)

Sense
current

Recording
media

Read head
magnetic sensor

Higher MR ratio
IS required for

> 200 Gbit/inch?Z.

........ TMRhead

—1 (amorphous =

1 GMRhead

S tunnel barrier) |-

92 1994 1996 1

998 2000 2002 2004 2006 2008
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Non-volatile Magnetoresistive Random Access Memory (MRAM)

Digit line Bit line
Bit line <=
MTJ
Parallel “0” T —> |
Antiparallel *“1” o= MTJ Write] line Ea
"
Non-volatile 7;;'_| Digit line
magneticmemory ‘—| CMOS m ¥
n"Jp\_n"
CMOS
Read out Writing
Sense Current 8it Line Pro’;ru:urtem .
— Free Magnetic B
Layer, Information
4 » - \Storage —»p
~—Tunneling Barrier
pe— “— Fixed Magnetic Layer X

(0)7
- \ | Program
¢ Digit Line ! \__/ Current Hp

F Review:
Science 294, 1488 (2001).

|] }— Isolation Transistor “ON"




Non-volatile Magnetoresistive Random Access Memory (MRAM)

Freescale (US)'s 4 Mbit — MRAM based on Al-O MTJs
(volume production since 2006)

<Advantages>
Non-volatile, high speed, write endurance > 10'°

<Disadvantage>
High-density MRAM is difficult to develop.




Three important properties for memory device:

speed, density, and write endurance

= —— Write endurance > 1016 :
-y

Work = ~ \(l/irtually unlimited) V@}

)
/ _
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@ Storage N
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Three important properties for memory device:

speed, density, and write endurance

' -

’,._H._—
_—

Write endurance > 1016 :

Density (bit/chip)

— High-speed™  \Work = ~ « (virtually unlimited) | <IN
8 ] MRAM ) N\ : Volatile }
v ( _ “ memory \ : '
5 /}-—L
o) “Gbit-scale "=, - h
0 LT LA W}
& Write endurance <1022
a :
8 100 B / -_————=== - ~ E
S Storage ~i|
< \ ]

\ & HDD iy

1 Mbit 1 Gbit 1 Thbit




How can we develop Gbit-scale MRAM ?

Major requirement for Gbit-MRAM

Large output voltage = MR ratio >> 100%

Reduction of writing power = spin-torque switching

Breakthrough

1G

Capacity (bit)
=
<
|

Capacity of MRAM cannot
go beyond 64 Mbit.

2004 2006
Year

2008




MR effects

MR ratio (RT & low H)

Device applications

Year
1857 AMR effect HDD head
MR=1~2%
~_ Inductive
7N
1985 N~ head
GMR effect
MR =5~15%
1990 * AV
MR head
TMR effect \ -
1995 | (AI-O barrier) N
MR =20~ 70 % \ {}
GMR head
2000 1 Memory
TMR head
2005 MRAM

2010
v

Much higher MR ratio is required
for next-generation devices.




Simple model for TMR effect : Julliere’s model

Tunnel Tunnel
FM1 Barrier FM 2 FM 1 Barrier FM 2
DQS DC‘)‘S DOS DOS

D,s' Du Dot 1 Doy Dip 1 Dy Doy I Dyt
P alignment AP alignment
Rip — R 2P, P Do+ (Er) — D, (E
MRE( ap —Rp) 2P\ P | Paz( at (EF) = Dai( F))’ €=12
Rp 1-P P, (Dt (EF) + Doy (EF))

Spin Polarization, P




How can we attain giant MR ratio ?

(1) Electrode material with full spin-polarization
Energy |IP]=1

D

E- “Half Metal”

D

(E.g.) some Heusler alloys, Fe;O,4, CrO,, LaSrMnO; perovskite

Room-temperature MR ratios for half-metal electrodes have
never exceeded those for simple 3d alloys such as Co-Fe.

(2) Crystalline tunnel barrier such as MgO(001)
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Amorphous Al-O barrier vs. crystal MgO barrier (theory)

Amorphous AI-O barrier
(conventional MTJ)

Incoherent tunneling of
various Bloch states.

=>| MR <100%at RT

Crystal MgO(001) barrier

Fe(001) X = @

Dominant tunneling of fully
spin-polarized A, Bloch states

=> | MR >>1000% (theory)
Butler et al. PRB 2001:; Mathon ibid 2001.




What we learn about “ tunneling effect’ at an undergraduate course

Barrier : —
width. t Potential barrieris
< : >/ assumedto be vacuum.
Free-electronwave / A
exp(ik-z . :
P( ) \ Barrier height
R VAYAYA .
Electrode Tunnel Electrode

barrier

Exponential decay of DOS

Tunneling transmittance (T) decays exponentially as a function oft.

(WKB approx.) T o exp(—J 8m ¢/ hzxt) m: effective mass




Realistic tunneling effect

Conduction
band

Bloch states

\ ¢
. \/\\/\\/'"}L
Valence

band
Electrode/ Barrier Electrode

Evanescent states
In the band gap

Both Bloch states and evanescent states have
(1) specific orbital symmetry & (ii) specific band dispersion.
(complex wave vector k=Kk,+1x)

Bloch states and evanescent states couple at interface.




Decay of evanescent state largely depends on orbital symmetry.

Majority Density of States for Fe|MgO|Fe

Density of States

Layer Number

Al: S+p,+ dZZZ—XZ—yz

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Butler (2001).




Coupling between Bloch states and evanescent states

Ideal coherent tunneling for k, = O direction

Fe(001) MgO(001) Fe(001)

Aq (Q <—>AlQ<—>A1(:> kj

YKy




Fully spin-polarized A; band in bcc Fe(001)

majority spin

minority spin

Er

0.5 = S
I'  (001)direction H

Fully spin-polarized A, band

—> Giant MR ratio is theoretically expected.

Not only bcc Fe but also many other bcce alloys based
on Fe or Co have fully spin-polarized A, band.
(e.g. bcc Fe, ,Co,, some Heusler alloys)




Importance of interface (theory)

X.-G. Zhang, et al., PRB 68,092402 (2003).

ﬁ 'Mg .

Ideal interface

Excess
O atom

®1g
> >
K, |
| | LDOS of ?
¥ A | A4 states

Fe- A+ states couple with
MgO-A; states atk,=0.

O Mg
® o
Mg O

N

Oxidized interface

MR ratio > 1000%

Fe- A+ states do not couple
with MgO-A states atk;, = 0.

MR ratio < 100%




Fully epitaxial Fe/MgO/Fe MTJ grown by MBE

Yuasa et al., Nature Mater. 3, 868 (2004).

Fe(001)
(Pinned layer)

M

-
: -i:q- . :.Lr,-"z:.“; & gl
e LE AR 4 * = rﬁiEbit
4433 ‘oo Sopies ::-m MgO(OOl)

'
L o
Besssstaceses
[

Fe(001)

(Free layer)

2Nm

TEM image




Experimental demonstrations of giant TMR

Single-crystal MgO(001) barrier Textured MgO(001) barrier
—
300 —_— 180 -—
——T=20K | == 160] F
OO0 Mgl
MR = 247% 140! cose A
~~ o . .
S 200t . < 120 _-" (“
—— = @ L .
IS T =293 K 2 100 .
© MR = 180% ©
b r 80
s 100r - = 60
R — — 40 .
4_ _> 20 ..--._.-Ip Jil
0 ~— : ~ Lzmamln&_‘_A 0 T |
-200 -100 0 100 200 -1000 -500 0
H (Oe) H (Oe)
Yuasa et al., Nature Mater. 3, 868 (2004). Parkin (IBM), Nature Mater. 3, 862 (2004).




ecOO[ " — — — T T T

500
“Glant TMR effect”

S
= 400 r Crystal MgO(001) -
o tunnel barrier ]
S
O u
= 300 MgO(001)
ad FeCo(001)
= _—
200 AIST [2]— — I
Amorphous Al-O | ) o7 1] MgO(001)
100 F | tunnel barrier \d—| Fe(001)
Fully epitaxial
MTJ
O | L N L L '®, L L N L | N I
1995 2000 2005

Year

[1] Yuasa, Jpn.J.Appl.Phys.43,L558 (2004). [2] Yuasa, Nature Mater.3,868 (2004).




Fundamental problem on thin film growth

MTJ <

~

Free layer <Cmm Or sy

Tunnel barrier

Pinned layer — sl

Ru

FM (Co-Fe) <«

AF layer (Pt-Mn or Ir-Mn)
for exchange biasing

MTJ structure for practical applications

>_This structure is
based onfcc (111).

MgO(001) cannot be grown on fcc (111).

4-fold symmetry

3-fold symmetry




ecOr—  — —
-O0—<C—-4& CrystalMgO(001)barrier

o500 O: Single crystal MgO(001) 7

. $: Poly-crystal MgO(001) .

X

= 4001 A CoFeB/MgO/CoFeB -

m -

©

O N

= 300 MgO(001)

02: FeCo(001)
200 |

MgO(001)
100 AmorphousAI-O Fe(001)
tunnel barrier Fully epitaxial
MTJ

1995 2000 2005
Year

[1] Yuasa, Jpn.J.Appl.Phys.43,L558 (2004). [2] Yuasa, Nature Mater.3,868 (2004).
[4] Djayaprawira, SY, APL 86,092502 (2005).
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CoFeB/MgO/CoFeB structure for device applications

Canon-Anelva, AIST

Djayaprawira, SY, Appl. Phys. Lett. 86,092502 (2005).
Yuasa & Djayaprawira, J. Phys. D: Appl. Phys. 40, R337 (2007).

Annealing

ab¥e 250°C
i

i i : +I\'7
*L"‘Hh.rt. WO |ization

Amorphous
CoFeB

o
oM

:J

1-

Amorphous
CoFkeB

As-grown state

MgO-MTJ
(4-foldsymmetry)

EB

—~

| S i g
Practical bottom :
structure:fcc(111)3

(3-fold symmetry)

Poly-crystal
bcc CoFeB(001)

Poly-crystal
bce CoFeB(001)

After annealing

55 ; Core technology for
device applications




Mass-manufacturing technology for HDD industry

Load lock Load lock

Canon-Anelva C-7100
Sputtering system

¢ 200-300 mm wafer

All the HDD manufacturers use this type of sputtering machine
for the production of HDD magnetic heads.




MR effects Industrial applications
MR ratio (RT & low H)
Year
AMR effect HDD head
1857 MR =1-2%
~_ Inductive
N head
1985 =
GMR effect K\ H
MR =5 - 15 % .
: commercialized
1990 XV
______ 1
MR head : ' R & Dlevel
TMR effect = P
1995 |~ Al-O barrier {}
MR =20 -70 %
GMR head
2000 7
Memory
Giant TMR effect TMR head
2005 . I\'\/lﬂscz(?-gjo_) b6?;~g|§; ................ Flvl_, MRAM Nove|
= - 0 .
MgO-TMR head v/_\ devices
2010, N YNV S —_—
! 1+ Microwave !
|




MgO-TMR head for ultrahigh-density HDD

MgO-TMR head

Volume production since 2007.
700 Gbit/inch?achieved (x5 increase).
Applicable up to 1 — 2 Thit/inch?.

World market of HDD: 25 billion USD _
head: 5 billion USD TEMimage




Ultrathin CoFeB electrode can have perpendicular magnetization.

Perpendicularmagnetization

/In-plane magnetization
«or» CoFeB * or; $< 1.5nm

ZanmI
MgO barrier

Zl.5nmI —} CoFeB f 1< Lsnm

S.lkeda, H. Ohno etal.,
Nature Mater. 9, 721 (2010).

Since Djayaprawira, SY, et al.,
APL 86, 092502 (2005).

- —-.rah"--l
L H.Lplane
V 4
~ H// plane | 7
—~ 0
=
_‘| f— tCoFeB - 13 nm
aarantl
-0.5 0 0.5
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Spin-transfer torque In magnetic nano-pillar

Spin-transfer torque

1T
ﬁ Spin momentum transfer

A
| 1&52 FM2 Free layer

—— 4.@. NM spacer layer
)
<= Local spin

Conduction ‘_
electron Sy

| L -

FM1 (pinned layer)




Theory of sp

In-transfer torque

J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
L. Berger, Phys. Rev. B 54, 9353 (1996).

S, =75, xH; —as, xS, + B 1S, X (S, xS,)

Precession Damping Spin-transfer

Pinned Free
T / > Heff .
] A Damping
Current | S

When spin torque>dampingtorque,
the precession angleis amplified, and
the free-layermoment (S,) switches.

torque
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Writing (magnetization switching) by spin-transfer torque

Switching by field Switching by

Spin torque /

Ideal for high-density
MRAM cells

.

Not scalable!

o
N

o
=

Writing power

Switching current density
o Jco = 5%10°A/cm?
10 FOO 1000 js required for application.

ell size nm
Gbit-MRAM




In-plane magnetization vs. Perpendicular magnetization

In-plane Perpendicular
magnetization magnetization
C— T
b
| .
<Materials> <Materials>
CoFeB L1,-ordered alloy (e.g. FePt)
Co-Fe Multilayer, superlattice
Ni-Fe RE-TM alloy (e.g. Tb-Co)

HCP alloy (e.g. Co-Cr)
ultrathin CoFeB




Development of Spin-RAM

2005 Sony (IEDM 2005)

- iIn-plane MTJ cells
-4 kb

2007 Hitachi/Tohoku U. (ISSCC 2007)

- in-plane MTJ cells
-2 Mb

2008 Toshiba, AIST etc. (IEDM 2008)

- p-MTJ cells
-1 kb

2010 Toshiba (ISSCC 2010)

- p-MTJ cells
- 64 Mb, 65 nm




Canon-Anelva C-7100 sputtering system installed at AIST

RT-350°C
Co-sputtering
from 3 targets.

Plasma |
8PVD

“Cenng I °
Co-sputtering
@ DC from 3 targets.




New perpendicular magnetic material : superlattice film

Yakushiji, SY et al., Appl. Phys. Express 3, 053003 (2010).
Yakushiji, SY et al., Appl. Phys. Lett., 97,232508(2010).

fcc(111)-based
superlattice film

'.".'.'.'.'l"""'."'.'
«««««««««««
DOOOO0 l"l'l-‘l‘l'l\l

AAAAAAAAAAAAA
A.:.A.:...L.A.L.A.A.:.A.A.
<

vvvvvvvvvvvvv

Co (=1 ML
Pt(Pd) (~1 ML)

cf. conventional magnetic multilayer
with thick Pt(Pd) layers

Co (2-3 ML)__
Pt(Pd) (6-8 MLy—

il

Ru cap | :

[Co/Pt]g

Ru buffer

TEM

/. ] ”, : ‘;%ﬁ
. -:{..-‘,LE_'-_".{- : AR ::i:i Pt
o e e L L R
¢

HAADF-STEM




Magnetic superlattice vs. conventional multilayer

Superlattice Conventional

film multilayer film
Thickness of Ultra-thin Relatively thick
total stack (< 1.2 nm possible) (> 3 nm)
Structure Artifical alloy Mutilayer
Up to 12 Merg/cc _
K, (tunable) 5 Merg/cc
. . Very good Poor
Annealing stability = 370°C — 200°C
Origin of perp. Magneto-crystalline Interfacial anisotropy

magnetic anisotroy anisotropy




Basic requirements for Gbit-scale Spin-RAM

= (1) A= ¢/kgT > 60-80 for cell size <50 nm

(2) MR ratio > 100 — 150% and low RA product
(3) Switching current density, J-, = 5x10°>A/cm?

(4) Switching speed < 20 ns to replace DRAM
<1 -3 nstoreplace SRAM




Thermal stability of MTJ, A= K,V/k;T

When cell size is smaller than 50 nm,
the uniaxial shape anisotropy cannotyield A > 60.

MTJ with /n-plane magnetization is hopeless !

Perpendicular magnetic recording

HDD
500 Gbit/inch?

A >80 for the grain size <10 nm




Basic requirements for Gbit-scale Spin-RAM

(1) A= ¢/ kgT > 60—80 for cell size <50 nm

=) (2) MR ratio > 100 — 150% and low RA product
(3) Switching current density, J-, = 5x10°>A/cm?

(4) Switching speed < 20 ns to replace DRAM
<1 -3 nstoreplace SRAM




MRA ratio and RA product required for Gbit Spin-RAM

MR > 100 — 150% is required to attain a high read-out signal
(voltage) with a small read-out current.

Low RA Is required to satisfy the impedance matching with
the pass transistor (CMQOS).

The MTJ resistance should be about 10 kQ.

1 Gbit (F = 65nm) == RA< 30 Qum?, MR > 100%
5 Gbit (F=30nm) == RA< 7 Qum?, MR > 100%

10 Gbit (F =20 nm) =sssp RA < 3.5 Qum2, MR > 100%




How to achieve high MR with perpendicular electrodes ?

<lssues>

(i) The A, band of perpendicular materials are not fully spin-polarized.

(i) Lattice matching between perp. materials and MgO(001) is not good.

ﬂ Insertion of CoFeB between MgO and PMA layer

PMA material

CoFe/CoFeB

MgO(001)

PMA material
Lattice mismatch
s Band mismatch
PMA material

CoFe/CoFeB

PMA material




REF.

FREE

Typical structure of p-MgO-MTJ

Yakushiji, SY et al., Appl. Phys. Express 3, 053003 (2010).
Yakushiji, SY et al., Appl. Phys. Lett., 97,232508(2010).
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Can we simultaneously attain high MR & low RA? - Yes!/

~ ! @
> 100 = ¢ @ ;
9 5 @
LR
Y - &
S 50 i ®

i )

o A < N VAR IV SPRIL: SO |

0 1 2 3 4 5
RA product (Qum?)

The p-MTJs basically satisfy the requirements for
10 Gbit Spin-RAM (RA < 3.5Qum?, MR > 100%).




The best properties attained with /n-p/lane magnetization

Nagamine, SY et al., Appl. Phys. Lett. 89, 162507 (2006).
Maehara, SY etal., Appl. Phys. Express 4,033002 (2011).

MRratio at RT (%)

MR=175%& RA=1.0Q-um?

200 . 1 I LI l|\x| 1 T 1T riy
with in-situ
annealing of S
o Meolaver ST e
APEX 2011
( 011) MgO layer
(APL 2006)
100 [— \ —
MR =102%
50 & RA=0.9Q-um?
0.1 1 10

RA ( Q-um2)




Basic requirements for Gbit-scale Spin-RAM

(1) A= ¢/ kgT > 60—80 for cell size <50 nm

(2) MR ratio > 100 — 150% and low RA product
=) (3) Switching current density, Jcq = 5x10° A/cm?

(4) Switching speed < 20 ns to replace DRAM
<1 -3 nstoreplace SRAM




Potential barrier for magnetization switching
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Our latest data (Courtesy of Toshiba)

NEDO - Spintronics Non-Volatile Devices Project
(Toshiba, AIST, etc.)
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Basic requirements for Gbit-scale Spin-RAM

(1) A= ¢/ kgT > 60—80 for cell size <50 nm

(2) MR ratio > 100 — 150% and low RA product
(3) Switching current density, J-, = 5x10°>A/cm?

=) (4) Switching speed < 20 ns to replace DRAM
<1 -3 nstoreplace SRAM




Demonstration of high-speed switching

Kishi, SY et al. IEDM 2008, 12.6.
(Toshiba, AIST, etc.)
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Summary on Spin-RAM

for MTJ size < 50 nm

Perp. In-plane
MTJ MTJ
WRITE (I)  |<drive currentof cmos| () X
MR ratio> 100-150%
READ (MR & RA) 2 low RA
STABILITY A A> 60 — 80

SPEED

< 20 ns writing

ENDURANCE

> 1016 write cycles
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Toshiba - Hynix alliance to commercialize Spin-RAM

TOSHIBA About Toshiba

Leading Innovation 2>

Hynix and Toshiba Sign Joint Development for MRAM

13 Jul, 2011

SEOQUL, South Korea and TOKYQ, Japan--July 13, 2011—Hynix Semiconductor Inc. (KRX: 000660) and Toshiba
Corporation (TOKYO: 6502) today announced that they have agreed to strategic collaboration in the joint development
of Spin-Transfer Torque Magnetoresistance Random Access Memory (MRAM), a fast emerging next generation memory
device. Once technology development is successfully completed, the companies intend to cooperate in manufacturing
MRAM products in a production joint venture. Hynix and Toshiba have also extended their patent cross licensing and
product supply agreements.

Toshiba recognizes MRAM as an important next-generation memory technology with the potential to sustain future
growth in its semiconductor business. Hynix has a cutting-edge memory technology, most notably in manufacturing
process optimization and cost competitiveness. The collaboration announced today, between two of the world's leading
semiconductor manufacturers in a promising new technology, is expected to make a significant contribution to the
continued progress of the world semiconductor industry.

A number of exceptional features have earned MRAM the status of promising future memory technology. A non-volatile
memory, it is also power efficient and operates at ultra-high speed. Applications requiring high-density memory are
expected to take advantages of MRAM, and major initial applications are expected in the mobile market, which notably
demands low power consumption.

http://mww.toshiba.co.jp/about/press/2011 07/pr1302.ntm




Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)
Magnetoresistance
Tunnel magnetoresistance in magnetic tunnel junction (MTJ)
Giant TMR in MgO-based MTJ
CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

Physics of spin-transfer torque

Spin-transfer torque MRAM (STT-RAM or Spin-RAM)
» Microwave applications




Steady-state precession induced by spin torque

DC current & voltage
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MgO-MTJ is expected to act as a microwave oscillator and detector.
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Microwave functions of MgO-based MTJs
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Tulapurkar, SY, Nature 438,339 (2005).

Kubota, SY et al., Nature Phys. 4, 37 (2008).
Deac, SY etal., Nature Physic 4,803-809 (2008).
Dussaux, SY etal. Nature Comm. 1, 8 (2010).

H. Maehara, SY et al., MMM 2010.
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Spin-torque diode effect Spin-torque oscillator (STO)
(microwave detection) (microwave emission)




Advantages of STO over conventional microwave oscillators
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MR effects Industrial applications
MR ratio (RT & low H)
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