Department of Physics CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES Universität Bielefeld

SPIN CALORICS AND SPIN TRANSFER IN MAGNETIC NANOSTRUCTURES

G. Reiss¹, D. Meier¹, A. Böhnke¹, H.W. Schumacher², S. Serrano-Guisan³, M. Walter⁴, J.C. Leutenantsmeyer⁴, M. Münzenberg⁵

> ¹Bielefeld University, Physics Department, P.O. Box 100131, 33501 Bielefeld, Germany ²Physikalisch Technische Bundesanstalt, 38159 Braunschweig, Germany ³International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal ⁴I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany ⁵Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, Germany

Collaborations:

C. Felser, Mainz and Dresden / K. Nielsch, Hamburg / J. Moodera, Cambridge / Elke Arenholz, ALS Berkeley / Ch. Heiliger, Giessen / Intel / Bosch / Singulus / Sensitec

Funding:

The EMRP is jointly funded by

DFG Priority Programme **SpinCat**

IEEE Magnetics Santa Clara Valley Chapter April 2014

FAQ's: Where is Bielefeld ?

Introduction

Spincalorics

Spincalorics

Spin Transfer

New Materials

Spintransfer

LSSE in Ni-Ferrite TSSE in Permalloy ??

in MTJs

in MTJs in p-MTJs STT at the limit

High K, Iow M_s

Spintransfer

There are many ways to transfer spins / angular momentum:

Spintransfer

... but why should one like to transfer spins / angular momentum?

→ Because the total angular momentum is conserved
 → Spintransfer gives handle on magnetization

HI HI HI HI HI

Example 1: Spin-Transfer-Torque Switching (STT) of a magnetic double layer → writing information

Example 2: Spin-Transfer-Torque induced magnetization oscillations in a magnetic double layer → creating microwave emission

.. and many more (driving magnetic domain walls, enhancing their speed, ..)

<u>Spincalorics – Seebeck and</u> <u>Inverse Spin Hall Effect</u>

Spintransport by a T-gradient Spin separation in Spin Hall Effect

Ingredients for SpinCalorics:

1111

Spincalorics – Seebeck and Inverse Spin Hall Effect

Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

Spincalorics – Spin-Seebeck and Competing Effects

Nernst effects

Overview of Spin-Seebeck- and competing Nernst-Effects:

		Gradx T				Gradz T				
		blocost	anomalous	planar	transversal	Norect	anomalous	planar	longitudinal	
		Wernst COL	Nernst	Nernst	spin-Seebeck	or He	Nernst	Nernst	spin-Seebeck	
		×Π2	CC Mz	∝Mx*My	ccsigmax	V HX	oc Mx	∝ My*Mz	oc sigmax	
Hx Hy	NiFe									no effect
	Pt									linear
	NiFe									anisotropy
	Pt									hysteresis
H7	NiFe				100 The 100	- 19470		4.51 0.46	and the second	
112	Pt						-	A CONTRACT		
HX HV	NiFe						the second	TAX X	No.	
Tra, Try	Pt				Same and	Contraction of the second	and the second	5 -	1	nut together
Hy.Hz	NiFe					10.250	1	-	1 - 14	put together
	Pt				Contraction of the local division of the loc	120 3	-	Lon	-	bv bv
Hz.Hx	NiFe				20	1	and the second	1	1 4	y
	Pt					C. S. J. A.	110	1 and the second		
Hx	NiFe2O4				1	10	1	and the second		
	Pt				and the second second	14 . 1	100			
Hy	NiFe2O4				21.20	1 the	ir 197		1 pla	the second se
	Pt				in and				1 and all	and the second
Hz	NiFe2O4				CONCIMUM.	CARLES AND ADDRESS			A A	
	Pt				COST VILLA	C.		11 11 12	1 the second	
Hx,Hy Hy,Hz	NiFe2O4					at 1	1 AL	- Annalis	A CONTRACT	Timo
	Pt				ALC: NOT THE OWNER	-	Xile -		- Million C	
	NiFe2O4				STORA DE DITY	and the	- 10-	CONTRACT.	Annual Statements	Kuschel
	Pt				-	N. I		200		
Hz,Hx	NiFe204					-				
	Pt									

<u>Spincalorics – Transverse Spin</u> Seebeck

TSSE still under discussion ..

<u>Spincalorics – Longitudinal Spin</u> <u>Seebeck Effect (LSSE)</u>

Other Spin-Seebeck-Effects :

On insulating $LaY_2Fe_5O_{12}$ Uchida et.al., Nat. Mat. Sept. 2010

Sample arrangement for LSSE (left) and conductivity (right) @Bielefeld

T₀: variable base temperature

Spincalorics – LSSE in NiFe₂O₄

NFO (deposition time 100 min.) on MAD

Measured in Prof. Saitoh's lab, Tohoku University, Sendai, Japan (T. Kuschel, D. Meier) NiFe₂O₄ from A. Gupta, Alabama University, Tuscaloosa, USA

Spincalorics – LSSE in NiFe₂O₄

Measured @Bielefeld lab, $CVD-NiFe_2O_4$ from A. Gupta, Alabama $PVD-NiFe_2O_4$ from Bielefeld-lab

.. reproducible signals but watch Nernst effects!

a, b, d, e: LSSE in NiFe₂O₄ for various values of ΔT and angle α between ΔT and \dot{H} c, f: LSSE amplitude as function of ΔT and α

Spincalorics – LSSE in NiFe₂O₄

LSSE on Pt-stripe and Anomalous Nernst signal on bare NiFe₂O₄

a, b, d: LSSE in NiFe₂O₄ films for various values of ΔT and T₀ c: LSSE amplitude vs ΔT for various T₀

 \rightarrow use semiconducting properties of NiFe₂O₄ and variable base temperature

NiFe₂O₄ has semiconducting-type temperature dependence of the conductivity

→ compare LSSE at variable base temperature with conductivity

→ Conductivity drops by 6 orders of magnitude, → V_{Sat} of (??) LSSE drops only by 1 ½ orders

 \rightarrow V_{sat} due to LSSE

 \rightarrow directly measured Nernst effect agrees with these data

PHYSICAL REVIEW B 87, 054421 (2013)

Thermally driven spin and charge currents in thin NiFe₂O₄/Pt films

D. Meier,^{1,*} T. Kuschel,¹ L. Shen,² A. Gupta,² T. Kikkawa,³ K. Uchida,^{3,4} E. Saitoh,^{3,5,6,7} J.-M. Schmalhorst,¹ and G. Reiss¹

Spincalorics – TSSE in Permalloy?

Experimental arrangement (new setup) with

- Two possible temperature gradients
- Wire bonding to Pt
- In vacuum
- At variable base temperature

Expect: ANE for
$$\nabla T_z$$
: $\vec{E}_{ANE} = N_{ANE} \nabla T \times \vec{M}$.

Expect: PNE for ∇T_x : $V_y \propto |M|^2 \sin(\varphi) \cos(\varphi) |\nabla T| \propto M_x \cdot M_y |\nabla T|$

? TSSE

Spincalorics – TSSE in Permalloy ?

Proteinipe Proteini Proteinipe Proteinipe Proteinipe Proteinipe Proteinipe Pr

At $T_0 = 300$ K Pt-stripe on hot side of the sample. Field in sample plane. Thin W-tips as voltage probes

Gives only PNE (Planar Nernst Effect)

"TSSE"-signal for various values of α as a function of the external field H

 \rightarrow only symmetric effects

Spincalorics – TSSE in Permalloy?

a: "TSSE" signal on Pt on Py for various ∆T as a function of the external field H measured with thick Au-tips

b, c: antisymmetric and symmetric part of the measured signal

Pr strips

 $T_0 = 300K$, ΔT variable Pt stripe on hot side of the sample, thick Au tips as voltage probes (1mm)

Symmetric part: Planar Nernst Effect

Antisymmetric: Anomalous Nernst Effect due to heat transport by Au-tips

Heat tips and look at voltage signals in TSSE-geometry!

Transverse Spin Seebeck Effect versus Anomalous and Planar Nernst Effects in Permalloy Thin Films

M. Schmid,¹ S. Srichandan,¹ D. Meier,² T. Kuschel,² J.-M. Schmalhorst,² M. Vogel,¹ G. Reiss,² C. Strunk,¹ and C. H. Back¹

Spincalorics in MTJs

MTJ Stack

Magnetic Tunnel Junctions with CoFeB (in plane or perpendicular) and other materials ΔT

or laser pulses

Spincalorics in MTJs

(a) MTJ stack composition. HL, TC and BC: heater line, electrical top and contact
(b) SEM image with HL, BC, and TC (MTJ nanopillar indicated). Red line: cross section for simulations.
(c) Resistance increase of HL (open dots) and BC (full dots) vs heating power. Right : temperature increase of HL and BC.
(d) Measured temperature dependence of HL resistance.
(e) Simulated temperature distribution (2D cross section).

Spincalorics in MTJs

f) simulated temperature profile across the MgO barrier

and

enlarged view of the MTJ

(a) MTJ stack composition. HL, TC and BC: heater line, electrical top and contact
(b) SEM image with HL, BC, and TC (MTJ nanopillar indicated). Red line: cross section for simulations.
(c) Resistance increase of HL (open dots) and BC (full dots) vs heating power. Right : temperature increase of HL and BC.
(d) Measured temperature dependence of HL resistance.
(e) Simulated temperature distribution (2D cross section).

Spincalorics in MTJs

Seebeck coefficient S for tunnel junctions: $S = \frac{\int T(E)(E-\mu) (-\partial_E f(E,\mu,T)) dE}{e T \int T(E) (-\partial_E f(E,\mu,T)) dE}$

 $\partial_E f(E, \mu, T)$: Derivative of occupation function

Seebeck coefficient is caused by $TMTP \text{ or } TMS = \frac{U_{max} - U_{min}}{U_{min}}$ asymmetric DOS at E_F

→ Thermovoltage U should depend on magnetization directions → Important: S ≠ conductivity $g = \frac{e^2}{h} \int T(E) (-\partial_E f(E, \mu, T)) dE$

Spincalorics in MTJs

Spincalorics in MTJs

Marvin Walter¹, Jakob Walowski¹, Vladyslav Zbarsky¹, Markus Münzenberg¹*, Markus Schäfers², Daniel Ebke², Günter Reiss², Andy Thomas^{2,3}, Patrick Peretzki⁴, Michael Seibt⁴, Jagadeesh S. Moodera⁵, Michael Czerner⁶, Michael Bachmann⁶ and Christian Heiliger⁶

Spincalorics in MTJs: Thermocurrent

 $I_{Total} = \sigma V_{ext} + \sigma S \nabla T_{MTJ}$

Tunnel-Magneto-Thermocurrent:

 $I_{TP} = \sigma S \nabla T_{MTJ}$

Note: σ changes from P to AP configuration !

Reports: I_{TP}=0 ??

Spincalorics in MTJs: Thermocurrent

$$I_{Total} = \sigma V_{ext} + \sigma S \nabla T_{MTJ}$$

Tunnel-Magneto-Thermocurrent:

 $I_{TP} = \sigma S \nabla T_{MTJ}$

Note: σ changes from P to AP configuration !

Reports: I_{TP}=0 ??

dashed lines: computed current, solid lines / points: measured values !

Tunneling magneto thermocurrent in CoFeB/MgO/CoFeB based magnetic tunnel junctions

N. Liebing, S. Serrano-Guisan, P. Krzysteczko, K. Rott, G. Reiss et al.

Citation: Appl. Phys. Lett. 102, 242413 (2013); doi: 10.1063/1.4811737

Onsager's relations valid for TMTP ..

Spincalorics in MTJs

 \rightarrow Co₂FeSi

Gap in one spin direction should increase not only TMR but also $S = \frac{\int T(E)(E - \mu) (-\partial_E f(E, \mu, T)) dE}{e T \int T(E) (-\partial_E f(E, \mu, T)) dE}$ (large asymmetry of DOS at E_F)

a) TMS reaches 90 ... 96 % comparable to TMR (b)

c) Dependence of TMS ratio on applied laser power.

... ongoing experimental and theoretical work

Spin Transfer in MTJs

Resistance vs Magnetic Field for: A CoFeB / MgO / CoFeB and a Co2 FeAI / MgO / CoFeB structure pseudo-spinvalve MTJ Heusler MTJ

"Normal" in plane tunnel junctions

Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

Spin Transfer in MTJs

Push high current pulses through tunnel junction

charge & angular momentum

$$\frac{d\mathbf{m}}{dt} = -\gamma(\mathbf{m} \times \mathbf{H}_{\text{eff}}) + \alpha \left(\mathbf{m} \times \frac{d\mathbf{m}}{dt}\right)$$
$$- T_{J(\text{hot})}\mathbf{m} \times (\mathbf{m} \times \hat{\mathbf{m}}_{p}),$$

Landau-Lifshitz-Gilbert-Slonczewski equation

friction torque (damping)

STT – Spin Transfer Torque (antidamping)

 \rightarrow The spin current switches the device due to transfer of torque

Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

Spintransfer in perpendicular MTJs

The samples:

MTJ Stack

Fig. 1. HRTEM images of a thick 10 ML (left) and a heated 3 ML MgO barrier (right). The IQR values are $(5.6 \pm 1.5)^{\circ}$ (10 ML) and $(6.7 \pm 0.8)^{\circ}$ (3 ML).

Magnetic Tunnel junctions with CoFeB (in plane or perpendicular) and other materials

MgO thickness down to 3 monolayers

Spintransfer in p-MTJs

16 100nm pillars 14 R (kΩ) $AP \rightarrow P$ 12 =-25µA P→AP =52.5µA 10 -300 300 600 900 -600 0 Voltage (mV)

Resistance vs. external magnetic field for perpendicular MTJs 1.0nm CoFeB / 4 ML MgO / 1.2nm CoFeB gives around 40-50% TMR RV-characteristic with an applied field of 8.6 mT

average critical current density:
 <u>2 · 10⁵ A/cm² (!!)</u>

Parameter space for thermal spin-transfer torque	SPIN		
J. C. Leutenantsmeyer, ¹ , ^a M. Walter, ¹ V. Zbarsky, ¹ M. Münzenberg, ¹ R. Gareev, ² K.	Vol. 3, No. 1 (2013) 1350002 (7 pages)		
Rott, ³ A. Thomas, ³ G. Reiss, ³ P. Peretzki, ⁴ H. Schuhmann, ⁴ M. Seibt, ⁴ M. Czerner, ⁵			
and C. Heiliger ⁵			

Spintransfer in p-MTJs

16 100nm pillars 14 R (kΩ) AP→P 12 P→AP =52.5µA 10 -600 -300 300 600 900 0 Voltage (mV)

Resistance vs. external magnetic field for perpendicular MTJs 1.0nm CoFeB / 4 ML MgO / 1.2nm CoFeB gives around 40-50% TMR RV-characteristic with an applied field of 8.6 mT

- average critical current density:

<u>2 · 10⁵ A/cm² (!!)</u>

Parameter space for thermal critic could switch such MTJs

^{Rc} if 10K temperature difference across barrier can be realized .. or if J_C is reduced SPIN Vol. 3, No. 1 (2013) 1350002 (7 pages)

Latest results: J_C can be as small as 10⁴ A/cm² !!!!

New materials

Free layer:

Low Magnetization Small or high damping **High anisotropy** Easy to switch High spin polarization

Fixed layer

Moderate magnetization Not to switch High spin polarization Good and affordable exchange bias (perpendicular!)

Tunnel barrier

Good growth on ferromagnet **Spin filtering** Good substrate for ferromagnet

	Cap / Wiring	
2-4 nm	Free layer	
0.8-2 nm	Tunnel barrier	
2-3 nm	Fixed layer	
5-20 nm	IrMn	
	Base layer / Wiring	
		-

MTJ Stack

Thermal stability KV / kT > 60 for 10-years data retention: CoFeB on MgO possibly not good enough

P.K. Amiri et.al, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 1, JANUARY 2011

New Materials

 $.../(Co_{0.6}/Pt_{1.8})_4 /Co_{0.7}/Mg_{0.5}/MgO_{2.1}$ / (Co_{0.7}/Pt_{1.8})₂ /... at 300 K

Major loop of <u>alloys</u> .../(CoFe)₇₉Tb₂₁ 30nm / CoFeB 1nm /Mg 0.5nm /MgO 2.1nm / CoFeB 1nm / (CoFe)₇₉Tb₂₁ 10nm /... at 360 K

Zoë Kugler, J.-P. Grote, V. Drewello, O. Schebaum, GR, J. Appl. Phys. 111, 07C703 (2012)

Both show similar good temperature dependence

But: Large damping So far Iow TMR

.. candidate systems: The Heusler-class Mn_{3-x}Ga and Mn_{2-x}Co_{1-y}Ga

New Materials

First results on Mn_{2.6}Ga: Very strong perpendicular anisotropy, low magnetization

Could work down to 5nm feature size !

M. Glas, C. Sterwerf, J. M. Schmalhorst, D. Ebke, C. Jenkins, E. Arenholz, G. Reiss, J. Appl. Phys. 114, 183910 (2013)

New Materials

Material gives TMR, but up to now only with CoFeB interlayer and not yet completely antiparallel aligned .. further work on the way

<u>Summary – Take home</u> messages

Thermally driven spin currents in insulators

Thermally driven spin currents in MTJs TMTP, TMS

 \rightarrow LSSE (+ ANE, PNE)

Spin transfer and torque in magnetic tunnel junctions STT (+oscillations)

Thermal STT switching ?

STT switching by SO-interaction

-- Spin-Orbit-Torque ?

Thanks

All coworkers in Bielefeld

J.-M. Schmalhorst A. Thomas T. Kuschel D. Meier Ch. Klewe

Funding: C DFG EU – FP7, EMRP BMBF NRW (Northrhine Westfalia) European Commission Thyssen Krupp Foundation Humboldt Foundation .. and you for listening !

Round Robin Experiment for Spin Seebeck Effects within EMRP-Project: contact H.W. Schumacher

Samples / Lithography: <u>Center for Spinelectronic Materials and Devices</u>, http://www.physik.uni-bielefeld.de/experi/d2/research/CSMD.html contact: Speaker

