
Regenerating	codes	for	
distributed	storage

IEEE	Information	Theory	Society
Santa	Clara	Valley	Chapter

May	24,	2017

Mary	Wootters
Stanford	University

This	talk	is	about

• Regenerating	codes	for	distributed	storage

• Main	purpose:	survey/introduction	to	regenerating	codes
• Time	permitting:	some	of	my	recent	work

• My	ulterior	motive:
• I	am	a	theorist!
• I	want	to	learn	from	this	audience:
• How	might	regenerating	codes	be	useful	in	your	work?		(if	at	all)
• Especially	the	second	part	of	the	talk	J

Outline
1. Coding	for	distributed	storage:	what’s	the	problem?
2. Coding	for	distributed	storage:	how	do	we	solve	the	problem?
• Try	1:	replication
• Try	2:	classical	erasure	coding
• Try	3:	regenerating	(MSR)	codes

3. What	can	we	do	with	regenerating	codes?
• Basic	bounds

4. How	about	codes	I	know	and	love?
• Reed-Solomon	Codes

5. Future	work/Open	problems

1.	What’s	the	problem?

• We	want	to	store	a	lot	of	data.
• Think:	
• Facebook	HDFS
• Windows	Azure
• Google	Colossus

• We	want	all	the	data	to	be	
available	at	all	times.
• Even	grumpy	cat

Source:	the	
internet

Data	might	be	unavailable

Rashmi	at	al.	USENIX	HotStorage 2013
Study	on	Facebook	Warehouse	Cluster

Ford	et	al.	USENIX	OSDI	2010
Study	at	Google

Formally

• For	the	rest	of	this	talk,	data	look	like	this:

• We	want	to	somehow	encode	the	data	and	distribute	it	among	n	nodes

• Nodes	may	become	unavailable.

A	bunch	of	blocks.
Think	of	each	block	as	
holding	a	byte.

…

Formally

• For	the	rest	of	this	talk,	data	look	like	this:

• We	think	of	encoding	the	data	into	n	blocks:

and	then	distributing	the	blocks,	one	to	each	node.
• We	will	thus	think	of	single	blocks	as	becoming	unavailable.

A	bunch	of	blocks.
Think	of	each	block	as	
holding	a	byte.

Usually,	
nodes	become	unavailable	one	at	a	time

Number	of	missing blocks Percent	of	stripes	that	have	one	or	
more	block	missing

1 98.08

2 1.87

3 0.036

4 9	x	10-6

5 9	x	10-9

Rashmi	et	al.,	USENIX	Hot	Storage	2013

For	example,	in	the	
Facebook	Warehouse	

Cluster	in	2013:

But	we	do	need	to	
handle	multiple	

failures	sometimes.

Outline
1. Coding	for	distributed	storage:	what’s	the	problem?
2. Coding	for	distributed	storage:	how	do	we	solve	the	problem?
• Try	1:	replication
• Try	2:	classical	erasure	coding
• Try	3:	regenerating	(MSR)	codes

3. What	can	we	do	with	regenerating	codes?
• Basic	bounds

4. How	about	codes	I	know	and	love?
• Reed-Solomon	Codes

5. Future	work/Open	problems

Solution	1:	replication

• Just	make	three	(or	more)	copies	of	all	of	the	data.
• This	is	very	robust.

• Used	(at	least	until	recently)	in	
• Hadoop	Distributed	File	System	(HDFS)
• Google	File	System

• Downside:	a	lot	of	storage	overhead.
S.	Ghemawat,	H.	Gobioff and	S.-T.	Leung,	

“The	Google	file	system”,	2003

http://hadoop.apache.org/docs/current/

Solution	2:	erasure	coding

• Use	and	MDS	code	(like	Reed-Solomon)	to	encode	the	data.
• We’ll	see	what	that	means	on	the	next	slide

• This	can	substantially	reduce	the	amount	of	overhead	for	the	same	
amount	of	robustness.

• Used/supported	by:
• HDFS
• Windows	Azure
• …

Solution	2:	erasure	coding

• Break	up	some	data	into	k	blocks:

• Encode	these	with	a	Maximum	Distance	Separable code	into	n	blocks
• For	example,	a	Reed-Solomon	Code
• MDS	means	that	any	k	encoded	blocks	are	enough	to	recover	the	original	data

• Send	each	encoded	block	off	to	a	different	server.

Say	each	block	stores	a	byte

add	n-k	parity	blocks

Example:	(2,4)	MDS	code

• Say	I	have	two	blocks	of	information:

• Encode	this	as	four	blocks:

• Now	even	if	two	blocks	are	erased,	I	can	recover	the	original	data.

x y

x y x	+	y x	+	ay

x y x	+	y x	+	ay
y =	y
x =	-y +	(x+y)

This	works	no	
matter	which	two	
blocks	are	erased.

Compare	with	repetition

• Repetition:	3X	overhead	to	handle	two	erasures:

• MDS	Erasure	Coding:	2X	overhead	to	handle	two	erasures:

x y x y x	+	y x	+	ay

x y x yx yx y

That	sounds	great

• And	it	is!		
• Information-theoretically,	we	can’t	do	better	than	an	MDS	code	when	
it	comes	to	the	trade-off	between	storage	overhead	and	fault	
tolerance.

So	what	is	this	talk	about?

Usually,	
nodes	become	unavailable	one	at	a	time

Rashmi	et	al.,	USENIX	Hot	Storage	2013

For	example,	in	the	
Facebook	Warehouse	

Cluster	in	2013:

But	we	do	need	to	
handle	multiple	

failures	sometimes.

Number	of	missing blocks Percent	of	stripes	that	have	one	or	
more	block	missing

1 98.08

2 1.87

3 0.036

4 9	x	10-6

5 9	x	10-9

An	(n,k)	MDS	code	protects	against	n-k	failures
but	how	does	it	deal	with	just	one?

k	data	blocks

add	n-k	parity	blocks

?

download	k	different	blocks,	
recover	all	the	data,	and	then	
find	the	one	block	you	want.

This	is	very	wasteful!
can	we	do	better?

k	data	blocks

add	n-k	parity	blocks

?

Say	we	download	
only	k-1	blocks.

The	MDS	property	(that	any	k	blocks	
determine	the	data)	implies	that	the	
missing	block	could	be	anything.

Not	with	an	MDS	code!

We	can’t	do	better	with	an	MDS	code!
Two	solutions

1. Don’t	use	an	MDS	code
• This	is	a	reasonable	option!		
• Many	approaches	do	this.
• I’m	not	going	to	talk	about	them.

2. Change	what	we	mean	by	“better.”
• What	was	the	problem?

• Network	bandwidth
• What	can’t	we	improve?

• Number	of	nodes	we	contact

These	aren’t	
necessarily	the	same.

Solution	3:	Regenerating	Codes

• Still	MDS	codes	
• At	least	for	this	talk.*

• But	they	have	an	
additional	property:
• They	allow	for	low-
bandwidth	repair	of	a	
single	failure.

?
Contact	more	than	k	nodes…but	download	
less	than	a	whole	block	from	each!

*Jargon:	I’m	going	to	be	talking	only	about	Minimum	Storage	Regenerating	(MSR)	codes.

See	the	Erasure	Coding	for	Distributed	Storage	Wiki	
http://storagewiki.ece.utexas.edu/doku.php
for	lots	more	information!
In	particular,	the	nice	survey:	Dimakis et	al.	“A	Survey	on	Network	Codes	for	Distributed	Storage”	2011.

Example:	regenerating	codes

• Each	block	stores	two	bits:

• This	is	still	MDS
• Can	recover	the	data	from	any	two	failures.
• Notice	that	this	requires	four	bits	of	information.

x1
x2

y1
y2

x1	+	y1
x2	+	y2

y1	+	x2
x1	+	x2	+	y2

x1 =	y1	+	y2	+ (y1	+	x2) +	(x1	+	x2	+	y2)
x2 = y1	+	(y1	+	x2)

All	addition	is	mod	2

Example:	regenerating	codes

• Each	block	stores	two	bits:

• With	just	one	failure…
• Naively	still	use	four	bits

x1
x2

y1
y2

x1	+	y1
x2	+	y2

y1	+	x2
x1	+	x2	+	y2

x1 =	y1	+ y2	+ (y1	+	x2) +	(x1	+	x2	+	y2)
x2 = y1	+	(y1	+	x2)

2	bits 2	bits

All	addition	is	mod	2

Example:	regenerating	codes

• Each	block	stores	two	bits:

• With	just	one	failure…
• We	can	get	away	with	only	three!

x1
x2

y1
y2

x1	+	y1
x2	+	y2

y1	+	x2
x1	+	x2	+	y2

x1 = (x2	+	y2)	+	(x1	+	x2	+	y2)
x2 =	y2	+	(x2	+	y2)

1 bit 1 bit
1 bit

All	addition	is	mod	2

Example:	regenerating	codes

• Each	block	stores	two	bits:

• With	just	one	failure…
• We	can	get	away	with	only	three!
• The	nodes	are	allowed	to	do	some	

local	computation

x1
x2

y1
y2

x1	+	y1
x2	+	y2

y1	+	x2
x1	+	x2	+	y2

y1	+	x2 = (y1	+	y2)	+	(x2	+	y2)
x1	+	x2	+	y2 =	x1	+	(x2	+	y2)

⊕

All	addition	is	mod	2

Regenerating	codes

• Same	amount	of	storage	overhead	as	MDS	codes
• Much	less	bandwidth required	to	repair	a	single	node
• (Than	the	naïve	MDS	scheme)

• Introduced	by	Dimakis et	al.	in	2010
• Since	then,	lots	of	work,	both	on	the	theory	side	and	the	systems	side
• There	exist	good	constructions
• In	several	parameter	regimes,	we	know	the	“right”	trade-off	between	
bandwidth,	storage	overhead,	and	redundancy.

Dimakis et	al.	"Network	coding	for	distributed	storage	systems." IEEE	Trans.	IT,	2010
Erasure	Coding	for	Distributed	Storage	Wiki:	http://storagewiki.ece.utexas.edu/doku.php

Outline
1. Coding	for	distributed	storage:	what’s	the	problem?
2. Coding	for	distributed	storage:	how	do	we	solve	the	problem?
• Try	1:	replication
• Try	2:	classical	erasure	coding
• Try	3:	regenerating	(MSR)	codes

3. What	can	we	do	with	regenerating	codes?
• Basic	bounds

4. How	about	codes	I	know	and	love?
• Reed-Solomon	Codes

5. Future	work/Open	problems

Some	lower	bounds
• 𝑏 ≥ 𝑡 ⋅ &'(

&')

• 𝑏 ≥ 𝑡 + 𝑘	 − 1

• 𝑏 ≥ (𝑛 − 1) ⋅ log5
&'(
&')

We	want	to	recover	t	bits,	so	we	can’t	do	better	
than	t.		If	t	is	big,	this	is	the	bottleneck.

The	MDS	property	implies	we	need	to	at	least	
contact	k	nodes.		If	k	is	big,	this	is	the	bottleneck.

You	need	to	download	at	least	some	amount	
(on	average)	from	each	non-damaged	node.

?

k	data	
blocks

n	encoded	
blocksb	bits	

downloaded

Parameter	soup:

[Dimakis et	al.	2010] [Guruswami,	W.	2017]

Reasonable	settings:
• t	=	8
• n	=	14
• k	=	10
• b	=	hopefully	way	less	than	kt =	80!

The	first	bound	says	𝑏 ≥ 26 in	this	setting.

Upper	bounds?
• 𝑏 ≥ 𝑡 ⋅ &'(

&')

• 𝑏 ≥ 𝑡 + 𝑘	 − 1

• 𝑏 ≥ (𝑛 − 1) ⋅ log5
&'(
&')

We	want	to	recover	t	bits,	so	we	can’t	do	better	
than	t.		If	t	is	big,	this	is	the	bottleneck.

The	MDS	property	implies	we	need	to	at	least	
contact	k	nodes.		If	k	is	big,	this	is	the	bottleneck.

You	need	to	download	at	least	some	amount	
(on	average)	from	each	non-damaged	node.

?

k	data	
blocks

n	encoded	
blocksb	bits	

downloaded

Reasonable	settings:
• t	=	8
• n	=	14
• k	=	10
• b	=	hopefully	way	less	than	kt =	80!

The	first	bound	says	𝑏 ≥ 26 in	this	setting.

There	are	constructions	
that	approach	this	as	t	
gets	really	big.

These	exist	for	k-3	<	t	<	n-k

We	can	match	this	
when	t	is	log(n).

Parameter	soup:

[Dimakis et	al.	2010] [Guruswami,	W.	2017] [Shah	et	al.	2012]	[Rashmi	et	al.	2009]
[Cadambe et	al.	2013]	[Sasidharan et	al.	2015]

Understanding	all	the	trade-offs	is	an	active	area	of	research!
screenshots	from	UT	distributed	storage	wiki:

Outline
1. Coding	for	distributed	storage:	what’s	the	problem?
2. Coding	for	distributed	storage:	how	do	we	solve	the	problem?
• Try	1:	replication
• Try	2:	classical	erasure	coding
• Try	3:	regenerating	(MSR)	codes

3. What	can	we	do	with	regenerating	codes?
• Basic	bounds

4. How	about	codes	I	know	and	love?
• Reed-Solomon	Codes

5. Future	work/Open	problems

Reed-Solomon	Codes

f0 f1 f2 fk-1 𝑓 𝑥 = 𝑓; + 𝑓(⋅ 𝑥 + 𝑓5 ⋅ 𝑥5 + ⋯+ 𝑓)'(⋅ 𝑥)'(

𝑓 𝑥

Classical	solution	for	erasure	coding
Plus	lots	of	other	things!

Technically,	the	
things	in	these	boxes	
are	elements	of	a	

finite	field

The	evaluations	of	
this	polynomial	are	
the	encoded	blocks.

Reed-Solomon	Codes	are	MDS	codes

• Any	k	evaluations	of	a	degree	k-1	polynomial	suffices	for	reconstruction.

𝑓 𝑥

Reed-Solomon	codes	are	the	standard	
for	erasure	coding	in	distributed	storage

• Microsoft	Azure	uses	RS(9,6)
• HDFS	supports	RS(14,10)

• Reed-Solomon	Codes	are:
• Standard
• Very	efficient	to	manipulate
• Really	nice	algebraic	structure!

Also	RS	codes	are	used	for	all	
sorts	of	other	stuff	too

Can	Reed-Solomon	Codes	be	good	
regenerating	codes?
• At	first,	this	doesn’t	make	sense.

𝑓 𝑥

These	things	are	elements	
of	a	finite	field.		The	

example	we	saw	needs	
them	to	be	binary	vectors.

First	try
• Define	an	arbitrary	mapping:

Elements	of	a	finite	
field	of	size	2t

Binary	vector	of	
length	t

The	problem	with	this	is	that	it	destroys	the	nice	algebraic	structure	of	Reed-Solomon	Codes.

Next	try
• This	mapping	doesn’t	have	to	be	arbitrary

Elements	of	a	finite	
field	of	size	2t

Binary	vector	of	
length	t

• Actually	the	finite	field	of	size	2t is	a	vector	space	over	the	finite	field	of	size	2.		
• This	means	that	there’s	a	way	to	define	this	mapping	that	plays	nice	with	the	algebra.

This	is	a	pretty	simple	observation
but	it	turns	out	to	be	pretty	powerful

• Reed-Solomon	codes	themselves	are	optimal	regenerating	codes in	
some	parameter	regimes!
• Guruswami,	W.,	STOC	2016,	IEEE	Trans.	IT,	2017

• Follow-up	work	has	extended	this	to	more	parameter	regimes.
• Ye,	Barg,	ISIT	2016

• More	follow-up	work	has	extended	this	to	multiple	failures.
• Dau,	Duursma,	Kiah,	Milenkovic,	ISIT	2017

What	does	this	scheme	
actually	look	like?

• Say	n=8,	k=4,	t=3
• We	work	over	the	finite	field	
of	size	2t =	8.

• Each	element	is	stored	as	a	
vector	of	length	3.
• Say	node	0	is	going	to	fail.		
This	determines	a	repair	
scheme.
• To	do	the	repair:	
• each	node	computes	the	dot	
product	of	its	contents	with	
the	repair	vector	
• returns	the	resulting	bit.

• The	system	uses	algebra	to	
reconstruct	the	missing	
value	from	these	7	bits.

𝑓 𝑥

001 110 011 100 100 011 110 001

101 011 010 110 001 100 111

1 1 1 1 10 0

Compare	to	the	naïve	scheme• Say	n=8,	k=4,	t=3
• We	work	over	the	finite	field	
of	size	2t =	8.

• Each	element	is	stored	as	a	
vector	of	length	3.
• To	do	the	repair:	
• download	the	complete	
contents	of	any	four	nodes.

• The	system	uses	algebra	to	
reconstruct	the	missing	
value	from	these	12	bits.	

𝑓 𝑥

001 110 011 100 100 011 110 001

More	generally	
with	some	jargon

• A	rate	½	RS	code	can	repair	any	missing	node	using	only	one	bit	from	
every	surviving	node.
• A	rate	1 − 𝜖 RS	code	can	repair	any	missing	node	using	only	
log5(1/𝜖) bits	from	every	surviving	node.
• This	is	optimal	for	MDS	codes	with	linear	repair	schemes.

Guruswami,	W.,	STOC	2016,	IEEE	Trans.	IT,	2017

Outline
1. Coding	for	distributed	storage:	what’s	the	problem?
2. Coding	for	distributed	storage:	how	do	we	solve	the	problem?
• Try	1:	replication
• Try	2:	classical	erasure	coding
• Try	3:	regenerating	(MSR)	codes

3. What	can	we	do	with	regenerating	codes?
• Basic	bounds

4. How	about	codes	I	know	and	love?
• Reed-Solomon	Codes

5. Future	work/Open	problems

New	Directions

• For	regenerating	codes	in	general:
• Pinning	down	all	of	the	trade-offs.
• Coming	up	with	good	constructions.
• These	ideas	seem	like	they	might	be	useful	beyond	distributed	storage.

• For	RS	codes	as	regenerating	codes	in	particular:
• Repair-by-transfer?
• Extending	these	techniques	to	other	algebraic	codes.
• These	ideas	seem	like	they	might	be	useful	beyond	distributed	storage.

Thanks	for	listening!
Questions?

Mary	Wootters
marykw@stanford.edu

