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* SCU robotics program
* Multi-robot control systems

* Adaptive sampling
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Robotic Systems Laboratory

We design & operate advanced robotic systems
and control technology for land, sea, air, and space




"f;v . Robotic Systems Laboratory

* We conduct field operations to provide advanced
engineering services to professional partners

Fundamental Biology arine Geology, Biochemistry & Archaeology




Robotic Systems Laboratory

* We conduct field operations to provide advanced
engineering services to professional partners

Universities
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 We do this with interdisciplinary student teams,
from freshman to PhD, to provide world-class
education and research experiences




* SCU robotics program
* Multi-robot control systems

* Adaptive sampling



&% Multi-Robot Systems

I

e Our specific interest is in applications requiring:
— Highly reactive to the environment
— Tight interaction between robots
— Relative spatial/position control




& 2 Multi-Robot Control Approach
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Multi-Robot Control Approach
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* Potential applications
— Physically escort / guard objects
— Implement sparse antenna arrays
— Track the location of objects
— Transport “large” objects
— Efficiently find features in an environmental field

 Multi-robot are in their infancy

— Perhaps they are a bad idea....
— Hopefully, it is simply because it is hard to do!




Formation Control Results

Basic Maneuvering Obstacle avoidance

5 5
10 10
)| e o o / 0 - 0 -
> (p/ o PN
o T
10 _10 /r/’.._"\\ { |;,,| )
[ ! ¢ 9/
B R a0 ¢ 10 55 0 5 5 0 5
ime - 48 saC. time = B3 5&C. time = 25 sec. timie = 42 sec.
5 5
10 10
o o 0 - 0 Py
o J e ()
-0 _ojl@ 0 " ,' J \\D\_,/
- E— 5 S -5 —
0 0 10 R EED 25 0 5 5 0 5
time - 118 sac. time - 153 sac. timie = 60 g2c. time = 77 eac.
5 5

e || 2 e
—10 ‘//a —10 \.\':_/'/

-5 -5
R L) ETCEEEL 5 0 5 5 0 5
tme - 188 sec. bme - 223 2ac. lime = 94 sec, lime =111 sec.
2 ° ’ N ° (Y
10 10 v || Il ',' )
e o ] © \& —X AN
o Y o ® 0 ] 0 L
—10 —10
—10 o 10 T o 10 -5 -5
Bme = 258 550, bme= 233 seC. -5 0 5 -5 0 5

time = 128 sec. time =146 sec.



Angle[rad]

Distance[m]

Angle[rad]. Angle[rad], Distance[m]

o

S
o

&0 100 150 200 260 300
Time[sec]

Cluster o, p Actual vs Desired
e B R R R LR TR R s R e ........................................ ........................................ .

0 50 100 150 200 250 300
Time[sec]
Cluster $4s b0 P Actual vs Desired

Time[sec]



o

2

4

Patrolling / Guarding

Rotating Escort
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Dynamic Guarding

Robot, Boat, and Threat Positions {0-5s)
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Multi-Robot Control Approach
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Cooperative Mission Management
Task coordination
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* SCU robotics program
* Multi-robot control systems

* Adaptive sampling



Navigation Approaches

e Standard navigation — follow a pre-planned path
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¥ Navigation Approaches

e Adaptive sampling — update your path AND your
destination as you move by taking measurements

o




v Navigation Approaches

e Adaptive sampling — update your path AND your
destination as you move by taking measurements

o

Find the hot spot.
Read temperature,
and change path.




v Navigation Approaches

e Adaptive sampling — update your path AND your
destination as you move by taking measurements

o

But — need to know
what direction to
travel — direction of
maximum increase
— the “gradient.”




Adaptive Sampling

* A powerful concept
e Limited implementation in field

e Requires inefficient motion

Autonomous Benthic Explorer (Courtesy NOAA)



* A powerful concept
e Limited implementation in field
e Requires inefficient motion

Autonomous Benthic Explorer (Courtesy NOAA)

* A group of robots can instantly sense gradient
— Control formation to get good 2-D spread of samples
— Wave of research in multi-robot adaptive sampling
— BUT FEW HAVE DONE IT!!!



¥ Navigation Approaches

e Adaptive sampling — update your path AND your
destination as you move by taking measurements
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Find the hot spot.




¥ Navigation Approaches

e Adaptive sampling — update your path AND your
destination as you move by taking measurements
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Adaptive Navigator
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Initial Simplifications
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Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Gradient Estimation
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Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Turn Direction
Option for either an aggregate “column
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Adaptive Navigation Achieved

3 wheeled robots descend an RF field gradient
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Adaptive Navigation Achieved

3 kayaks follow a bathymetric contour
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Adaptive Navigation Achieved

3 kayaks follow a bathymetric contour
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Adaptive Navigation Achieved
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| sinks, such as hot spots or starvation

Extreme points indicate sources or

points. Examples: source of pollution,

anoxic zones
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; v 9 General “Scalar” Field

Maximum

Contour

| concentration levels or thresholds

Contour lines indicate specific

that define a zone. Examples:
boundary of a toxic spill, definition of
a safety zone.
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General “Scalar” Field
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Scalar fields include other features
| that hold significance for certain

applications and which we’d like to
locate and/or navigate with respect to | -
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Trench-'

Going down crests (up trenches):
| divides (accumulators) of gradient-
driven products, and often paths of
minimum descent (ascent) for S
mechanical advantage - M'ﬂ_r_m?.__
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Saddle points: Gateways often
| providing minimum energy paths
between extreme points
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3 General “Scalar” Field
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We are refining control primitives for
| all of these features, yielding a
toolbox for the methodical global
exploration of scalar fields

= Minimum- .

---



\_:\‘L\A /.l

2

2 V 9 General “Scalar” Field

Maximum | § ?
T~ saddle
Contour _ B Point
Local
£.4.. | Nl / MaX|mum_
: : | - Trergmch-'

We are refining control primitives for
| all of these features, yielding a
toolbox for the methodical global
exploration of scalar fields

Mlnlmum--_

---



3 General “Scalar” Field
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We are also exploring how to
| effectively vary the number of robots,
how to optimally control the size and
shape of the cluster, etc.
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Comprehensive Adaptive Sampling
— All primitive capabilities

— Consolidated motion strategies
3-dimensional fields & vector fields
— Aerial vehicles, ROV/AUVs, spacecraft
Different types of fields

— Terrain, RF, Chemical

— Thermal, Turbidity

Real field missions?

— Oil spills

— Pollution plumes

— Hydrothermal vents
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Summary
.}85\.'

* Exciting & comprehensive
field robotics program

e Particular interest in fielding
multi-robot tasks with | \\ 117
underlying formation control = /% ¥
capabilities - & ¥

* |nitiative in multi-robot
adaptive navigation for
exploring scalar fields
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