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Overview	
Today	we	will	see	that		

×  Learned	Sparsity	Models		are	valuable	and	well-founded	tools	for	
modeling	data	

×  The	Transform	Learning	formulaRon	has	computaRonal	and	
performance	advantages	

×  When	used	in	imaging	and	image	and	video	processing,	
Transform	Learning	leads	to	state-of-the-art	results	



• 	Sparse	signal	models	–	Why	and	How?	

Ø  Synthesis	DicRonaries	
Ø  Sparsifying	Transforms	

• 		Basic	Transform	Learning		

• 	VariaRons	on	Transform	Learning	

Ø  Union	of	Transforms	for	inverse	problems	
Ø  Online	Transform	Learning	for	big	data	and	video	

denoising	

Ø  A	filter	bank	formulaRon	of	Transform	Learning	

•  Conclusions																																							
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Why	Sparse	Modeling?	

Image	data	usually	lives	in	low	dimensional	spaces	

ApplicaRons:	
§  Compact	representaRons	(compression)	

§  RegularizaRon	in	inverse	problems	
Ø  Denoising	
Ø  recovery	from	degraded	data	
Ø  Compressed	Sensing	

§  ClassificaRon	



IntroducOon		
to	Sparse	Signal	Models	

	

×  The	Synthesis	DicOonary	Model	

×  Learning	Synthesis	DicOonaries	

×  The	Transform	Model	



Sparse Representations: Model
We model y ∈ RN as

y = Da, ‖a‖0 ≤ s

y

=

D a

a is a sparse coefficient vector
D ∈ Rn×K is a dictionary. Can be square (n = K) or rectangular
(n < K)
Columns of D are called atoms
y belongs to a union of subspaces spanned by s atoms of D

7
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Sparse Representations: the Synthesis Model

Model y ∈ RN as

y = Da, ‖a‖0 ≤ s

y

=

D a

a is a sparse coefficient vector
D ∈ Rn×K is a dictionary. Can be square (n = K) or
rectangular (n < K)
Columns of D are called atoms
y belongs to a union of subspaces spanned by s atoms of
D



Sparse Representations: Sparse Coding

Given an overcomplete D and vector y, how can we find the
sparsest a such that y = Da?
Solve

min
a

‖a‖0

subject to y = Da

NP-Hard!1 Look for approximate solutions
I Convex Relaxation

F Basis pursuit
I Greedy Algorithms

F Orthogonal Matching Pursuit (OMP)

1Natarajan, 1995
9
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Sparse Representations: Denoising

D =
[
1 0 1√

2
0 1 − 1√

2

]
s = 1
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Span of Individual Dictionary Atoms
Sparse Coded Data



What are good dictionaries for sparse representation of signals and im-
ages?

The more sparse the representation, the better!
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Analytic Dictionaries

Design dictionary around a predefined set of functions
Fourier
Wavelet
Curvelet
Contourlet

...

Fast implementations

But, hard to design effective dictionaries in high
dimensions



Adaptive Dictionaries

Adaptively learn dictionary from data itself
Karhunen-Loève/PCA: fit low-dim subspace to minimize `2
error
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Dictionary Learning

Training data: {yj}Mj=1 ∈ RN

Want:

y1 = Da1, ‖a1‖0 ≤ s

y2 = Da2, ‖a2‖0 ≤ s

...
yM = DaM , ‖aM‖0 ≤ s

Dictionary Learning: Given a set of training signals
{yj}Mj=1 formed into a matrix Y ∈ RN×M , we seek to find
D ∈ RN×K , A ∈ RK×M such that Y ≈ DA with ‖aj‖0 ≤ s



Summary: Learning Synthesis Dictionary Models

The Good

Sparsity in an appropriate dictionary is a powerful model; learned
sparsity models even better!

Many successful applications: denoising, in-painting, image super
resolution, compressed sensing(MRI, CT), classification, etc.

The Bad

Synthesis sparse coding solved repeatedly for learning is NP-hard

Approximate synthesis sparse coding algorithms can be
computationally expensive

The synthsis dictionary learning problem is highly non-convex,
and algorithms can get stuck in bad local minima

3
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A Classical Alternative: Transform Sparsity

W x

=

z

+

η

W : Sparsifying transform

z: Sparse Code

Wx ≈ sparse

Approximation error in the transform domain: ‖η‖2 � ‖z‖2

4
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Transform Sparse Coding

z∗ = arg min
z

1
2‖Wx− z‖22

subject to ‖z‖0 ≤ s sparsity constraint

Easy Exact Solution:

z∗ , Hs(Wx) Thresholding to s largest elements

5



Transform Sparse Coding

z∗ = arg min
z

1
2‖Wx− z‖22

subject to ‖z‖0 ≤ s sparsity constraint

Easy Exact Solution:

z∗ , Hs(Wx) Thresholding to s largest elements

5



Transform Sparse Coding

Penalized Form

z∗ = min
z

1
2‖Wx− z‖22 + ν‖z‖0

Easy Exact Solution:

z∗
i =

[Wx]i |[Wx]i| ≥
√
ν

0 else

, Tν (Wx) Hard Thresholding

6
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Summary of the Models

SM : finding x with given D is NP-hard.

y = Dx + e , ‖x‖0 ≤ s (1)

NSAM : finding q with given Ω is NP-hard.

y = q + e , ‖Ωq‖0 ≤ m − t (2)

TM : finding x with given W is easy ⇒ efficiency in applications.

Wy = x + η , ‖x‖0 ≤ s (3)



4

Learning on Image Patches

Patches of image

Yj = Rjy , j = 1,..N : jth image patch, vectorized.

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of vectorized patches - training

signals
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Basic Transform Learning Formulation6

(P0) min
W ,X

Sparsification Error
︷ ︸︸ ︷

‖WY − X‖
2
F

s.t. ‖Xi‖0 ≤ s ∀ i

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of training signals

X = [X1 |X2 | ..... |XN ] ∈ R
n×N : matrix of sparse codes of Yi

W ∈ Rn×n : square transform

Sparsification error - measures deviation of data in transform domain
from perfect sparsity

6 [Ravishankar & Bresler ICIP 2012, TSP 2013, TSP 2015]
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Basic Transform Learning Formulation6

(P0) min
W ,X

Sparsification Error
︷ ︸︸ ︷

‖WY − X‖
2
F +

Regularizer , λv(W )
︷ ︸︸ ︷

λ
(

‖W ‖
2
F − log |detW |

)

s.t. ‖Xi‖0 ≤ s ∀ i

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of training signals

X = [X1 |X2 | ..... |XN ] ∈ R
n×N : matrix of sparse codes of Yi

W ∈ Rn×n : square transform

Sparsification error - measures deviation of data in transform domain
from perfect sparsity

λ > 0. Regularizer cost v(W ) prevents trivial solutions and fully
controls condition number of W

6 [Ravishankar & Bresler ICIP 2012, TSP 2013, TSP 2015]
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Alternating Algorithm for Transform Learning

(P0) solved by alternating between updating X and W .

Sparse Coding Step solves for X with fixed W .

min
X

‖WY − X‖2F s.t. ‖Xi‖0 ≤ s ∀ i (1)

Easy problem: Solution X̂ computed exactly by zeroing out all but
the s largest magnitude coefficients in each column of WY .

Transform Update Step solves for W with fixed X .

min
W

‖WY − X‖2F + λ
(

‖W ‖2F − log |detW |
)

(2)

Closed-form solution:

Ŵ = 0.5U

(

Σ +
(

Σ2 + 2λI
) 1

2

)

Q
T
L
−1 (3)

YY T + λI = LLT , and L−1YXT has a full SVD of QΣUT .
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Algorithm A1 for Square Transform Learning
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Convergence Guarantees7

Theorem 1

For each initialization of Algorithm A1, the objective converges to a local
minimum, and the iterates converge to an equivalence class (same
function values) of local minimizers.

Corollary 1

Algorithm A1 is globally convergent (i.e., from any Initialization) to the
set of local minimizers in the problem.

7 [Ravishankar & Bresler, TSP 2015]
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Convergence with Various Initializations
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Piecewise-Constant Images

Image Finite difference (FD) Sparse Result
κ(W ) = 113.5 s = 5

2D FD obtained as kronecker product of two square 1D-FD matrices
- exact sparsifier for patches of image for s ≥ 5.

However, the 2D FD transform is poorly conditioned.

(P2) solved to learn transforms at various λ (µ = λ), with s = 5.

yorambresler
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Well-Conditioned Adaptive Transforms Perform Well!

Learnt (FD Init) Learnt (FD Init)
κ(W ) = 15.35 κ(W ) = 5.77

The learnt transforms provide almost zero NSE (∼ 10−4/10−5).

Such well-conditoned transforms perform better than poorly
conditioned ones in applications such as denoising.

For s < 5, the learnt well-conditioned transforms provide
significantly lower NSE at the same s, than FD.
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Computational Advantages

Patches of image

Synthesis/Analysis K-SVD8,9 for N training samples and D ∈ R
n×K : cost

per iteration (dominated by sparse coding):

O(Nn3) ∝ (Image Size)× (pixels in patch)3

Transform Learning Algorithm A1 for N training samples and W ∈ R
n×n:

O(Nn2) ∝ (Image Size)× (pixels in patch)2

In 2D with p × p patches ⇒reduction of computations in the order by p2

In 3D with p × p × p patches ⇒ reduction of computations in the order
by p3 (=1000X for p = 10)

8 [Aharon, Elad & Bruckstein ’06] 9 [Rubinstein, Peleg & Elad ’13]

yorambresler
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Does Transform Learning work? : Denoising Example

Noisy Image 64× 256 Synthesis D 64× 64 W (κ = 1.3)
PSNR = 24.60 dB PSNR = 31.50 dB PSNR = 31.66 dB

Transform learning-based denoising is better and highly efficient
(17X faster) compared to overcomplete K-SVD denoising.

yorambresler
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Compressed Sensing

with a Learned Transform
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Review: Compressed Sensing (CS)

CS enables accurate recovery of images from far fewer
measurements than the number of unknowns

Sparsity of image in transform domain or dictionary

Measurement procedure incoherent with transform

Reconstruction non-linear

Conventional CS Reconstruction problem -

min
x

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖22 +λ

Regularizer
︷ ︸︸ ︷

‖Ψx‖0 (4)

x ∈ CP : vectorized image, y ∈ Cm : measurements (m < P).

A : fat sensing matrix, Ψ : transform. ℓ0 “norm”counts non-zeros.

CS with non-adaptive regularizer limited to low undersampling in imaging.

yorambresler
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Compressed Sensing MRI

Data - samples in k-space of spatial Fourier
transform of object, acquired sequentially in
time.

Acquisition rate limited by MR physics,
physiological constraints on RF energy
deposition.

CSMRI enables accurate recovery of images
from far fewer measurements than #
unknowns or Nyquist sampling.

Two directions to improve CSMRI -

better sparse modeling - TLMRI

better choice of sampling pattern (Fu)

Fig. from Lustig et al. ’07
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Transform Blind Compressed Sensing Idea

Could use an image database to train the sparsifying transform

Learn transform W to sparsify the unknown image x using only the
undersampled data y ≈ Ax
⇒ model adaptive to underlying image.

Use the learned transform W to perform compressed sensing
reconstruction of the image x from undersampled data y

yorambresler
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Transform Blind Compressed Sensing Idea

Could use a database to train the sparsifying transform
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⇒ model adaptive to underlying image.
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Transform-based Blind Compressed Sensing (BCS)

(P1) min
x,W ,B

Sparsification Error
︷ ︸︸ ︷

N∑

j=1

‖WRjx − bj‖
2
2+ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖
2
2 +λ

Regularizer
︷ ︸︸ ︷

v(W )

s.t.
N∑

j=1

‖bj‖0 ≤ s, ‖x‖2 ≤ C .

(P1) learns W ∈ Cn×n, and reconstructs x , from only undersampled
y ⇒ transform adaptive to underlying image.

v(W ) , − log |detW | + 0.5 ‖W ‖2F controls scaling and κ of W .

‖x‖2 ≤ C is an energy/range constraint. C > 0.
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Block Coordinate Descent (BCD) Algorithm for (P1)

Alternate the updating of W , B, and x .

Sparse Coding Step: solve (P1) for B with fixed x , W .

min
B

N∑

j=1

‖WRjx − bj‖
2
2 s.t.

N∑

j=1

‖bj‖0 ≤ s. (5)

Cheap Solution: Let Z ∈ C
n×N be the matrix with WRjx as its

columns. Solution B̂ = Hs(Z ) computed exactly by zeroing out all
but the s largest magnitude coefficients in Z .
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Block Coordinate Descent Algorithm for (P1)

Transform Update Step: solve (P1) for W with fixed x , B.

min
W

N∑

j=1

‖WRjx − bj‖
2
2 + 0.5λ ‖W ‖

2
F − λ log |detW | (6)

Exact Closed-form solution involving SVD of a small matrix
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Block Coordinate Descent Algorithm for (P1)

Image Update Step: solve (P1) for x with fixed W , B.

min
x

N∑

j=1

‖WRjx − bj‖
2
2 + ν ‖Ax − y‖22 s.t. ‖x‖2 ≤ C . (7)

Standard least squares problem with ℓ2 norm constraint. For MRI
can be solved iteratively efficiently using CG+ FFT.

yorambresler
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Example - 2D Cartesian 7x Undersampling
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Example - 2D random 5x Undersampling

Reference DLMRI (28.54 dB) TLMRI (30.47 dB)
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The More the Merrier?

A single square transform is learned in the Basic TL Algorithm for all
the data.

But, natural images typically have diverse features or textures.
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OCTOBOS: Union of Transforms

Union of transforms: one for each class of textures or features.



26

OCTOBOS Learning Idea

Group patches based on their match to a common transform.

Learn the transforms + cluster the data jointly
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OCTOBOS Learning Formulation

Goal: jointly learn a union-of-transforms {Wk} and cluster the data Y .

(P2) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

i∈Ck

‖WkYi − Xi‖22 +

Regularizer =
∑K

k=1 λkv(Wk )
︷ ︸︸ ︷

K∑

k=1

λk

(

‖Wk‖2F − log |detWk |
)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}Kk=1 ∈ G

Ck is the set of indices of signals in class k .

G is the set of all possible partitions of [1 : N] into K disjoint subsets.

The regularizer controls the scaling and conditioning of the transforms
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Alternating Minimization Algorithm for (P2)

(P2) min
{

Wk ,Xi ,Ck

}

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

i∈Ck

‖WkYi − Xi‖
2
2 +

Regularizer
︷ ︸︸ ︷

K∑

k=1

λ0‖YCk
‖2F v(Wk)

s.t. ‖Xi‖0 ≤ s ∀ i , {Ck}
K
k=1 ∈ G
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Visualization of Learned OCTOBOS

The square blocks of a learnt OCTOBOS are NOT similar ⇒ cluster-specific Wk .

OCTOBOS W learned with different initializations appear different.

The W learned with different initializations sparsify equally well.
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Example: Unsupervised Classification

The overlapping image patches are first clustered by OCTOBOS learning

Each image pixel is then classified by a majority vote among the patches that
cover that pixel

Image k-Means OCTOBOS
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Imaging:

Transform Blind Compressed Sensing
with a Union of Transforms
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UNITE-BCS: Union of Transforms Blind CS

Goal: learn union of transforms, reconstruct x , and cluster the patches of
x , using only the undersampled y .

⇒ model adaptive to underlying image.

(P2) min
x,B,{Wk ,Ck}

ν

Data Fidelity
︷ ︸︸ ︷

‖Ax − y‖
2
2 +

Sparsification Error
︷ ︸︸ ︷

K∑

k=1

∑

j∈Ck

‖WkRjx − bj‖
2
2 + η2

Sparsity Penalty
︷ ︸︸ ︷

N∑

j=1

‖bj‖0

s.t. WH
k Wk = I ∀ k , ‖x‖2 ≤ C .

Rj ∈ R
n×P extracts patches. Wk ∈ C

n×n is a unitary cluster transform.

‖x‖2 ≤ C is an energy or range constraint. B , [b1 | b2 | ... | bN ].

Efficient alternating algorithm for (P2) with convergence guarantee
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CS MRI Example - 2.5x Undersampling (K = 3)

Sampling mask Initial recon (24.9 dB)

UNITE-MRI recon (37.3 dB) Reference
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UNITE-MRI Clustering with K = 3 (η = 0.07, ν = 15.3)

UNITE-MRI recon Cluster 1 Cluster 2

Cluster 3 Real part of Imaginary part of
learned W for cluster 2 learned W for cluster 2
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Reconstructions - Cartesian 2.5x Undersampling (K = 16)
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Example - Cartesian 2.5x Undersampling (K = 16)

Reference UTMRI (42.5 dB) UNITE-MRI (44.3 dB)
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Online Transform Learning

for Dynamic Imaging and Big Data
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Online Transform Learning

Big data ⇒ large training sets ⇒ batch learning (using all data) is
computationally expensive in time and memory.

Streaming data ⇒ must be processed sequentially to limit latency.

Online learning involves cheap computations and memory usage.
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Online Transform Learning Formulation

For t = 1, 2, 3, ..., solve

(P3)
{

Ŵt , x̂t

}

= argmin
W , xt

1

t

t∑

j=1

{

‖Wyj − xj‖
2
2 + λjv(W )

}

s.t. ‖xt‖0 ≤ s, xj = x̂j , 1 ≤ j ≤ t − 1.

λj = λ0 ‖yj‖22. λ0 controls condition number and scaling of Ŵt ∈ R
n×n.

Denoised image estimate ŷt = Ŵ−1
t x̂t is computed efficiently.

For non-stationary data, use forgetting factor ρ ∈ [0, 1], to diminish the

influence of old data.

1

t

t∑

j=1

ρt−j
{

‖Wyj − xj‖
2
2 + λjv(W )

}

(12)
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Online Transform Learning Algorithm

Sparse Coding - solve for xt in (P3) with fixed W = Ŵt−1: Cheap
Solution: x̂t = Hs(Wyt).

Transform Update: solve for W in (P3) with xt = x̂t . Cheap, closed-form
update using SVD rank-1 update.

No matrix-matrix products. Approx. error bounded, and cheaply monitored.
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Online Transform Learning (OTL) Convergence Results

Assumption: yt are i.i.d. random samples from the sphere
Sn = {y ∈ Rn : ‖y‖2 = 1}.

Consider the minimization of the expected learning cost:

g(W ) = Ey

[

‖Wy − Hs(Wy)‖22 + λ0 ‖y‖
2
2 v(W )

]

(13)

.
Mild assumptions: Exact computations, Nondegenerate SVDs.

Main Result: Ŵt in OTL converges to the set of stationary

points of g(W ) almost surely. Ŵt+1 − Ŵt ∼ O(1/t).
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Online Video Denoising by 3D Transform Learning

zt is a noisy video frame. ẑt is its denoised version.

Gt is a tensor with m frames formed using a sliding window scheme.

Overlapping 3D patches in the Gt ’s are denoised sequentially.

Denoised patches averaged at 3D locations to yield frame estimates.
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Video Denoising Example: Salesman

Noisy frame VIDOLSAT (PSNR = 30.97 dB)
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From Patches To Filter Banks

12
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Learning on Image Patches

Patches of image

Yj = Rjy , j = 1,..N : jth image patch, vectorized.

Y = [Y1 |Y2 | ..... |YN ] ∈ R
n×N : matrix of vectorized patches - training

signals
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Sparsifying transforms as filter banks

Take away: Existing transform learning algorithms learn perfect
reconstruction filter banks!

... But, requiring W to be LI is stronger than requiring HW to be
PR!

Two questions:
1 Do we benefit by requiring HW to be PR and relaxing the LI

condition on W?
2 Can we find an efficient algorithm to learn such an HW ?
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Previous Work

Connection between patch-based analysis operators and
convolution previously known

Convolution often used as a computational tool

16



The Key Property

Each frequency must pass through at least one channel!

Diagonalization

CHWCW = ΦH ddiag
( ∣∣∣Φ̄W T

∣∣∣2 1Nc

)
Φ

Perfect Recovery Condition

HW is PR⇔ each entry of
∣∣∣Φ̄W T

∣∣∣2 1Nc > 0

Decouples the choice of number of channels Nc and patch size
(support of transform) K ×K
Especially attractive for high dimensional data

19



Learning a sparsifying filter bank

20



Learning Formulation

Desiderata
I Parameterize with few degrees of freedom

I HWx should be (approximately) sparse

I HW should be PR and well conditioned

I No identically zero filters

I No duplicated filters

21



Learning Formulation

HWx should be (approximately) sparse

=⇒WX should be (approximately) sparse

F (W,Z, x) , 1
2‖WX − Z‖2F + ν‖Z‖0

22



Learning Formulation

HW should be PR and well conditioned

Let ζi be an eigenvalue of HHWHW

N2∑
i=1

f(ζi) =
N2∑
i=1

ζ2
i

2 − log ζi2

= 0.5
N2∑
i=1

Nc∑
j=1

(
∣∣∣Φ̄W T

∣∣∣2)i,j − log

 Nc∑
j=1

(
∣∣∣Φ̄W T

∣∣∣2)i,j



24



Learning Formulation

No identically zero filters

−β
Nc∑
j=1

log
(
‖Wj,:‖22

)

25



Learning Formulation

HW should be PR and well conditioned

No identically zero filters

J1(W ) = 0.5
N2∑
i=1

Nc∑
j=1

(
∣∣∣Φ̄W T

∣∣∣2)i,j − log

 Nc∑
j=1

(
∣∣∣Φ̄W T

∣∣∣2)i,j


− β

Nc∑
j=1

log
(
‖Wj,:‖22

)
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Learning Formulation

No duplicated filters

J2(W ) =
∑

1≤i<j≤Nc

− log

1−
(
〈Wi,:,Wj,:〉
‖Wi,:‖2‖Wj,:‖2

)2

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Learning Formulation

min
W,Z

1
2‖WX−Z‖2F +αJ1(W )+γJ2(W )+ν‖Z‖0

Alternating minimization:

Zk+1 = arg minZ 1
2‖W

kX − Z‖2F + ν‖Z‖0

W k+1 = arg minW 1
2‖WX − Zk+1‖2F + αJ1(W ) + γJ2(W )

29



Application to Magnetic
Resonance Imaging

32



Imaging Model

Imaging Model: Undersampled Fourier measurements

y = ΓΦx+ e

x ∈ RN2
: Input image

Φ ∈ CN2×N2
: DFT matrix

Γ ∈ CM×N2
: Row selection matrix

e ∈ CM : Zero mean Gaussian noise

33



Image Reconstruction - Transform Blind Compressed
Sensing

min
x,HW ,z

1
2‖y − ΓΦx‖22+λ

(1
2‖HWx− z‖

2
2 + ν‖z‖0 + αJ1(HW ) + γJ2(HW )

)

Data fidelity

Transform learning

Solve using alternating minimization
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Image Reconstruction - Transform Blind Compressed
Sensing

Image Update

min
x

1
2‖y−ΓΦx‖2+λ2‖HWx−z‖2

2

Transform Update

min
W

1
2‖HWx−z‖2

F +αJ1(W )+γJ2(W )

Sparse Code Update

min
z

1
2‖HWx− z‖2

2 + ν‖z‖0

35



Experiments
Synthetic MR data from magnitude
image

≈ 5 fold undersampling

Vary filter size & number of channels

Compare against square patch-based
transform learning:

min
W,x,Z

1
2‖y − ΓΦx‖22 + λ

2 ‖WX − Z‖+ ν‖Z‖0

+ α‖W‖2F − β log detW

Solved using alternating minimization

Initialized with DCT matrix

36



Reconstruction PSNR (dB)

σ / PSNR In

Filter Bank Patch Based

Nc = 64 Nc = 128 Nc = 64
64× 64

K = 8 K = 8 K = 12
0 / 29.6 35.2 35.2 35.1 34.6
10
255 / 28.8 32.6 32.7 32.6 32.5
20
255 / 26.9 31.6 31.6 31.2 31.3
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Learned filters 8× 8
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Conclusion

New framework for learning filter bank sparsifying transforms

Replace patch recovery conditions with image recovery

Decouples number of channels from filter length

Can outperform patch-based transform for MR reconstruction

41
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Summary

We introduced several data-driven sparsifying transform adaptation
techniques.

Proposed learning methods

are highly efficient and scalable

enjoy good theoretical and empirical convergence behavior

are highly effective in many applications

Highly promising results obtained using transform learning in
denoising and compressed sensing.

Papers and software available for download at
http://transformlearning.csl.illinois.edu
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