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Overview

Today we will see that

* Learned Sparsity Models are valuable and well-founded tools for
modeling data

* The Transform Learning formulation has computational and
performance advantages

* When used in imaging and image and video processing,
Transform Learning leads to state-of-the-art results



Outline

 Sparse signal models — Why and How?

» Synthesis Dictionaries
» Sparsifying Transforms
* Basic Transform Learning
* Variations on Transform Learning

» Union of Transforms for inverse problems

» Online Transform Learning for big data and video
denoising

» A filter bank formulation of Transform Learning

* Conclusions



Why Sparse Modeling?



100}
150 |
200 |

250t

Why Sparse Modeling?

50

100 150 200 25

One step decompaosition

r—

0l

100t

150



150t
200t

250t

Original image X.

Why Sparse Modeling?

50 [

|

‘ﬁh d4dd04 ‘.fv

50

One step decompaosition

ol e R A 3 -‘\v:«

50b

100t

150

200

250

v Image data usually lives in low dimensional subspaces




Why Sparse Modeling?

One step decomposition
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Image data usually lives in low dimensional spaces

Applications:
=  Compact representations (compression)

= Regularization in inverse problems
>  Denoising
> recovery from degraded data
» Compressed Sensing

. Classification



Introduction
to Sparse Signal Models

* The Synthesis Dictionary Model
* Learning Synthesis Dictionaries

* The Transform Model



Sparse Representations: Model

@ We model y € RY as

laflo < s

y = Da,
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Sparse Representations: Model

@ We model y € RY as
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Y D a

@ ais a sparse coefficient vector

@ D c R™¥K js a dictionary. Can be square (n = K) or rectangular
(n < K)



Sparse Representations: Model

@ We model y € RN as

y=Da, [allo<s

Y D a

@ ais a sparse coefficient vector

@ D c R™¥K js a dictionary. Can be square (n = K) or rectangular
(n < K)

@ Columns of D are called atoms



Sparse Representations: the Synthesis Model

@ Model y € RY as

@ a is a sparse coefficient vector

@ D € R™*¥ js a dictionary. Can be square (n = K) or
rectangular (n < K)

@ Columns of D are called atoms

@ y belongs to a union of subspaces spanned by s atoms of
D



Sparse Representations: Sparse Coding

@ Given an overcomplete D and vector y, how can we find the
sparsest a such that y = Da?
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Sparse Representations: Sparse Coding

@ Given an overcomplete D and vector y, how can we find the
sparsest a such that y = Da?

@ Solve

min ||alo
a

subjectto y = Da

@ NP-Hard!" Look for approximate solutions

"Natarajan, 1995



Sparse Representations: Sparse Coding

@ Given an overcomplete D and vector y, how can we find the
sparsest a such that y = Da?

@ Solve

min ||alo
a

subjectto y = Da

@ NP-Hard!" Look for approximate solutions
» Convex Relaxation
* Basis pursuit
» Greedy Algorithms
* QOrthogonal Matching Pursuit (OMP)

"Natarajan, 1995



Sparse Representations: Denoising
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Sparse Representations: Denoising
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What are good dictionaries for sparse representation of signals and im-
ages?



What are good dictionaries for sparse representation of signals and im-
ages?

The more sparse the representation, the better!



Analytic Dictionaries

@ Design dictionary around a predefined set of functions

Fourier
Wavelet
Curvelet

o
o
o
e Contourlet

@ Fast implementations

@ But, hard to design effective dictionaries in high
dimensions




Adaptive Dictionaries

@ Adaptively learn dictionary from data itself
@ Karhunen-Loéve/PCA: fit low-dim subspace to minimize ¢
error




Adaptive Dictionaries

@ Adaptively learn dictionary from data itself
@ Karhunen-Loéve/PCA: fit low-dim subspace to minimize ¢
error

—PCA Subspaces
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Dictionary Learning

o Training data: {y;}], € RY
@ Want:

y1 = Day, laillo <'s
y2 =Day, |aglo<s

yv =Days, |lapllo<s

@ Dictionary Learning: Given a set of training signals
{y;}]Z, formed into a matrix Y € RV, we seek to find
D € RV*E A ¢ REXM gych that Y ~ DA with ||a o < s



Summary: Learning Synthesis Dictionary Models

The Good

@ Sparsity in an appropriate dictionary is a powerful model; learned
sparsity models even better!

@ Many successful applications: denoising, in-painting, image super
resolution, compressed sensing(MRI, CT), classification, etc.

The Bad
@ Synthesis sparse coding solved repeatedly for learning is NP-hard
@ Approximate synthesis sparse coding algorithms can be
computationally expensive
@ The synthsis dictionary learning problem is highly non-convex,
and algorithms can get stuck in bad local minima
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A Classical Alternative: Transform Sparsity
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A Classical Alternative: Transform Sparsity
T Z n
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@ Approximation error in the transform domain: ||n[l2 < ||z||2

@ WW: Sparsifying transform
@ z: Sparse Code
@ Wz ~ sparse



Transform Sparse Coding

1
2

subject to ||z||o < s sparsity constraint

W2 — 2|3

z* =argmin
z



Transform Sparse Coding

1
Z* =argmin = |Wz — z||3
z 2

subject to ||z||o < s sparsity constraint

Easy Exact Solution:

z* 2 H,(Wz) Thresholding to s largest elements



Transform Sparse Coding

@ Penalized Form
1
2 = min [ Wa — 2|3 + v]ll



Transform Sparse Coding

@ Penalized Form
1

2
Easy Exact Solution:

*{W%h Wali| = vo

0 else

2 = min o [Wa — 2 + vllzlo

2 7, (Wzx) Hard Thresholding



Summary of the Models

@ SM : finding x with given D is NP-hard.

y=Dx+e, [xll,<s (1)

@ NSAM : finding g with given € is NP-hard.

y=q+e, [|Qqo <m-t (2)

9 TM : finding x with given W is easy = efficiency in applications.

Wy =x+mn, |xllp<s (3)



Learning on Image Patches

Patches of image

@ Y; =Ry, j=1,.N: jth image patch, vectorized.

QY =[Y1]|Yo]..... | Yn] € R™M . matrix of vectorized patches - training
signals



Basic Transform Learning Formulation®

Sparsification Error

2
(PO) min WY — X[

st | Xillg<s Vi

@ Y =[Y1|Ya]..| Yn] € RN : matrix of training signals
O X =[Xi|Xz|.....| Xn] € R™N : matrix of sparse codes of Y;
@ W € R"™ " : square transform

@ Sparsification error - measures deviation of data in transform domain
from perfect sparsity

6 [Ravishankar & Bresler ICIP 2012, TSP 2013, TSP 2015]



Basic Transform Learning Formulation®

. A
Sparsification Error Regularizer = Av(W)

2 2
(P0) min WY = X[z + (W%~ log|det W)

st | Xillg<s Vi

O Y =[Y1]Y2]....| Yn] € RN : matrix of training signals
O X =[X|Xz|.....| Xn] € R™N : matrix of sparse codes of Y;
@ W € R" " : square transform

@ Sparsification error - measures deviation of data in transform domain
from perfect sparsity

@ X > 0. Regularizer cost v(W) prevents trivial solutions and fully
controls condition number of W

6 [Ravishankar & Bresler ICIP 2012, TSP 2013, TSP 2015]
6



Alternating Algorithm for Transform Learning

@ (P0) solved by alternating between updating X and W.

@ Sparse Coding Step solves for X with fixed W.
min WY —X|2 st [[Xilp<s Vi (1)
o Easy problem: Solution X computed exactly by zeroing out all but

the s largest magnitude coefficients in each column of WY.

@ Transform Update Step solves for W with fixed X.
min WY = X|[%+ X (IWII% - log |det W) 2

@ Closed-form solution: )
W =050 (z + (22 + 2)\1) E) QL 3)

o YYT + A =LLT, and L=1YXT has a full SVD of QZU".




Algorithm Al for Square Transform Learning

Transform Update
N Outputs
Training Data Y Update W TTA
(W, X)
LoopJ
times
Initialization &

Parameters Sparse Coding

Update X




Convergence Guarantees’

X1

X3 | X2
sX X4
7X Xs

For each initialization of Algorithm Al, the objective converges to a local
minimum, and the iterates converge to an equivalence class (same
function values) of local minimizers.

Corollary 1

Algorithm A1 is globally convergent (i.e., from any Initialization) to the
set of local minimizers in the problem.

7 [Ravishankar & Bresler, TSP 2015]



Barbara - 8 x 8 patches

o

=

—DCT Initialization

---KLT Initialization
- - Identity Initialization

Sparsification Error
>

10" 10
Iteration Number
Sparsification Error
(s =11)

—DCT Initialization
---KLT Initialization
- = Identity Initialization

Objective Function
e

— Random Initiali

10° 10" 10
Iferation Number

Objective Function

BENSECOESH
DPCSRESEEE
TRDREEES
NN NS =SS
nEmmREEE
T G e
TR 0 5 o
T A 0 o

Learned W - DCT Init

&

—DCT Initialization
---KLT Initialization

- = |dentity Initialization
—Random Initializati

Condition Number
w

Y}

-

Iteration Number

k(W)

mEEC ===
B CRE=ESE
IROREEEE
INNWEEEES
INMWERsEEEE
T N O e
L0 1A 0 R e B B8 8
1000 A O B e s ol

2D DCT

100 200 300 400 500 600

Convergence with Various Initializations



Piecewise-Constant Images

Image Finite difference (FD) Sparse Result
k(W) = 1135 s=5

@ 2D FD obtained as kronecker product of two square 1D-FD matrices
- exact sparsifier for patches of image for s > 5.

@ However, the 2D FD transform is poorly conditioned.
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Learnt (FD Init)
k(W) = 15.35

Well-Conditioned Adaptive Transforms Perform Well!

Learnt (FD Init)
k(W) =5.77

@ The learnt transforms provide almost zero NSE (~ 1074/1075).

@ Such well-conditoned transforms perform better than poorly
conditioned ones in applications such as denoising.

@ For s < 5, the learnt well-conditioned transforms provide
significantly lower NSE at the same s, than FD.



Computational Advantages

Patches of image

@ Synthesis/Analysis K-SVD®° for N training samples and D € R™*K: cost
per iteration (dominated by sparse coding):

O(Nn®) o (Image Size) x (pixels in patch)?

@ Transform Learning Algorithm Al for N training samples and W € R"*":
O(Nn?)  (Image Size) x (pixels in patch)?

@ In 2D with p x p patches =reduction of computations in the order by p?

@ In 3D with p x p x p patches = reduction of computations in the order
by p* (=1000X for p = 10)

8 [Aharon, Elad & Bruckstein '06] 9 [Rubinstein, Peleg & Elad '13] 11
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Does Transform Learning work? : Denoising Example

Noisy Image 64 x 256 Synthesis D 64 x 64 W (x = 1.3)
PSNR = 24.60 dB PSNR = 31.50 dB PSNR = 31.66 dB

@ Transform learning-based denoising is better and highly efficient
(17X faster) compared to overcomplete K-SVD denoising.
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Compressed Sensing

with a Learned Transform



Review: Compressed Sensing (CS)

@ CS enables accurate recovery of images from far fewer
measurements than the number of unknowns

@ Sparsity of image in transform domain or dictionary
@ Measurement procedure incoherent with transform

@ Reconstruction non-linear

@ Conventional CS Reconstruction problem -

Data Fidelity Regularizer
. 2
min [Ax =yl +A [[Wx]| (4)

@ x € CP : vectorized image, y € C™ : measurements (m < P).
@ A : fat sensing matrix, ¥ : transform. ¢y “norm” counts non-zeros.

@ CS with non-adaptive regularizer limited to low undersampling in imaging.

14
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Compressed Sensing MRI

k-space

@ Data - samples in k-space of spatial Fourier
transform of object, acquired sequentially in
time.

@ Acquisition rate limited by MR physics,
physiological constraints on RF energy incoherent artifacts
deposition.

@ CSMRI enables accurate recovery of images
from far fewer measurements than #
unknowns or Nyquist sampling.

@ Two directions to improve CSMRI -

o better sparse modeling - TLMRI
@ better choice of sampling pattern (F,)

sparse transform partial k-space

Fig. from Lustig et al. '07



Transform Compressed Sensing ldea

@ Could use an image data in the sparsifying transform

@ Learn transform W to sparsify the unknown image x using only the

undersampled data y ~ Ax
@ = model adaptive to underlying image.

@ Use the learned transform W to perform compressed sensing
reconstruction of the image x from undersampled data y
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Transform Compressed Sensing ldea

9 Could use a databas in the sparsifying transform

@ Learn transform W to sparsify the unknown image x using only the

undersampled data y ~ Ax
@ = model adaptive to underlying image.

@ Use the learned transform W to perform compressed sensing
reconstruction of the image x from undersampled data y
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Transform-based Blind Compressed Sensing (BCS)

Sparsification Error

Data Fidelity Regularizer

~ 2 2 ¢ D
(P1) ernB E |WRix — bj|5+v ||Ax — y|l5 +X v(W)
WiBE

N
st Y lbilly <'s, lIxll, < C.

=1

@ (P1) learns W € C"*", and reconstructs x, from only undersampled
y = transform adaptive to underlying image.

e v(W) £ —log |det W| +0.5 HW||,2E controls scaling and  of W.

@ [|x||, < Cis an energy/range constraint. C > 0.



Block Coordinate Descent (BCD) Algorithm for (P1)

@ Alternate the updating of W, B, and x.

@ Sparse Coding Step: solve (P1) for B with fixed x, W.

N N
. 2
min > [WRx — b3 st [l < )
Jj=1 Jj=1
o Cheap Solution: Let Z € C™V be the matrix with WR;x as its
columns. Solution B = Hs(Z) computed exactly by zeroing out all
but the s largest magnitude coefficients in Z.




Block Coordinate Descent Algorithm for (P1)

@ Transform Update Step: solve (P1) for W with fixed x, B.

N

. 2 2

min E 1 | WR;x — bj|5 + 0.5\ [[ W[z — Alog |det W| (6)
J:

¢ Exact Closed-form solution involving SVD of a small matrix

20



Block Coordinate Descent Algorithm for (P1)

@ Image Update Step: solve (P1) for x with fixed W, B.

N
. 2 2
min > [WRix — b2+ v [Ax —y[3 s.t. [, < C. (7)
j=1
o Standard least squares problem with £ norm constraint. For MRI
can be solved iteratively efficiently using CG+ FFT.

21
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Example - 2D Cartesian 7x Undersampling

Reference TLMRI (31 dB)

0.25
0.2
0.15
0.1
0.05

TLMRI Error

0.25 0.25
0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
0

Sampling Mask Sparse MRI Error (25.5dB)  DLMRI Error (30.7 db
Lustig et al, 007 Sa|prasad & Bresler 2 11

22
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Example - 2D random 5x Undersampling

Reference

0.25
0.2
0.15
0.1
0.05
0

Sampling Mask DLMRI Error TLMRI Error

23




The More the Merrier?

@ A single square transform is learned in the Basic TL Algorithm for all
the data.

@ But, natural images typically have diverse features or textures.




w0
=
e
(0]
c
o
_I
G
o
c
(@)
=
)
w0
@)
a8}
®)
_I
O
©)

f transforms: one for each class of textures or features.

ion o

e Un

25



OCTOBOS Learning Idea

@ Group patches based on their match to a common transform.

9 Learn the transforms + cluster the data jointly

/

OCTOBOS

26



OCTOBOS Learning Formulation

@ Goal: jointly learn a union-of-transforms { Wi} and cluster the data Y.

Sparsification Error Regularizer = 215:1 Apv(Wg)

(P2) . ZZHWkY x|\2+ZAk(|\Wkl|F log |det W)
{Wi, X, G} = iee,

st [ Xill, <s Vi, {Ck}k:1 €G

@ (i is the set of indices of signals in class k.
@ G is the set of all possible partitions of [1: N] into K disjoint subsets.

@ The regularizer controls the scaling and conditioning of the transforms

27



Alternating Minimization Algorithm for (P2)

(P2)

g

Input Data /

s.t.

Sparsification Error

Regularizer

(Wi X C}ZZ”WkY X”2+ZA0||YckIIFv(Wk)
kyNis Lk k=1ieCy

IXillo <s Vi,

{Ck}k:l cG

Transform Update

N m——

Initializations

/

+ Parameters

Update {Wk}

Sparse Coding &
Clustering

Update {Ckr Xl}

— {Wkl ék} \

|
“ Output OCTOBOS w‘

X3

Sparse
Code
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Visualization of Learned OCTOBQOS

@ The square blocks of a learnt OCTOBOS are NOT similar = cluster-specific W.

@ OCTOBOS W learned with different initializations appear different.

@ The W learned with different initializations sparsify equally well.
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Example: Unsupervised Classification

@ The overlapping image patches are first clustered by OCTOBOS learning

@ Each image pixel is then classified by a majority vote among the patches that
cover that pixel

Class 1

Class 2

Class3

k-Means OCTOBOS

32



Imaging:

Transform Blind Compressed Sensing
with a Union of Transforms



UNITE-BCS: Union of Transforms Blind CS

@ Goal: learn union of transforms, reconstruct x, and cluster the patches of
X, using only the undersampled y.

¢ = model adaptive to underlying image.

Sparsification Error Sparsity Penalty
Data Fidelity ———
—_— K

N
. 2 2 2
(P2) min  vlAx—yl;+ kzlgc: IWiRix — bjll; +n JE; 165l
== —

st. WW,=1Vk, |x||,<C.

@ R; € R"™" extracts patches. Wi € C"™*" is a unitary cluster transform.
@ ||x||, < C is an energy or range constraint. B = [b; | b | ... | bu].
@ Efficient alternating algorithm for (P2) with convergence guarantee

34



CS MRI Example - 2.5x Undersampling (K = 3)

Sampling mask Initial recon (24.9 dB)

UNITE-MRI recon (37.3 dB) Reference

35




UNITE-MRI Clustering with K = 3 (n = 0.07, v = 15.3)

UNITE-MRI recon Cluster 1 Cluster 2

EEEES EENEES
IFESES NhEREES
IADEESR WS E
IINNSEEE W H A E DS
IRRERSEE I
A B MM E R

Cluster 3 Real part of Imaginary part of
learned W for cluster 2 learned W for cluster 2

36



UNITE-MRI recon (37.4 dB) PANO?!! error (34.8 dB)

B B8

UNITE-MRI error UTMRI ( ) error (37.2 dB)

11 ,
[Qu et al. '14] 37




Example - Cartesian 2.5x Undersampling (K = 16)

Reference UTMRI (42.5 dB) UNITE-MRI (44.3 dB)

0.06

PSNR (dB)
IN
@
@

IS
W

42548 12 16 20 28 36
Number of Clusters

PSNR vs. K UTMRI Error UNITE-MRI Error

38



Online Transform Learning

for Dynamic Imaging and Big Data



[ Jma [ b [ e [ e[ ]

Online Transform
Learning

[ {5 [ ]

h¢ : Learnt Transform/Sparse Codes/Signal Estimates

@ Big data = large training sets = batch learning (using all data) is
computationally expensive in time and memory.

@ Streaming data = must be processed sequentially to limit latency.

@ Online learning involves cheap computations and memory usage.

40



Online Transform Learning Formulation

@ Fort=1, 2, 3,..., solve

t

(P3) { W, 5} = argmin = S 1wy — 3+ v(w) )

W, x j=1

st Ixellg <5, x5 =%, 1<j<t—1.

@ )\ = Xo|lys|l5. o controls condition number and scaling of W; € R™".
@ Denoised image estimate y: = W, 1% is computed efficiently.

@ For non-stationary data, use forgetting factor p € [0, 1], to diminish the
influence of old data.

1~
=70 {Iwy = 13 + v () } (12)
j=1

41



Online Transform Learning Algorithm

@ Sparse Coding - solve for x; in (P3) with fixed W = W;_1: Cheap
Solution: & = Hs(Wy:).

@ Transform Update: solve for W in (P3) with x; = &. Cheap, closed-form
update using SVD rank-1 update.

@ No matrix-matrix products. Approx. error bounded, and cheaply monitored.

42



Online Transform Learning (OTL) Convergence Results

@ Assumption: y; are i.i.d. random samples from the sphere
S"={y eR":|lyl, =1}

9 Consider the minimization of the expected learning cost:
g(W) =E, | [Wy — Hi(Wy)Il + Xo llyll5 v(W) (13)

@ Mild assumptions: Exact computations, Nondegenerate SVDs.

@ Main Result: W, in OTL converges to the set of stationary
points of g(W) almost surely. W;1; — W;: ~ O(1/t).

43



Online Video Denoising by 3D Transform Learning

e Denoised
Input Buffer Mini-batch et otas
ﬂ <. *|Sequential > Zt-m+1
e

[Ze—m+1] - 1z]| | Denoising | |Zmsal 12

@ z; is a noisy video frame. Z; is its denoised version.
9 G; is a tensor with m frames formed using a sliding window scheme.
@ Overlapping 3D patches in the G;'s are denoised sequentially.

@ Denoised patches averaged at 3D locations to yield frame estimates.

44




Video Denoising Example: Salesman

Noisy frame

: = = M,
VBM4D?? Error (PSNR = 27.20 dB) VIDOLSAT Error

12 [Maggioni et al. '12] 45



From Patches To Filter Banks



Learning on Image Patches

Patches of image

@ Y; =Ry, j=1,.N: jth image patch, vectorized.

QY =[Y1]|Yo]..... | Yn] € R™M . matrix of vectorized patches - training
signals



Sparsifying Transforms as Filter Banks
for Maximally Overlapping Patches

WL: S 71'/ () —»o;>
€T ZQ,:
W.z’: > 71'/ () ——-—




Sparsifying Transforms as Filter Banks
for Maximally Overlapping Patches

Wl,: S 7;/ () —»o‘—>
€T ZQ,:
W.z,: > 71'/ () ——-—

@ vec(WX)=Hwez




Sparsifying Transforms as Filter Banks
for Maximally Overlapping Patches

WL: S 7;/ () —»o;>

W.z,: — 71'/ () —>o—>

L AVR
4R ma WIAO

@ vec(WX)=Hwez

@ Defn: Hw is perfect reconstruction (PR) if Hyy left invertible (LI).
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Sparsifying Transforms as Filter Banks
for Maximally Overlapping Patches

Zl,:

Wl,: . 71-/ ()

€T ZQ,:
Wo.r=Tv (*)

l ZM,
W7, (+)

@ vec(WX) =Hwez
@ Defn: Hw is perfect reconstruction (PR) if Hyy left invertible (LI).

@ Properties of filter bank controlled by patch extraction and by W
» Shape of patches — shape of filters

» Rows of W — channels of filter bank



Sparsifying Transforms as Filter Banks
for Maximally Overlapping Patches

Zl,:

Wl,: . 71-/ ()

€T ZQ,:
Wo.r=Tv (*)

l ZM,
W7, (+)

@ vec(WX) =Hwez
@ Defn: Hw is perfect reconstruction (PR) if Hyy left invertible (LI).

@ Properties of filter bank controlled by patch extraction and by W
» Shape of patches — shape of filters

» Rows of W — channels of filter bank

» Wis Ll = Hw is PR



Sparsifying transforms as filter banks

@ Take away: Existing transform learning algorithms learn perfect
reconstruction filter banks!



Sparsifying transforms as filter banks

@ Take away: Existing transform learning algorithms learn perfect
reconstruction filter banks!

@ ... But, requiring W to be LI is stronger than requiring Hy to be
PR!



Sparsifying transforms as filter banks

@ Take away: Existing transform learning algorithms learn perfect
reconstruction filter banks!

@ ... But, requiring W to be Ll is stronger than requiring Hy to be
PR!

@ Two questions:
@ Do we benefit by requiring Hy- to be PR and relaxing the LI
condition on W?
@ Can we find an efficient algorithm to learn such an Hy?



Previous Work

@ Connection between patch-based analysis operators and
convolution previously known

@ Convolution often used as a computational tool



The Key Property

@ Each frequency must pass through at least one channel!

Diagonalization

— 2
CilCy = o ddiag < oW | 1Nc> )

Perfect Recovery Condition

= 2
Hyw is PR < each entry of ‘(I)WT‘ 1y, >0

@ Decouples the choice of number of channels N, and patch size
(support of transform) K x K

@ Especially attractive for high dimensional data




Learning a sparsifying filter bank
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Learning Formulation

@ Desiderata
Parameterize with few degrees of freedom

v

v

‘Hwz should be (approximately) sparse

v

Hyw should be PR and well conditioned

v

No identically zero filters

v

No duplicated filters

21



Learning Formulation

@ Hwx should be (approximately) sparse

@ — W X should be (approximately) sparse

1
P(W, Z,2) £ J|WX = Z|[} +v]Zll

22



Learning Formulation

@ Hy should be PR and well conditioned
@ Let ¢; be an eigenvalue of HiLHy,

N2 N2 Cg

NIOEDS 5 log ¢;*

i=1 i=1

Ne )

> (|@w| >m)
=1

]=

N2 No )
= O.SZZ(’®WT‘ )ij — log (

i=1j=1



Learning Formulation

@ No identically zero filters

Nc
_6 Z IOg <||W,
j=1

3)
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Learning Formulation

@ Hy should be PR and well conditioned

@ No identically zero filters

N2 Ne 9
=1 j5=1

Nc
— B tog (I[W;:113)
j=1

> (e

Jj=1

P
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Learning Formulation

@ No duplicated filters

<M/i,:a Wj,>

Jo(W)= > log(1<|

1<i<j<N,

Wi,:

[2[IWj.:|

J)
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Learning Formulation

min —||WX Z||%+aJi (W) +~vJo(W)+v|| Z||o

W,Z 2

Alternating minimization:
@ 7kt = argmin, %HW’“X —Z|%+v|Z|lo

@ Wkl = arg miny, %HWX — ZFYE + a k(W) + 2 (W)
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Application to Magnetic
Resonance Imaging
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Imaging Model

Imaging Model: Undersampled Fourier measurements
y=I1®x +e

z € RY*: Input image

® € CN**N*: DFT matrix

I € CM*N?: Row selection matrix

e € CM: Zero mean Gaussian noise

33



Image Reconstruction - Transform Blind Compressed
Sensing

1 1
min_o 1y~ Dol A (5 Mo — 213 + vlzlo + i (H) + 7T
x,Hw,Z 2 2

34



Image Reconstruction - Transform Blind Compressed
Sensing

1 1
min oy~ Dol 3+A (5 Mo — 213 + vlizlo + i () + T2
x,Hw,Z 2 2

@ Data fidelity
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Image Reconstruction - Transform Blind Compressed
Sensing

1 1
min_o 1y~ Dol +A (5 Mo — 213 + vlzlo + i () + 72w
x,Hw,Z 2 2

@ Data fidelity
@ Transform learning
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Image Reconstruction - Transform Blind Compressed
Sensing

1 1
min =|jy — D®z||3+\ <||wa — 2|54 v||z]lo + i (Hw) + ’YJQ(Hw)>
x,Hw,Z 2 2

@ Data fidelity
@ Transform learning
@ Solve using alternating minimization
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Image Reconstruction - Transform Blind Compressed
Sensing

Image Update Transform Update

1 A 1
min §||y—F<I>x||2+§||7-lWx—z||§ min 5||7-[W:c—z||§;+aJ1(W)+’yJ2(W)

Sparse Code Update

o1
min §||HW9U — 2[5+ v llo
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Experiments

@ Synthetic MR data from magnitude
image

@ = 5 fold undersampling

@ Vary filter size & number of channels

@ Compare against square patch-based
transform learning:

1 5 A
nin o fly — Dozlly + Z[WX = Z[| + v[|Z]lo
+ a||W||% — Blogdet W

@ Solved using alternating minimization
@ Initialized with DCT matrix
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Reconstruction PSNR (dB)

Filter Bank Patch Based
o/ PSNRIn | N.=64 | N,=128 | N, =64
64 x 64
K = K =28 K =12
0 / 29.6 35.2 35.2 35.1 34.6
255 / 28.8 32.6 32.7 32.6 32.5
255 / 26.9 31.6 31.6 31.2 31.3
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Learned filters 8 x 8
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Conclusion

@ New framework for learning filter bank sparsifying transforms
@ Replace patch recovery conditions with image recovery
@ Decouples number of channels from filter length

@ Can outperform patch-based transform for MR reconstruction
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@ We introduced several data-driven sparsifying transform adaptation
techniques.
@ Proposed learning methods

o are highly efficient and scalable
@ enjoy good theoretical and empirical convergence behavior
o are highly effective in many applications

@ Highly promising results obtained using transform learning in
denoising and compressed sensing.

@ Papers and software available for download at
http://transformlearning.csl.illinois.edu
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Papers and software: http://transformlearning.csl.illinois.edu

Thank Youl!

Work with
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