

When Machine Learning Takes over Audio Signal Processing

Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu

What is this talk really about?

- Machine Learning vs. Signal Processing?
 Not quite, they are the same thing really
- It's about breaking away from textbook adherence
 Borrowing ideas from other fields, and incorporating them in SP
- The goal is to inspire you to look around more
 The specific techniques here are irrelevant, the approach is

Three stories to tell

• Array processing from a different viewpoint Powerful alternatives to beamforming / localization

Non-negative audio models Dictionary models for processing on mixtures of sounds

- (and the obligatory) Deep learning
 - Supervised methods for signal enhancement
 - Quantized networks for fast/cheap audio processing

Array methods

- Standard approaches Beamforming (Delay & sum, MVDR, the GSC, etc.)
- Some problems • We need a lot of mics to get a lot of gain We need precise calibration
- We are already pushing the limits of mic arrays 300 mic arrays are amazing, but expensive!

A different approach

• 2-mic array inter-phase features Phase difference between channels

• Note that these are values between $-\pi$ and π

• Each spatial location has it's own set of values over f

What does this look like?

For one source: scatter plot of points along a line The line slope denotes the delay between the two channels Each point corresponds to a time/frequency bin

What about mixtures?

• Each source gets its own line depending on the delays That is thanks to time/frequency disjointness between sources

2-source mixture, 1-sample and 2-sample delays

A thought ...

• Each source's dominant t/f bins lie on a wrapped line We can make masks for each source using that information

• A problem:

- Find the number and the slope of the wrapped lines
 - Number of lines \longrightarrow numbers sources
 - Slope of line \longrightarrow location of source

Models for wrapped data

- Linear-circular regression
- Problem: Not a linear model! • Phase values wrap inside $\{-\pi,\pi\}$
- We need something else Multiple options available

Predict the phase difference values from the frequency index • i.e. a linear model on *f*, which then gets wrapped as a phase

Bayesian regression nomenclature

Linear regression = minimize Gaussian error likelihood

$$y_{i} = \alpha x_{i} + n_{i}$$

$$p(y;\alpha;\sigma^{2}) = \prod_{i=1}^{N} \mathcal{N}(y_{i};\alpha x_{i},\sigma^{2})$$

Using the wrapped Gaussian

• Model the data as repeating regressions every 2π Effectively use a sum of infinitely repeating Gaussians

 $p(\delta;\alpha;\sigma^2) = \prod_{f=1}^{D} \sum_{f=1}^{\infty} \mathcal{N}\left(\delta_f;\alpha f + 2\pi l,\sigma_f^2\right)$

2-sample delay

A model for multiple sources

• Likelihood for explaining a mixture of K sources Each source has its own line

$$p(\delta;\alpha;\sigma^2,q) = \prod_{f=1}^{D} \sum_{j=1}^{K} q_i$$

- We can learn this in a variety of ways
 - Expectation-Maximization (accurate, slow)
 - RANSAC (accurate enough, really fast)

 $\sum_{i,j} \mathcal{N}\left(\delta_{f}; \alpha_{j}f + 2\pi l, \sigma_{j,f}^{2}\right)$

A toy example

Simple {+2,-3} delay mixture

Mix

Male

Female

In real-life

• Two people in one office, small delays

Dave

Mix

Extreme case

• Stairwell with strong reverberation, larger delays

Mix

Johannes

Some interesting features

- Arrays should be shorter We like short delays
 - Too much wrapping can be a problem
- Sample rate should be low Again keeps the delays shorter
- No need for tedious calibration Also generalizes easily for multiple microphones

Arrays are good, but can be expensive Not so much an issue today, but still not as widespread

The holy grail is single-channel signal processing

A complication No spatial domain, no good way to "point" to a source So let's do that!

Models on magnitude spectra

Phase can be uninformative so we will ignore it

- Key property here: Data is non-negative Which means we can't use typical MSE-based methods
- Promising area: Non-Negative Factorizations Lots of work on this area in the last 10 years

• We can do a lot of denoising on magnitude spectrograms instead

Simple example

A drum loop with three distinct tones Two blips, one snare

3-element input

A simple factorization model

• Factorize magnitude spectrogram as: $F_{i,j} \approx w_i h_j$ All three quantities are non-negative

Amplitude

-requency

Time

Towards a richer model

- Simple factor model learns spectrum & envelope Doesn't help much in interpreting the input
- We can instead use multiple spectra/envelopes: $F_{i,i} \approx w_i^{(1)} h_i^{(1)} + w_i^{(2)} h_i^{(2)} + \dots$ $\Rightarrow \mathbf{F} \approx \mathbf{w}^{(1)} \cdot \mathbf{h}^{(1)} + \mathbf{w}^{(2)} \cdot \mathbf{h}^{(2)} + \dots$ $\Rightarrow \mathbf{F} \approx \mathbf{W} \cdot \mathbf{H}, \ \mathbf{F} \in \mathbb{R}_{+}^{(M \times N)}, \mathbf{W} \in \mathbb{R}_{+}^{(M \times K)}, \mathbf{H} \in \mathbb{R}_{+}^{(K \times N)}$

The pretty picture version

bases W and their corresponding activations H

Magnitude spectrogram

Frequency

Time

• The input is decomposed as a combination of spectral Each pair of spectrum/activation makes a "component"

Back to the original example

• This model results in a more descriptive output Each component describes a different sound in the mix

Component contributions

Original input

Time

equency

Sum of components: $\mathbf{F} \approx \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$

Can't do miracles (yet)

- This model has some limitations
 - Components can only have a static spectrum
 - Fine for stationary sounds (drums, piano, etc), but not useful for speech

Non-Negative dictionary models

We can however use this model to construct better ones

Learning a speech dictionary

When applied on speech we (sort of) learn phonemes Each component describes a characteristic spectrum of the input

Input Spectrogram

Reconstruction of similar sounds

Speaker-dependent dictionaries • Factorize spectra from training data of a speaker and get ${\bf W}$ $\mathbf{X}_{train} \approx \mathbf{W} \cdot \mathbf{H}$

- Different speakers would have somewhat different spectral bases
- We can resynthesize that speaker's voice using W only $\mathbf{X}_{test} \approx \mathbf{W} \cdot \mathbf{H}_{tot}$ Think of it as a complicated form of VQ coding

Pointless example

• Keep the phase; approximate the magnitude Train on 9 sentences for W, use it to approximate 10th sentence

Original

Time

20-component approximation

CHAMPAI

Time

Time

Learning a different sound class

Different types of sound have distinctly different bases E.g. the chime bases below are very different from speech bases

And these bases are not speech bases!

If we approximate speech with the chime bases it produces a very poor approximation

Original

Time

Time

CHAMPAI

4-component approximation

150-component approximation

Time

An idea ...

What if I have a mixture of two known sound classes? How would I approximate this one?

Mixtures of sounds

Use spectrogram additivity

Separation

Recompose sources individually

- And convert spectrograms to time domain
 - Use the original phase of the mixture
 - This is effectively a soft mask
- Sounds have to have different W's! But not dramatically so

Mixture

Separation with some unknown sounds

Same as before, use only one model:

F = **W**_{known} **W**_{unknown}

Known/fixed

Learn weights and unknown bases Unknown bases converge to the unknown parts in the mixture

Soprano & Piano

Extracted soprano

Soprano+Piano

known

unknown

Extracted soprano

How robust is this?

Many more applications

- it comes to processing magnitude spectrograms Very effective when dealing with mixtures of sounds!
- Some applications that are out there
 - missing data restoration, remixing tools, multi-channel enhancements, dereverberation, compression models, ...

Non-Negative models have been pretty successful when

Sound detection from mixtures, polyphonic music transcription,

Audio layer editing

Video Content Analysis

Detecting sounds in mixtures

Measure activation of known dictionaries to estimate presence

Bandwidth Expansion

- Filling in missing data
 - Learn full-band dictionary W from example sounds
 - $\hfill \ensuremath{\mathsf{-Fit}}\ensuremath{W}$ on input recording using only the available bands
 - Reconstruct input using full-bandwidth bases

from example sounds ng only the available bands bandwidth bases

Multi-channel methods

- 700 videos of YouTube
 - Taylor Swift at the (then)
 San Jose HP Pavillon
 - As dirty as data gets!
- Can we beamform it?
 Two problems:
 Sync and combine

Sync issues

- Super heavy using traditional processing
 - 200 people out of 5,000
 - 4 videos per person = 800 videos
 - $800^2 = 640,000$ correlations

 - 2 min per average video = 1,600 minutes = 26 hours of footage • 44,100 samples per sec = 5,292,000 samples per clip I correlation = 28 Trillion = 28 TeraFLOPS
 - Total cost = 17 Quintillion FLOPS = 17 ExaFLOPS!!

Landmark-based sync

Forget correlations Hash spectral peaks and match their locations across recordings ~30sec on my laptop!

Urbana Champaign

| L L I N O I S

U N I V E R S I T Y

Does pretty well

Using co-factorization

• What if all the recordings are of poor quality? (they are!) Can we combine them to get a better reconstruction?

Optional prior

Example: Yuki – Joy, Live

Convolutional form of factorization

Convolution is a product, we can use that instead Allows us to deconvolve in the magnitude domain:

Input

Dereverb

 $F \approx W * h$

Many more models for different jobs

- Online formulations
 Facilitate real-time deployment
- Universal Speaker Model
 Doesn't require exact model for a speaker
- HMM / Dynamical models
 Allow concurrent speech ASR

But

Matrix factorizations are not for the faint of heart Heavy computational requirements (large matrix multiplies) • Might be ok for desktops, not for smaller devices

Is there a way to avoid the costly weights estimation? Can the runtime processing be a non-iterative process?

Let's explore that option

Towards a more direct method

Non-negative models were generative models
We modeled the data, and the rest was a side-effect

We can instead explicitly aim for a task
Forget the models, teach a system to perform the needed task

Noisy autoencoders for enhancement

• Use a neural net with positive-only outputs

Output clean spectra

Positive-output activation

Train it to predict clean spectra from noisy spectra

- We can easily do this by making artificial mixtures
- Advantage: solves the problem directly
- We can also use other flavors (multilayer, recurrent, convnet, ...)

Toy example - Training

Trained on 30sec inputs

- Speech + street noise
- Known speaker
- Takes 30sec to train
 - on a laptop (2-3sec with GPU)

Parameters

- 1024pt spectra
- 1 hidden layer, 100 nodes
- Leaky ReLU activations

Toy example - Runtime

- Very lightweight process
 ~300x real-time
 - 0.01sec in this case
- Strong performance
 - SDR: 12.7, SIR: 23.2, SAR: 13.1
 - **PEAQ**: -2.04, **PESQ**: 0.71
 - **STOI**: 0.86

What about unknown sounds?

• The more you know the better (no surprise here)

Performance with Unknown Factors

Thinning down the computations

• Running these floating-point operations is costly

"Binarizing" the feedforward pass Key idea: replace FP operations with bits operations

Problem: How do we map the operations?

- Complex FP hardware —> more power consumption and cost

Mapping to binary

Typical unit operation: $y = tanh\left[\sum_{i} w_{i} x_{i}\right]$

Binary re-interpretation:

• Works fine as long as the w's are not close to zero

Hence we also maximize w's and apply a tanh to saturate them

Real products		Non-linearity result		
	x > 0	x < 0	$\Sigma \gg 0$	$y \rightarrow +1$
w > 0	w x > 0	w x < 0	$\Sigma \ll 0$	y → -1
w < 0	w x < 0	w x > 0		

Binary XNOR		Comparison result		
	x = 0	x = 1	$\Sigma > N/2$	$\mathbf{y} = \mathbf{f}$
w = 0	$w \otimes x = 1$	$w \otimes x = 0$	$\Sigma < N/2$	y = (
w = 1	$w \otimes x = 0$	$w \otimes x = 1$		

Comparison of forward pass

layer

Real-Valued Network

Binary-Valued Network

Does this work?

Network size: Layers × Nodes

Hardware comparison

One connection

One node

32 bit real multiplication

1K Multiply-adds and an FP function, 32K bits

1K XNORs + 1 pop count, 1K bits

One layer

One network

2 MFLOPS, 4 MBytes

2 Mbit-Ops, 0.125 MBytes

8 MFLOPS, 16 MBytes

8 Mbit-Ops, 0.5 MBytes

Estimated hardware comparison (per node)

	32bit float	16bit int	Binary
Area (µm²)	6,000	1,000	100
Power (µW)	2,000	250	20

Under-the-rug issues

- Currently this model is for runtime only Fortunately, learning is a one-time offline process
- Data needs to be in a binary format Not a major problem, but requires additional thinking • We can simply quantize, or use hashing methods

Input data

Quantization

Hash representation

1 0 0 1 1 1 0 0 0 0 1 11110010010 00100010101 00001001010 11000101101

What about our problem at hand?

- Inputs are quantized noisy spectra (4-bits per coefficient)
- Output is a binary mask

• Slightly different structure to accommodate binary data

2048 nodes, 2 layers

So what have we gained from ML?

- We can improve on array methods
 Simple models, better performance, less finicky setup
- We can explain mixtures intuitively
 Allows us to manipulate sound in easier ways
- We can simplify processing complexity
 Neural net enhancers using very simple hardware

In conclusion

• There is more to DSP than textbook approaches Let's stop beating dead horses ...

• Lots of neat ideas we can take from machine learning Not that different from the DSP way of thinking But definitely outside our comfort zone

Thanks to you, and to:

Collaborators:

- Johannes Traa (now at Lyric Labs) Minje Kim (now at U Indiana) Gautham Mysore (now at Adobe) Madhu Shashanka (now at Charles Schwab) Nicholas Bryan (now at Apple)
- Bhiksha Raj (now at CMU)

• Funding support: NSF, Adobe Research, MERL, Sony, Analog Devices, Intel

Bibliography

Arrays

- Transactions on Audio, Speech and Language Processing. [PDF]
- Machine Learning for Signal Processing Workshop [PDF]

Non-Negative Modeling

- Magazine [PDF]
- Nonnegative Factorizations: A unified view, in IEEE Signal Processing Magazine [PDF]

Neural Nets

- conference of the International Speech Communication Association [PDF]
- Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing [PDF]
- Resource-Efficient Machine Learning [PDF]

• Traa, J. and P. Smaragdis. 2014. Multichannel Source Separation and tracking with RANSAC and Directional Statistics, in IEEE • Traa, J. and P. Smaragdis. 2014. Multiple Speaker Tracking with the Factorial von Mises-Fisher Filter, in Proceedings of the IEEE

• Virtanen, T., J. Gemmeke, B. Raj and P. Smaragdis. 2014. *Compositional models for audio processing*, in IEEE Signal Processing

• Smaragdis, P., C. Fevotte, G. Mysore, N. Mohammadiha, M. Hoffman 2014. Static and Dynamic Source Separation Using • Kim, M., and P. Smaragdis. 2014. Collaborative Audio Enhancement: Crowdsourced Audio Recording, in Neural Information

Processing Systems (NIPS) 2014, Workshop on CrowdSourcing and Machine Learning. Montreal, Canada. [PDF]

• Liu, D., P. Smaragdis, M. Kim. 2014. Experiments on Deep Learning for Speech Denoising, in Proceedings of the annual

• Huang, P-S., M. Kim, M. Hasegawa-Johnson, P. Smaragdis. 2014. Deep Learning for Monaural Speech Separation, in

• Kim, M. and P. Smaragdis, "Bitwise Neural Networks," International Conference on Machine Learning (ICML) Workshop on

