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What is this talk really about?

* Machine Learning vs. Signal Processing?
* Not quite, they are the same thing really
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* |t's about breaking away from textbook adherence
* Borrowing ideas from other fields, and incorporating them in SP

* The goal is to inspire you to look around more
* The specific technigues here are irrelevant, the approach is
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Three stories to tell

* Array processing from a different viewpoint
* Powerful alternatives to beamforming / localization

AT URBANA CHAMPAIGN

* Non-negative audio models
* Dictionary models for processing on mixtures of sounds

= (and the obligatory) Deep Iea rning

* Supervised methods for signal enhancement
* Quantized networks for fast/cheap audio processing
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Array methods

= Standard approaches
* Beamforming (Delay & sum, MVDR, the GSC, etc.)
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* Some problems

* We need a lot of mics to get a lot of gain
* We need precise calibration

* We are already pushing the limits of mic arrays
* 300 mic arrays are amazing, but expensive!
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A different approach

= 2-mic array inter-phase features
* Phase difference between channels

/ Spectrogram of mic 1
1 2
Phase difference between 6 — LF ( ) T LF ( )
t f,t f,t

each time/frequency bin f ,
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T~ Spectrogram of mic 2

* Each spatial location has it's own set of values over f
* Note that these are values between -mand

n
@)
Z
_
1
L
@)
>
I_
n
a'd
Ll
=>
Z
D




What does this look like?

8 * For one source: scatter plot of points along a line
: * The line slope denotes the delay between the two channels
% * Each point corresponds to a time/frequency bin

Phase difference (rads) Phase difference (rads)



What about mixtures?

* Each source gets its own line depending on the delays
* That is thanks to time/frequency disjointness between sources

2-source mixture, 1-sample and 2-sample delays
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A thought ...

* Each source’s dominant t/f bins lie on a wrapped line
* We can make masks for each source using that information

2-source mixture, 1-sample and 2-sample delays
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* Find the number and the slope of the wrapped lines
» Number of lines — numbers sources

UNIVERSITY OF

» Slope of line — location of source




Models for wrapped data

* Linear-circular regression
* Predict the phase difference values from the frequency index

* i.e. a linear model on f, which then gets wrapped as a phase

AT URBANA CHAMPAIGN

2-sample delay

8000

* Problem: Not a linear model!
* Phase values wrap inside {-m,m} ad

4000 ¥

Frequency (Hz)

* We need something else
* Multiple options available
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Bayesian regression nomenclature

® + Linear regression = minimize Gaussian error likelihood
y

o y.=ax +n

% o’ ’ 2 . 2
g /,// ’ p(y;a{;a- ):HN(yl;axl’O- )
- @ 2 1=1




Using the wrapped Gaussian

q * Model the data as repeating regressions every 2mr
-  Effectively use a sum of infinitely repeating Gaussians

- D 0O
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A model for multiple sources

* Likelihood for explaining a mixture of K sources
* Each source has its own line

D K e
p(6;050°,q) = qui,j > N(éf;ajf_I_Zﬂ-l’Oif)

f=1 j=1 [=—00
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* We can learn this in a variety of ways

* Expectation-Maximization (accurate, slow)
* RANSAC (accurate enough, really fast)
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A toy example

2 = Simple {+2,-3} delay mixture
< 9 Mix

1 ©  Female
e e

Frequency bin

n
@)
Z
_
1
L
@)
>
I_
n
a'd
Ll
=>
Z
D

Phase offset




In real-life

* Two people in one office, small delays
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Extreme case

= Stairwell with strong reverberation, larger delays
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Some interesting features

* Arrays should be shorter

* We like short delays
* Too much wrapping can be a problem
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= Sample rate should be low
* Again keeps the delays shorter

* No need for tedious calibration
* Also generalizes easily for multiple microphones
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But ...

* Arrays are good, but can be expensive
* Not so much an issue today, but still not as widespread

AT URBANA CHAMPAIGN

* The holy grail is single-channel signal processing

= A complication

* No spatial domain, no good way to “point” to a source
* So let's do that!
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Models on magnitude spectra

* Phase can be uninformative so we will ignore it
* We can do a lot of denoising on magnitude spectrograms instead

AT URBANA CHAMPAIGN

= Key property here: Data is non-negative
* Which means we can't use typical MSE-based methods

* Promising area: Non-Negative Factorizations
* Lots of work on this area in the last 10 years
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Simple example

* A drum loop with three distinct tones

* Two blips, one snare

Hz)
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A simple factorization model

- DD 0 +~ O O

? * Factorize magnitude spectrogram as: F W, h
T ’J J
- * All three quantities are non-negative
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Towards a richer model

* Simple factor model learns spectrum & envelope
* Doesn’t help much in interpreting the input

* We can instead use multiple spectra/envelopes:
~ w1, D7 D) (2)7,(2)
F.~w, hj + W, hj + ...
~ Faw? . h® L w? . h®
= F~W-H, FER"" WeR"™" HeR"™




The pretty picture version

* The input is decomposed as a combination of spectral

bases W and their corresponding activations H
* Each pair of spectrum/activation makes a “component”

AT URBANA CHAMPAIGN

Magnitude spectrogram Spectral “bases” "Activations”

3 A% H
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Back to the original example

* This model results in a more descriptive output
* Each component describes a different sound in the mix

Spectral bases W Matrix F
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Can’t do miracles (yet)

* This model has some limitations

* Components can only have a static spectrum
* Fine for stationary sounds (drums, piano, etc), but not useful for speech
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* We can however use this model to construct better ones
* Non-Negative dictionary models
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Learning a speech dictionary

* When applied on speech we (sort of) learn phonemes
* Each component describes a characteristic spectrum of the input

Spectral bases W Input Spectrogram

|
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Reconstruction of similar sounds

* Speaker-dependent dictionaries
* Factorize spectra from training data of a speaker and get W

X ~W-H

train
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* Different speakers would have somewhat different spectral bases

* We can resynthesize that speaker’s voice using W only
X ~W-H

test test
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Pointless example

= Keep the phase; approximate the magnitude
* Train on 9 sentences for W, use it to approximate 10th sentence

Original 4-component approximation
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Learning a different sound class

1 = Different types of sound have distinctly different bases
: * E.g. the chime bases below are very different from speech bases
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And these bases are not speech bases!

|+ If we approximate speech with the chime bases it
produces a very poor approximation
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An idea....
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Mixtures of sounds

» Use spectrogram additivity

* combine models to explain mixture |
| H
F _ Wh W . cnimes
_ crimes speech _ H 5000
speech =
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» Estimate only the activations ™=
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Separation

|+ Recompose sources individually 3
E = _ H Ullﬁd Mixture
< speech speech speech [
g L”IL%OJ Extracted speech
< Fchimes — Wchimes . Hchimes U@d Evtracted chimes
* And convert spectrograms to time domain
* Use the original phase of the mixture 2

* This is effectively a soft mask
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* Sounds have to have different W's! o
* But not dramatically so M2, Extracted speaker 2




Separation with some unknown sounds

v Soprano+Piano

d = Same as before, use only one model:

EZE: F — | W W Hknown % 00000 o " L I
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- et ©

2+ Learn weights and unknown bases piractedsoprone

. * Unknown bases converge to the unknown

parts in the mixture ;|
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Many more applications

* Non-Negative models have been pretty successful when

it comes to processing magnitude spectrograms
* Very effective when dealing with mixtures of sounds!

AT URBANA CHAMPAIGN

* Some applications that are out there
* Sound detection from mixtures, polyphonic music transcription,
missing data restoration, remixing tools, multi-channel
enhancements, dereverberation, compression models, ...
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Video Content Analysis

Detecting sounds in mixtures
* Measure activation of known dictionaries to estimate presence
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Bandwidth Expansion

* Filling in missing data
* Learn full-band dictionary W from example sounds

* Fit W on input recording using only the available bands
* Reconstruct input using full-bandwidth bases

Bandlimited input D Training data i Full-band reconstruction
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Multi-channel methods

700 videos of YouTube

* Taylor Swift at the (then)

San Jose HP Pavillon
As dirty as data gets!
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Can we beamform it?

* Two problems:
Sync and combine
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Sync issues

= Super heavy using traditional processing

* 200 people out of 5,000

* 4 videos per person = 800 videos

» 8002 = 640,000 correlations

* 2 min per average video = 1,600 minutes = 26 hours of footage
* 44100 samples per sec = 5,292,000 samples per clip

* 1 correlation = 28 Trillion = 28 TeraFLOPS

* Total cost =17 Quintillion FLOPS =17 ExaFLOPS!!

AT URBANA CHAMPAIGN

n
@)
Z
_
1
L
@)
>
I_
n
a'd
Ll
=>
Z
D




Landmark-based sync

q = Forget correlations
. * Hash spectral peaks and match their locations across recordings
< « ~30sec on my laptop!
< User-Provided Videos Alignment Aligned Video Clusters
S N & D
andmark discovery Clustering
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Clip 2 % >< time
usin
Clip 3 @ >< landmgrks
/

Clip 4 <k7< \ -

o / - /

n
@)
Z
W
—1
L
@)
>_
I_
n
('
Ll
>
Z

D)




UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN




Using co-factorization

* What if all the recordings are of poor quality? (they are!)

* Can we combine them to get a better reconstruction?

Input recordings  Bases W Priors Activations H
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e: Yuki - Joy, Live

Interference + LPF , Interference + HPF
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Convolutional form of factorization

= Convolution is a product, we can use that instead
* Allows us to deconvolve in the magnitude domain:

Input

!
*

— f—— —_— =
——— —— e = — - ———
L == = e = e e =
= L:: e e —— L ==l
= - - B b=t = e == o
— — e - B - - S e —
= = — : - e S Te—— = e -_— -
gi-__‘f:g& = N = —— e e e e —_—
= - - = = — e - e

Dereverb W Modified h

Z
©)
<
(el
=
<
T
@,
<
Z
<
(an)
o
D)
|_
<
w
O
pd
_
—
L
@)
>_
|_
(Vg
o
Ll
>
Z
D

'h.—‘__' =
= -
- :4“—-_-7 = -1!-—:-
—_— —_— — e C—— == — L = -
— — == = - —— — — —— == = ——— —_— =
= —— - —_— — — = e - i = e
—— - e e == e T i el e — =
——— . = = = —— : - B — S —— = e
=== —— = ——— e .__,E“—T == ————— — = —— ——— e
= = —— — == e o e e = = = —
= — == — —— e = S e =
—— — e = — ;___,.ai“ —_ = e S = —
- — _ — e [ e e — = ——— _ — ———— e e
= —— —= e e — E=RR e —- — e — —




Many more models for different jobs

* Online formulations
* Facilitate real-time deployment

AT URBANA CHAMPAIGN

= Universal Speaker Model
* Doesn't require exact model for a speaker

* HMM / Dynamical models

* Allow concurrent speech ASR
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But ...

* Matrix factorizations are not for the faint of heart

* Heavy computational requirements (large matrix multiplies)
* Might be ok for desktops, not for smaller devices

AT URBANA CHAMPAIGN

* |s there a way to avoid the costly weights estimation?
* Can the runtime processing be a non-iterative process?

* Let's explore that option
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Towards a more direct method

* Non-negative models were generative models
* We modeled the data, and the rest was a side-effect

AT URBANA CHAMPAIGN

* We can instead explicitly aim for a task
* Forget the models, teach a system to perform the needed task
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Noisy autoencoders for enhancement

* Use a neural net with positive-only outputs

AT URBANA CHAMPAIGN

S :f(W-mt+b)
AN

Output clean spectra - o Input noisy spectra
Positive-output activation

* Train it to predict clean spectra from noisy spectra
* We can easily do this by making artificial mixtures
* Advantage: solves the problem directly
* We can also use other flavors (multilayer, recurrent, convnet, ...)
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Toy example - Training

" = Trained on 30sec inputs )

: * Speech + street noise g |

* Known speaker o EMRMAE{E A e Ze
. * Takes 30sec to train
2 * on a laptop (2-3sec with GPU) LN

- O O~ O

- [ 7 /

8 = Parameters /////

* 1024pt spectra i - / ARy

* 1 hidden layer, 100 nodes 7{/////

D * Leaky RelLU activations

50 ©° 100 150 200 250 300 350 400 450 500



Toy example - Runtime

2 = Very lightweight process = =" jig
: * ~300x real-time ™ = _
: * 0.01sec in this case B

: - o

g * Strong performance £ aon- :

& :SDR:127,SIR:23.2,SAR: 131 :.. Z =2 Z =%

§  * PEAQ:-2.04, PESQ: 0.71 B B e S S
1 +STOL0.86 (= 3 fit=,

Time (sec)




What about unknown sounds?

* The more you know the better (no surprise here)

Performance with Unknown Factors

AT URBANA CHAMPAIGN
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B Known data
25 I Unknown speaker
Unknown noise
20 Unknown speaker/noise

SDR

SAR
Metric
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Thinning down the computations

* Running these floating-point operations is costly
« Complex FP hardware — more power consumption and cost

AT URBANA CHAMPAIGN

* “Binarizing” the feedforward pass
* Key idea: replace FP operations with bits operations

* Problem: How do we map the operations?
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Mapping to binary

; Real products Non-linearity result
4 = Typical unit operation: x>0 x<0  £»0 y-—+l
5 w>0 wx>0 wx<0 >«<0 y—-1
< y:tanh E Wixi w<0 wx<0 wx>0

S i

< . B. . . . Binary XNOR Comparison result
. Inary re-interpretation: em0 | x=1  zown2 | ye
E N w=0 wex =1 wex =0 2 < N/2 y=20
: Y = E W QX >—

> . l ! 2 w=1 wex =0 wex = 1

= 1

5

* Works fine as long as the w's are not close to zero

* Hence we also maximize w's and apply a tanh to saturate them




Comparison of forward pass

v layer layer
- 10 to 64 bit values input ( \ output
= HE EHOEE B H | _
; 1 = = 1 - Multiply and
U u Ip y an 2 ...... 1 - N -I. .
< R I-V I d BN KN accumulate [] % on-linearity []
- cdai-vae EECDEE O > g £ >
> Network BEEOEDOD H | - I f _
= HLCOHEE B S o
- ECEECOE .
. EECDED L ]
@) 8 0
E layer layer
- Binary values input output
> HE_ H EER B _
- _ B _
- B B XNOR and Nom e
" . bit f on-linearity
= Bmar)/-VaIued _ 1 — R — S _ > ﬂ > B
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Does this work?

* Comparison using NMIST dataset (digit recognition)

Error Rate

3%

2.3%

1.9% 19% 1.9%

2 x 512 2 x1024

2%

1%

0%

B Real NN

2 x 2048

" Binary NN

3x1024

3 x 512 4 x 512 4 x 1024 4 x 2048

3 x 2048

Network size: Layers X Nodes

2.3%
2.0%

1.7%

1.6%

1.6%




Hardware comparison

One connection One node One layer One network

O—0

. . 1K Multiply-adds and
32 bit real multiplication an FP function, 32K bits 2 MFLOPS, 4 MBytes 8 MFLOPS, 16 MBytes
ai 2 Mbit-Ops, 0.125 MBytes 8 Mbit-Ops, 0.5 MBytes
R 1L L

\l' Estimated hardware comparison (per node)
1 XNOR, Tbit IK XNORs + 1 pop count, 1K bits 30bit float  16bit int Binary

4 N
W. Area (um?) 6,000 1,000 100
k / Power (LW) 2,000 250 20
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Under-the-rug issues

* Currently this model is for runtime only
* Fortunately, learning is a one-time offline process

AT URBANA-CHAMPAIGN

* Data needs to be in a binary format

* Not a major problem, but requires additional thinking
* We can simply quantize, or use hashing methods

Input data Quantization Hash representation

: e 10011100001

' ' i o 11110010010
" 00100010101

-._l 00001001010

11000101101
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What about our problem at hand?

= Slightly different structure to accommodate binary data

* [nputs are quantized noisy spectra (4-bits per coefficient)
* Qutput is a binary mask

1024 nodes, 2 Iayers 2048 nodes, 2 layers

30 30

B DNN
W BNN

26./ 259

B DNN

W BNN

20 20

dB
dB

105 94

10 10

SDR SAR SDR SAR



So what have we gained from ML?

= We can improve on array methods
* Simple models, better performance, less finicky setup

AT URBANA-CHAMPAIGN

* We can explain mixtures intuitively
* Allows us to manipulate sound in easier ways

* We can simplify processing complexity
* Neural net enhancers using very simple hardware

W
O
Z
_
—
L
O
>_
|_
)
'
Ll
p
Z
D




In conclusion

* There is more to DSP than textbook approaches
* Let's stop beating dead horses ...

AT URBANA CHAMPAIGN

* Lots of neat ideas we can take from machine learning

* Not that different from the DSP way of thinking
* But definitely outside our comfort zone
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