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What is this talk really about?

• Machine Learning vs. Signal Processing? 
• Not quite, they are the same thing really 

• It’s about breaking away from textbook adherence 
• Borrowing ideas from other fields, and incorporating them in SP 

• The goal is to inspire you to look around more 
• The specific techniques here are irrelevant, the approach is

2
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Three stories to tell

• Array processing from a different viewpoint 
• Powerful alternatives to beamforming / localization 

• Non-negative audio models 
• Dictionary models for processing on mixtures of sounds 

•  (and the obligatory) Deep learning 
• Supervised methods for signal enhancement 
• Quantized networks for fast/cheap audio processing

3
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Array methods

• Standard approaches 
• Beamforming (Delay & sum, MVDR, the GSC, etc.) 

• Some problems 
• We need a lot of mics to get a lot of gain 
• We need precise calibration 

• We are already pushing the limits of mic arrays 
• 300 mic arrays are amazing, but expensive!

4
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A different approach

• 2-mic array inter-phase features 
• Phase difference between channels 

• Each spatial location has it’s own set of values over f  
• Note that these are values between -π and π 

5

δ f ,t =∠Ff ,t
(1)−∠Ff ,t

(2)
Spectrogram of mic 1

Spectrogram of mic 2

Phase difference between 
each time/frequency bin
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What does this look like?

• For one source: scatter plot of points along a line 
• The line slope denotes the delay between the two channels 

• Each point corresponds to a time/frequency bin

6
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What about mixtures?

• Each source gets its own line depending on the delays 
• That is thanks to time/frequency disjointness between sources

7
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A thought …

• Each source’s dominant t/f bins lie on a wrapped line 
• We can make masks for each source using that information 

• A problem: 
• Find the number and the slope of the wrapped lines 

• Number of lines ⟶  numbers sources 
• Slope of line ⟶ location of source

8
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Models for wrapped data

• Linear-circular regression 
• Predict the phase difference values from the frequency index 
• i.e. a linear model on f, which then gets wrapped as a phase 

• Problem: Not a linear model! 
• Phase values wrap inside {-π,π} 

• We need something else 
• Multiple options available

9
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Bayesian regression nomenclature

• Linear regression = minimize Gaussian error likelihood

10

yi = αxi + ni
p( y;α;σ2)= N yi ;αxi ,σ

2( )
i=1

N

∏

y

x
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Using the wrapped Gaussian

• Model the data as repeating regressions every 2π  
• Effectively use a sum of infinitely repeating Gaussians

11

p(δ;α;σ2)= N δ f ;α f + 2πl,σ f
2( )

l=−∞

∞

∑
f=1

D

∏
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A model for multiple sources

• Likelihood for explaining a mixture of K sources 
• Each source has its own line 

• We can learn this in a variety of ways 
• Expectation-Maximization (accurate, slow) 
• RANSAC (accurate enough, really fast)
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p(δ;α;σ2,q)= qi, j
j=1

K

∑ N δ f ;α j f + 2πl,σ j, f
2( )

l=−∞

∞

∑
f=1

D
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A toy example

• Simple {+2,–3} delay mixture

13
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In real-life

• Two people in one office, small delays

14
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Extreme case

• Stairwell with strong reverberation, larger delays
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Some interesting features

• Arrays should be shorter 
• We like short delays 

• Too much wrapping can be a problem 

• Sample rate should be low 
• Again keeps the delays shorter 

• No need for tedious calibration 
• Also generalizes easily for multiple microphones

16
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But …

• Arrays are good, but can be expensive 
• Not so much an issue today, but still not as widespread 

• The holy grail is single-channel signal processing 

• A complication 
• No spatial domain, no good way to “point” to a source 

• So let’s do that!
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Models on magnitude spectra

• Phase can be uninformative so we will ignore it 
• We can do a lot of denoising on magnitude spectrograms instead 

• Key property here: Data is non-negative 
• Which means we can’t use typical MSE-based methods 

• Promising area: Non-Negative Factorizations 
• Lots of work on this area in the last 10 years

18
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Simple example

• A drum loop with three distinct tones 
• Two blips, one snare
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A simple factorization model

• Factorize magnitude spectrogram as: 
• All three quantities are non-negative
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Towards a richer model

• Simple factor model learns spectrum & envelope 
• Doesn’t help much in interpreting the input 

• We can instead use multiple spectra/envelopes:

21

     Fi, j ≈ wi
(1)hj

(1)+wi
(2)hj

(2)+ ...
⇒ F≈w(1) ⋅h(1)+w(2) ⋅h(2)+ ...
⇒ F≈W ⋅H,  F∈!

+
(M×N ),W∈!

+
(M×K),H∈!

+
(K×N )
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The pretty picture version

• The input is decomposed as a combination of spectral 
bases W and their corresponding activations H 
• Each pair of spectrum/activation makes a “component”
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Back to the original example

• This model results in a more descriptive output 
• Each component describes a different sound in the mix
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Component contributions
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Can’t do miracles (yet)

• This model has some limitations 
• Components can only have a static spectrum 

• Fine for stationary sounds (drums, piano, etc), but not useful for speech 

• We can however use this model to construct better ones 
• Non-Negative dictionary models

25
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Learning a speech dictionary

• When applied on speech we (sort of) learn phonemes 
• Each component describes a characteristic spectrum of the input

26
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Reconstruction of similar sounds

• Speaker-dependent dictionaries 
• Factorize spectra from training data of a speaker and get W  

• Different speakers would have somewhat different spectral bases 

• We can resynthesize that speaker’s voice using W only 

• Think of it as a complicated form of VQ coding

27

Xtrain ≈W ⋅H

Xtest ≈W ⋅Htest
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Pointless example

• Keep the phase; approximate the magnitude 
• Train on 9 sentences for W, use it to approximate 10th sentence
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Learning a different sound class

• Different types of sound have distinctly different bases 
• E.g. the chime bases below are very different from speech bases
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And these bases are not speech bases!

• If we approximate speech with the chime bases it 
produces a very poor approximation
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An idea …

• What if I have a mixture of two known sound classes? 
• How would I approximate this one?
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Mixtures of sounds

• Use spectrogram additivity 
• combine models to explain mixture 

• Estimate only the activations 

• The spectral bases claim only 
parts that they can explain best
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Separation

• Recompose sources individually 

• And convert spectrograms to time domain 
• Use the original phase of the mixture 
• This is effectively a soft mask 

• Sounds have to have different W’s! 
• But not dramatically so

33

Fspeech =Wspeech ⋅Hspeech
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Mixture

Extracted speech

Extracted chimes

📻
📻
📻

Speech mixture

Extracted speaker 1

Extracted speaker 2

📻
📻

📻



U
N

IV
E

R
S

IT
Y

 O
F

 I
L

L
IN

O
IS

 A
T

 U
R

B
A

N
A

 C
H

A
M

P
A

IG
N

Separation with some unknown sounds

• Same as before, use only one model: 

• Learn weights and unknown bases 
• Unknown bases converge to the unknown 

parts in the mixture
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How robust is this?

35
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Many more applications

• Non-Negative models have been pretty successful when 
it comes to processing magnitude spectrograms 
• Very effective when dealing with mixtures of sounds! 

• Some applications that are out there 
• Sound detection from mixtures, polyphonic music transcription, 

missing data restoration, remixing tools, multi-channel 
enhancements, dereverberation, compression models, … 
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Audio layer editing

37

Piano + Soprano
Soprano layer

Piano layer

Remixed layers
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No tambourine

No congas

Congas!

Selective pitch shifting
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Video Content Analysis

• Detecting sounds in mixtures 
• Measure activation of known dictionaries to estimate presence
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Bandwidth Expansion

• Filling in missing data 
• Learn full-band dictionary W from example sounds 
• Fit W on input recording using only the available bands 
• Reconstruct input using full-bandwidth bases
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Multi-channel methods

• 700 videos of YouTube 
• Taylor Swift at the (then) 

San Jose HP Pavillon 
• As dirty as data gets! 

• Can we beamform it? 
• Two problems: 

• Sync and combine
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Sync issues

• Super heavy using traditional processing 
• 200 people out of 5,000 
• 4 videos per person = 800 videos 
• 8002 = 640,000 correlations 
• 2 min per average video = 1,600 minutes = 26 hours of footage 
• 44,100 samples per sec = 5,292,000 samples per clip 
• 1 correlation = 28 Trillion = 28 TeraFLOPS 
• Total cost = 17 Quintillion FLOPS = 17 ExaFLOPS!!
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Landmark-based sync

• Forget correlations 
• Hash spectral peaks and match their locations across recordings 

• ~30sec on my laptop!
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Does pretty well
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Using co-factorization

• What if all the recordings are of poor quality? (they are!) 
• Can we combine them to get a better reconstruction?

44
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Example: Yuki – Joy, Live
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Convolutional form of factorization

• Convolution is a product, we can use that instead 
• Allows us to deconvolve in the magnitude domain:
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F≈W∗h

Dereverb Modified hW

Input hW

≈
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Many more models for different jobs

• Online formulations 
• Facilitate real-time deployment 

•   
• Universal Speaker Model 

• Doesn’t require exact model for a speaker 

• HMM / Dynamical models 
• Allow concurrent speech ASR 
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But …

• Matrix factorizations are not for the faint of heart 
• Heavy computational requirements (large matrix multiplies) 

• Might be ok for desktops, not for smaller devices 

• Is there a way to avoid the costly weights estimation? 
• Can the runtime processing be a non-iterative process? 

• Let’s explore that option
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Towards a more direct method

• Non-negative models were generative models 
• We modeled the data, and the rest was a side-effect 

• We can instead explicitly aim for a task 
• Forget the models, teach a system to perform the needed task
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Noisy autoencoders for enhancement

• Use a neural net with positive-only outputs 

• Train it to predict clean spectra from noisy spectra 
• We can easily do this by making artificial mixtures 
• Advantage: solves the problem directly 
• We can also use other flavors (multilayer, recurrent, convnet, …)

50

st = f W ⋅mt +b( )
Input noisy spectra Output clean spectra 

Positive-output activation
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Toy example – Training

• Trained on 30sec inputs 
• Speech + street noise 
• Known speaker 
• Takes 30sec to train 

• on a laptop (2-3sec with GPU) 

• Parameters 
• 1024pt spectra 
• 1 hidden layer, 100 nodes 
• Leaky ReLU activations
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Toy example – Runtime

• Very lightweight process 
• ~300x real-time  

• 0.01sec in this case 

• Strong performance 
• SDR: 12.7, SIR: 23.2, SAR: 13.1 
• PEAQ: -2.04, PESQ: 0.71 
• STOI: 0.86
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What about unknown sounds?

• The more you know the better (no surprise here)
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Thinning down the computations

• Running these floating-point operations is costly 
• Complex FP hardware ⟶ more power consumption and cost 

• “Binarizing” the feedforward pass 
• Key idea: replace FP operations with bits operations 

• Problem: How do we map the operations?
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Mapping to binary

• Typical unit operation: 

• Binary re-interpretation: 

• Works fine as long as the w’s are not close to zero 
• Hence we also maximize w’s and apply a tanh to saturate them

55

y= tanh wixi
i
∑
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

y= wi ⊗ xi
i
∑ >

N
2

Real products

x > 0 x < 0

w > 0 w x > 0 w x < 0

w < 0 w x < 0 w x > 0

Binary XNOR

x = 0 x = 1

w = 0 w⊗x = 1 w⊗x = 0

w = 1 w⊗x = 0 w⊗x = 1

Non-linearity result

Σ ≫ 0 y → +1

Σ ≪ 0 y → –1

Comparison result

Σ > N/2 y = 1

Σ < N/2 y = 0
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Comparison of forward pass

56

10 to 64 bit values

Binary values

Multiply and  
accumulate

XNOR and 
bit count

g

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

>
N
2

1 

-1 

1 

0 

0.5 

0 

0 

ta
nh

lo
gi

st
ic

re
ct

ify
so

ftp
lu

s

layer 
output

layer 
output

layer 
input

layer 
input

Real-Valued 
Network

Binary-Valued 
Network

Non-linearity

Non-linearity



U
N

IV
E

R
S

IT
Y

 O
F

 I
L

L
IN

O
IS

 A
T

 U
R

B
A

N
A

-C
H

A
M

P
A

IG
N

Does this work?

• Comparison using NMIST dataset (digit recognition)
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Hardware comparison
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One connection

32 bit real multiplication

… 

One node One layer
… 

… 

… 

… 

… 

One network

1K Multiply-adds and  
an FP function, 32K bits 2 MFLOPS, 4 MBytes 8 MFLOPS, 16 MBytes

1 XNOR, 1 bit 1K XNORs + 1 pop count, 1K bits

2 Mbit-Ops, 0.125 MBytes 8 Mbit-Ops, 0.5 MBytes

XNOR 
XNOR 

XNOR 

XNOR 

XNOR 

Estimated hardware comparison (per node)
32bit float 16bit int Binary

Area (μm2) 6,000 1,000 100

Power (μW) 2,000 250 20
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Under-the-rug issues

• Currently this model is for runtime only 
• Fortunately, learning is a one-time offline process 

• Data needs to be in a binary format 
• Not a major problem, but requires additional thinking 

• We can simply quantize, or use hashing methods
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10011100001 
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00100010101 
00001001010 
11000101101

Input data Hash representationQuantization
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What about our problem at hand?

• Slightly different structure to accommodate binary data 
• Inputs are quantized noisy spectra (4-bits per coefficient) 
• Output is a binary mask
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So what have we gained from ML? 

• We can improve on array methods 
• Simple models, better performance, less finicky setup 

• We can explain mixtures intuitively 
• Allows us to manipulate sound in easier ways 

• We can simplify processing complexity 
• Neural net enhancers using very simple hardware
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In conclusion

• There is more to DSP than textbook approaches 
• Let’s stop beating dead horses …  

• Lots of neat ideas we can take from machine learning 
• Not that different from the DSP way of thinking 

• But definitely outside our comfort zone
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