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This presentation...

@ Is presented from a materials perspective, because I'm a
materials guy

@ Can be interrupted any time by your questions

@ Is hopefully a gentle introduction into the challenges of the
physics of solar cells
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Silicon Cells

@ Silicon solar cells dominate
market

o Leverage microelectronics
industry
@ 85% of Market is Silicon

o Half multicrystalline, half
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@ Traditional Silicon relies on economies of scale

@ We haven't met cost parity with Silicon
@ Do we need higher efficiency?

o Yes
e No

Cost per Watt is King
Cheap low efficiency cells are fine

°
°
@ Expensive high efficiency cells are fine
°

Research is ongoing in both areas
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o
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@ Doping of films by several methods

@ Electrical measurements of doped films
o

Device creation by combined doping

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

What about new materials? .

@ Recent Environmental .
Science publication .
examines the availability of
PV materials

Max Effciency (%)

Energy (eV)

Gabriel A. Devenyi Future of Solar



Introduction
Background

AR Better Materials
New Devices )
Fool's Gold
New Physics

Conclusions
Acknowledgements

What about new materials? .

@ Recent Environmental w
Science publication .
examines the availability of
PV materials

Max Effciency (%)

Energy (eV)

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

What about new materials?

@ Recent Environmental
Science publication
examines the availability of
PV materials

@ One material stood out for
us

Gabriel A. Devenyi

Max Effciency (%)

Future of Solar

Energy (eV)



Introduction
Background
Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

What about new materials?

@ Recent Environmental
Science publication
examines the availability of
PV materials

@ One material stood out for
us

Gabriel A. Devenyi

Max Effciency (%)

Future of Solar

Energy (eV)



Introduction
Background

Future
New Devices

Better Materials

New Physics Fool's Gold
Conclusions
Acknowledgements
What about new materials?

@ Recent Environmental v
Science publication e
examines the availability of £
PV materials § o

@ One material stood out for e i T
us o I

o s

o FeS,, Pyrite, Fool's Gold

Gabriel A. Devenyi

Future of Solar

e

e

Pose

case

e

wse2

Basy

acs




Introduction
Background

Future
New Devices

Better Materials

New Physics Fool's Gold
Conclusions
Acknowledgements
What about new materials?

@ Recent Environmental v
Science publication -
examines the availability of £ o
PV materials § o

@ One material stood out for e i T
us o I

o s

o FeS,, Pyrite, Fool's Gold

Gabriel A. Devenyi

Future of Solar

e

e

Pose

case

e

wse2

Basy

acs




Introduction
Background
Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

What about new materials?

@ Recent Environmental
Science publication
examines the availability of
PV materials

@ One material stood out for
us

o FeS,, Pyrite, Fool's Gold

Gabriel A. Devenyi

a0

33d0r

28601

25601

.......n..‘..c..(./m

e | <02

3e01

2601

1e01

sex

0000

agzs
0
Gars

Future of Solar



Introduction
Background
Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

What about new materials?

@ Recent Environmental
Science publication
examines the availability of
PV materials

@ One material stood out for
us

o FeS,, Pyrite, Fool's Gold

Gabriel A. Devenyi

a0

33d0r

28601

25601

.......n..‘..c..(./m

e | <02

3e01

2601

1e01

sex

0000

agzs
0
Gars

Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

Pyrite, wonder solar cell? I

@ Cubic crystal is easy to
understand

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

Pyrite, wonder solar cell? I

@ Cubic crystal is easy to
understand

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

Pyrite, wonder solar cell? I

@ Cubic crystal is easy to
understand

@ Absorption is very strong

Gabriel A. Devenyi Future of Solar



Introduction
Background
Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

Pyrite, wonder solar cell?

@ Cubic crystal is easy to
understand

@ Absorption is very strong

Gabriel A. Devenyi Future of Solar



AR Better Materials

Fool's Gold

Pyrite, wonder solar cell?

@ Cubic crystal is easy to
understand

@ Absorption is very strong

@ Base components are
inexpensive

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future 3
- Better Materials
New Devices )
- Fool's Gold
New Physics

Conclusions
Acknowledgements

PLD Grown FeS; at McMaster |
@ Grown with PLD from
natural Pyrite crystal

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future 3
- Better Materials
New Devices )
- Fool's Gold
New Physics

Conclusions
Acknowledgements

PLD Grown FeS; at McMaster |
@ Grown with PLD from
natural Pyrite crystal

Gabriel A. Devenyi Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

PLD Grown FeS; at McMaster |
@ Grown with PLD from
natural Pyrite crystal

o Vastly different vapour
pressures pose problems

Gabriel A. Devenyi

Future of Solar



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

PLD Grown FeS; at McMaster |
@ Grown with PLD from
natural Pyrite crystal

o Vastly different vapour
pressures pose problems

Gabriel A. Devenyi

Future of Solar

Tum

WD 4.0mm



Introduction
Background

Future

New Devices

New Physics
Conclusions
Acknowledgements

Better Materials
Fool's Gold

PLD Grown FeS, at McMaster

@ Grown with PLD from
natural Pyrite crystal
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50 nm

Why don't we make these?

@ Multi-junction designs are
very complicated

@ The easy multi-junction
designs are very expensive

@ Cheaper multi-junction
choices have problems with
crystal quality
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Grow films on Silicon in McMaster MBE

e Control the Silicon orientation
e Control temperature
e Control composition
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Tandem Cells
Tandem Cells on Silicon

Solving mismatch

o Traditional methods try to
grow lattice matched
materials

@ Nothing matches silicon
@ Why not ignore the match?

@ GaSb on silicon forms a
low-energy defect network to
handle mismatch

v
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Anti-Phase Boundaries

@ Growing polar on non-polar
semiconductors causes
problems

Unpublished figures removed.
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Anti-Phase Boundaries

@ Growing polar on non-polar
semiconductors causes
problems

@ Boundaries between
opposite polar sections Unpublished figures removed.
results in electrical defects

@ Substrates offcut from (100)
can enforce surface
reconstruction

@ Double stepped
reconstruction eliminates
APDs

Gabriel A. Devenyi Future of Solar
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@ Twins are a low energy

defect that occurs
spontaneously during growth

o Colliding twin fronts result
in high energy defects

o Offcut substrates, in
addition to solving APDs,
appear to strongly reduce
twinning
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(211) Substrates

@ Traditional Silicon work uses
(100) Silicon substrates

@ (211) orientation provides
some distinct advantages

@ Naturally eliminates APDs

@ Natural asymmetry reduces
twinning

Gabriel A. Devenyi

Future of Solar



New Devices

Tandem Cells
Tandem Cells on Silicon

(211) Substrates

@ Traditional Silicon work uses
(100) Silicon substrates

@ (211) orientation provides
some distinct advantages

o Naturally eliminates APDs

o Natural asymmetry reduces
twinning

@ Appears to allow tilt of thin
film to reduce strain

Gabriel A. Devenyi
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Many new designs attempt to utilize complicated physical
phenomon

Hot carrier cells attempt to avoid thermalization losses by
extracting carriers before they thermalize

Intermediate band cells attempt to have a tandem cell in one
device
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New Physics

@ Many new designs attempt to utilize complicated physical
phenomon

@ Hot carrier cells attempt to avoid thermalization losses by
extracting carriers before they thermalize

@ Intermediate band cells attempt to have a tandem cell in one
device

e Up/downconversion cells attempt to combine/split photons
prior to absorption by the cell

@ Nanowire solar cells attempt to separate the light collection
and carrier extraction steps via geometry

@ All of these methods are still theoretical
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Getting more light into solar cells

Traditional concentrators collect light via lenses

@ Concentration improves efficiency
@ Tradeoff is optics size versus cell size
o

Concentrators require mechanical tracking
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Getting more light into solar cells

Traditional concentrators collect light via lenses

Concentration improves efficiency
Tradeoff is optics size versus cell size

Concentrators require mechanical tracking

Photonic engineering offers an alternative way to capture light
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Light Scattering

o Light trapping increases the
effective thickness of cells

Front Reflectance,
Front Transmitted Haze

Rear reflectance,
Rear reflected Haze
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Light Capture
Plasmonics

Light Scattering

@ Light trapping increases the
effective thickness of cells

@ Reduces material
requirements

o Careful control of
re-emission angles have been
shown to improve voltage
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Light Capture
Plasmonics

Plasmonic Scattering

@ Metal nanoparticles have
been shown to have strong
interactions with light

@ Process is analogous to
antennas and radio waves

@ Resonant scattering can be
tuned by
size/shape/composition

o Self assembly of particles is

one route to production
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Conclusions

Conclusions

@ Photovoltaics has many places left to improve
@ McMaster is actively working on several aspects of improved
cells

@ There doesn’t have to be a single winner, climate and
economy will determine what's best in a given area

@ Sustainable energy has a bright and sunny future
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