IEEE Hamilton:
The Future of Photovoltaics
Ongoing Research at McMaster University

Gabriel A. Devenyi

Department of Engineering Physics
McMaster University

May 9, 2012
Introduction

1. Background
 - The Diode
 - Semiconductors and Absorption
 - Industry
 - Silicon Market Domination
 - State of the Art
 - Limitations
 - Why find new solar cells?

2. Future
 - Better Materials

3. New Devices
 - Tandem Cells
 - Tandem Cells on Silicon

4. New Physics
 - Light Capture
 - Plasmonics

5. Conclusions

6. Acknowledgements

Gabriel A. Devenyi
Future of Solar
This presentation...

- Is presented from a materials perspective, because I’m a materials guy
- Can be interrupted any time by your questions
- Is hopefully a gentle introduction into the challenges of the physics of solar cells
This presentation...

- Is presented from a materials perspective, because I’m a materials guy
- Can be interrupted any time by your questions
- Is hopefully a gentle introduction into the challenges of the physics of solar cells
This presentation...

- Is presented from a materials perspective, because I’m a materials guy
- Can be interrupted any time by your questions
- Is hopefully a gentle introduction into the challenges of the physics of solar cells
Introduction

Background

Future

New Devices

New Physics

Conclusions

Acknowledgements

The Diode

Semiconductors and Absorption

Silicon Market Domination

State of the Art

Limitations

Why find new solar cells?
The Diode
Semiconductors and Absorption
Silicon Market Domination
State of the Art
Limitations
Why find new solar cells?

*Ideal Diode

Equivalent circuit

I_D = Dark current
I_{PH} = Photocurrent
C_S = Diode capacitance
R_P = Parallel resistance
I_R = Noise current
R_S = Series resistance
R_L = Load resistance

Photovoltaic mode (solar cell)

Gabriel A. Devenyi

Future of Solar
How does photovoltaic behaviour arise?

- Absorption in semiconductors
 - Production of electron-hole pairs
 - Electrons and holes are current carriers in semiconductors
 - How can these carriers spontaneously separate
How does photovoltaic behaviour arise?

- Absorption in semiconductors
 - Production of electron-hole pairs
 - Electrons and holes are current carriers in semiconductors
 - How can these carriers spontaneously separate?
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs

- Electrons and holes are current carriers in semiconductors
- How can these carriers spontaneously separate
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
 - Electrons and holes are current carriers in semiconductors
 - How can these carriers spontaneously separate

Electron $\bigcirc_{-} \bigotimes X \bigoplus$ Hole
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
- Electrons and holes are current carriers in semiconductors
 - How can these carriers spontaneously separate

Electron (−) × Hole

+ −
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
- Electrons and holes are current carriers in semiconductors

How can these carriers spontaneously separate?
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
- Electrons and holes are current carriers in semiconductors
- How can these carriers spontaneously separate
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
- Electrons and holes are current carriers in semiconductors
- How can these carriers spontaneously separate
How does photovoltaic behaviour arise?

- Absorption in semiconductors
- Production of electron-hole pairs
- Electrons and holes are current carriers in semiconductors
- How can these carriers spontaneously separate
Silicon Cells

- **Silicon solar cells dominate market**
- Leverage microelectronics industry
- 85% of Market is Silicon
- Half multicrystalline, half monocrystalline
Silicon Cells

- Silicon solar cells dominate market
- Leverage microelectronics industry
- 85% of Market is Silicon
- Half multicrystalline, half monocrystalline
Silicon Cells

- Silicon solar cells dominate market
- Leverage microelectronics industry
- 85% of Market is Silicon
- Half multicrystalline, half monocrystalline
Silicon Cells

- Silicon solar cells dominate market
- Leverage microelectronics industry
- 85% of Market is Silicon
- Half multicrystalline, half monocrystalline
State-of-the-art

- PERL Cell made by Martin Green
 - Ph.D. from McMaster
 - Professor, University New South Wales
 - 25% Efficient
 - Not in production
State-of-the-art

- **PERL Cell made by Martin Green**
 - Ph.D. from McMaster
 - Professor University New South Wales
 - 25% Efficient
 - Not in production
State-of-the-art

- PERL Cell made by Martin Green
 - Ph.D. from McMaster
 - Professor University New South Wales
 - 25% Efficient
 - Not in production
State-of-the-art

- PERL Cell made by Martin Green
 - Ph.D. from McMaster
 - Professor University New South Wales
 - 25% Efficient
 - Not in production
State-of-the-art

- PERL Cell made by Martin Green
- Ph.D. from McMaster
- Professor University New South Wales
- 25% Efficient
- Not in production
State-of-the-art

- PERL Cell made by Martin Green
- Ph.D. from McMaster
- Professor University New South Wales
- 25% Efficient
- Not in production
State-of-the-art

- PERL Cell made by Martin Green
- Ph.D. from McMaster
- Professor University New South Wales
- 25% Efficient
- Not in production
State-of-the-art

- PERL Cell made by Martin Green
- Ph.D. from McMaster
- Professor University New South Wales
- 25% Efficient

Not in production
State-of-the-art

- PERL Cell made by Martin Green
- Ph.D. from McMaster
- Professor University New South Wales
- 25% Efficient
- Not in production
Limitations of Silicon

- Why is it non-ideal?
 - Poor absorption
 - Non-ideal bandgap
 - High energy input for refinement
Limitations of Silicon

- Why is it non-ideal?
 - Poor absorption
 - Non-ideal bandgap
 - High energy input for refinement

Wavelength (nm)

![Graph](image_url)
Limitations of Silicon

- Why is it non-ideal?
- Poor absorption
 - Non-ideal bandgap
 - High energy input for refinement
Limitations of Silicon

- Why is it non-ideal?
- Poor absorption
 - Non-ideal bandgap
 - High energy input for refinement
Limitations of Silicon

- Why is it non-ideal?
- Poor absorption
- Non-ideal bandgap

- High energy input for refinement
Limitations of Silicon

- Why is it non-ideal?
- Poor absorption
- Non-ideal bandgap

High energy input for refinement
Limitations of Silicon

- Why is it non-ideal?
- Poor absorption
- Non-ideal bandgap
- High energy input for refinement
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?

- Cost per Watt is King
- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine
- Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
 - We haven't met cost parity with Silicon
 - Do we need higher efficiency?

- Cost per Watt is King
 - Cheap low efficiency cells are fine
 - Expensive high efficiency cells are fine

- Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
 - We haven’t met cost parity with Silicon
 - Do we need higher efficiency?
 - Cost per Watt is King
 - Cheap, low efficiency cells are fine
 - Expensive, high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
 - Do we need higher efficiency?
 - Cost per Watt is King
 - Cheap, low efficiency cells are fine
 - Expensive, high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
 - Do we need higher efficiency?
 - Cost per Watt is King
 - Cheap, low efficiency cells are fine
 - Expensive, high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?

Economies of scale are important for traditional Silicon, but we haven’t met cost parity with it. Do we need higher efficiency?
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No

Cost per Watt is King
Cheap low efficiency cells are fine
Expensive high efficiency cells are fine
Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No

- Cost per Watt is King
- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine
- Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No

- Cost per Watt is King

- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine
- Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No

- Cost per Watt is King
 - Cheap low efficiency cells are fine
 - Expensive high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
 - Cheap low efficiency cells are fine
 - Expensive high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
- Cheap low efficiency cells are fine
 - Expensive high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
- Cheap low efficiency cells are fine
 - Expensive high efficiency cells are fine
 - Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine

Research is ongoing in both areas
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine

Research is ongoing in both areas.
Efficiency

- Traditional Silicon relies on economies of scale
- We haven’t met cost parity with Silicon
- Do we need higher efficiency?
 - Yes
 - No
- Cost per Watt is King
- Cheap low efficiency cells are fine
- Expensive high efficiency cells are fine
- Research is ongoing in both areas
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
 - Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption

Future of Solar
Silicon Improvements

- Reducing Silicon material losses
- Amorphous Silicon provides stronger absorption
- Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)
Silicon Improvements

- Reducing Silicon material losses
Silicon Improvements

- Reducing Silicon material losses
 - Amorphous Silicon provides stronger absorption
 - Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)
Silicon Improvements

- Reducing Silicon material losses
 - Amorphous Silicon provides stronger absorption
 - Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)

Protons are implanted into the donor wafer.

Thermal Mechanical Cleaving

Silicon Wafer is Reused
Silicon Improvements

- Reducing Silicon material losses
- Amorphous Silicon provides stronger absorption
 - Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)
Silicon Improvements

- Reducing Silicon material losses
- Amorphous Silicon provides stronger absorption
 - Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)
Silicon Improvements

- Reducing Silicon material losses
- Amorphous Silicon provides stronger absorption
- Improving photovoltage via HIT cells (amorphous Silicon Hybrid cells)
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
 - All cells made are polycrystalline
 - Shunt pathways
 - Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
- Carrier trapping
- Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
 - Shunt pathways
 - Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
 - Shunt pathways
 - Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency

Better Materials

Fool's Gold
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
 - Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
 - Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
 - Carrier trapping
 - Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
- Carrier trapping
- Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
- Carrier trapping

Limit maximum efficiency
CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
- Carrier trapping

These issues limit the maximum efficiency of CdTe solar cells.

CdTe Solar Cells

- Biggest single solar cell company in the world makes CdTe cells (First Solar)
- All cells made are polycrystalline
- Shunt pathways
- Dopant segregation
- Carrier trapping
- **Limit maximum efficiency**
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
 - Laser used to deliver energy to target
 - Plume created in vacuum chamber
 - Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
 - Laser used to deliver energy to target
 - Plume created in vacuum chamber
 - Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
- Laser used to deliver energy to target

- Plume created in vacuum chamber
- Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
- Laser used to deliver energy to target
 - Plume created in vacuum chamber
 - Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
- Laser used to deliver energy to target
- Plume created in vacuum chamber
 - Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
- Laser used to deliver energy to target
- Plume created in vacuum chamber
- Plume collected on appropriate heated substrate
PLD Grown CdTe at McMaster

- Experimental thin film growth technique
- Laser used to deliver energy to target
- Plume created in vacuum chamber
- Plume collected on appropriate heated substrate
2DXRD Results

- X-ray technique that maps all reflections from the sample
 - A poor crystal
 - Better
 - Almost there
 - Single Crystal
2DXRD Results

- X-ray technique that maps all reflections from the sample
- A poor crystal
 - Better
 - Almost there
 - Single Crystal
2D XRD Results

- X-ray technique that maps all reflections from the sample
- A poor crystal
- Better
- Almost there
- Single Crystal
2DXRD Results

- X-ray technique that maps all reflections from the sample
- A poor crystal
- Better
- Almost there
- Single Crystal
2DXRD Results

- X-ray technique that maps all reflections from the sample
- A poor crystal
- Better
- Almost there
- **Single Crystal**
Optical Results

- Room temperature photoluminescence
 - Best PL defect bands published
 - Best PR results yet achieved at Mac
 - Boule and MBE grown CdTe are not this good

Unpublished figures removed.
Optical Results

- Room temperature photoluminescence
 - Best PL defect bands published
 - Best PR results yet achieved at Mac
 - Boule and MBE grown CdTe are not this good

Unpublished figures removed.
Optical Results

- Room temperature photoluminescence
- Best PL defect bands published
 - Best PR results yet achieved at Mac
 - Boule and MBE grown CdTe are not this good

Unpublished figures removed.
Optical Results

- Room temperature photoluminescence
- Best PL defect bands published
- Best PR results yet achieved at Mac
- Boule and MBE grown CdTe are not this good

Unpublished figures removed.
Optical Results

- Room temperature photoluminescence
- Best PL defect bands published
- Best PR results yet achieved at Mac
 - Boule and MBE grown CdTe are not this good

Unpublished figures removed.
Optical Results

- Room temperature photoluminescence
- Best PL defect bands published
- Best PR results yet achieved at Mac

Unpublished figures removed.

Boule and MBE grown CdTe are not this good.
Optical Results

- Room temperature photoluminescence
- Best PL defect bands published
- Best PR results yet achieved at Mac

Boule and MBE grown CdTe are not this good

Unpublished figures removed.
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
 - Need to produce a PN junction
 - Electrical measurements of undoped films
 - Doping of films by several methods
 - Electrical measurements of doped films
 - Device creation by constrained doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by engineered doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
 - Electrical measurements of undoped films
 - Doping of films by several methods
 - Electrical measurements of doped films
 - Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
 - Electrical measurements of undoped films
 - Doping of films by several methods
 - Electrical measurements of doped films
 - Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- **Electrical measurements of undoped films**
 - Doping of films by several methods
 - Electrical measurements of doped films
 - Device creation by combined doping

Gabriel A. Devenyi

Future of Solar
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
 - Doping of films by several methods
 - Electrical measurements of doped films
 - Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- **Doping of films by several methods**
 - Electrical measurements of doped films
 - Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by combined doping
What’s next for CdTe?

- 500nm CdTe thin films absorb most useful light
- Need to produce a PN junction
- Electrical measurements of undoped films
- Doping of films by several methods
- Electrical measurements of doped films
- Device creation by combined doping
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
 - One material stood out for us
 - FeS₂, Pyrite, Fool’s Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials

- One material stood out for us

- FeS$_2$, Pyrite, Fool’s Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
 - FeS$_2$, Pyrite, Fool's Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
 - FeS$_2$, Pyrite, Fool's Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
- FeS$_2$, Pyrite, Fool’s Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
- FeS$_2$, Pyrite, Fool’s Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
- FeS$_2$, Pyrite, Fool’s Gold
What about new materials?

- Recent Environmental Science publication examines the availability of PV materials
- One material stood out for us
- FeS$_2$, Pyrite, Fool’s Gold
Pyrite, wonder solar cell?

- Cubic crystal is easy to understand
- Absorption is very strong
- Base components are inexpensive
Pyrite, wonder solar cell?

- Cubic crystal is easy to understand
- Absorption is very strong
- Base components are inexpensive
Pyrite, wonder solar cell?

- Cubic crystal is easy to understand
- Absorption is very strong
- Base components are inexpensive
Pyrite, wonder solar cell?

- Cubic crystal is easy to understand
- Absorption is very strong
- Base components are inexpensive
Pyrite, wonder solar cell?

- Cubic crystal is easy to understand
- Absorption is very strong
- Base components are inexpensive
PLD Grown FeS$_2$ at McMaster

- Grown with PLD from natural Pyrite crystal
- Vastly different vapour pressures pose problems
- Iron crystallite formation

McMaster SEI 5.0kV ×23,000 1μm WD 4.0mm
PLD Grown FeS$_2$ at McMaster

- Grown with PLD from natural Pyrite crystal
- Vastly different vapour pressures pose problems
- Iron crystallite formation
PLD Grown FeS$_2$ at McMaster

- Grown with PLD from natural Pyrite crystal
- Vastly different vapour pressures pose problems

Iron crystallite formation
PLD Grown FeS$_2$ at McMaster

- Grown with PLD from natural Pyrite crystal
- Vastly different vapour pressures pose problems
PLD Grown FeS$_2$ at McMaster

- Grown with PLD from natural Pyrite crystal
- Vastly different vapour pressures pose problems
- Iron crystallite formation
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials

- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics

- Tandem cell structures
 - New physics structures
 - Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
 - Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Better Materials
- Improving material quality
- Reducing material waste
- Finding new and interesting materials

Better Physics
- Tandem cell structures
- New physics structures
- Enhancement of light absorption
Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
 - Photon energy larger than the bandgap is lost to heat
 - What happens if we use more than one junction?
 - Output of the solar cell is now boosted by better matching energy capture
 - Stacked, or "multi junction" solar cells results
Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
 - Photon energy larger than the bandgap is lost to heat
 - What happens if we use more than one junction?
 - Output of the solar cell is now boosted by better matching energy capture
 - Stacked, or "multi junction" solar cells results

Solar Radiation Spectrum

- Sunlight at Top of the Atmosphere
- 5250°C Blackbody Spectrum
- Radiation at Sea Level
Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
- Photon energy larger than the bandgap is lost to heat
- What happens if we use more than one junction?
- Output of the solar cell is now boosted by better matching energy capture
- Stacked, or ”multi junction” solar cells results

Tandem Cells
Tandem Cells on Silicon
Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
- Photon energy larger than the bandgap is lost to heat
- What happens if we use more than one junction?
- Output of the solar cell is now boosted by better matching energy capture
- Stacked, or "multi junction" solar cells results
Tandem Cells
Tandem Cells on Silicon

Introduction
Background
Future
New Devices
New Physics
Conclusions
Acknowledgements

Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
- Photon energy larger than the bandgap is lost to heat
- What happens if we use more than one junction?
- Output of the solar cell is now boosted by better matching energy capture
- Stacked, or "multi junction" solar cells results

Gabriel A. Devenyi
Future of Solar
Thermalization Loss

- Single junction solar cells have fundamental thermalization losses
- Photon energy larger than the bandgap is lost to heat
- What happens if we use more than one junction?
- Output of the solar cell is now boosted by better matching energy capture
- Stacked, or "multi junction" solar cells results
Why don’t we make these?

- Multi-junction designs are very complicated
- The easy multi-junction designs are very expensive
- Cheaper multi-junction choices have problems with crystal quality
Why don’t we make these?

- Multi-junction designs are very complicated
- The easy multi-junction designs are very expensive
- Cheaper multi-junction choices have problems with crystal quality

Tandem Cells

Tandem Cells on Silicon
Why don’t we make these?

- Multi-junction designs are very complicated
- The easy multi-junction designs are very expensive
- Cheaper multi-junction choices have problems with crystal quality
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
 - Improve performance via tandem thin films
 - Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
 - Improve performance via tandem thin films
 - Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
 - Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
 - Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins or non-planar defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
 - Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
 - Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
 - Problems with twins creating defect planes
 - Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE

- Control the Silicon orientation
- Control temperature
- Control composition
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
 - Control composition
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
 - Control composition
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
 - Control composition
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
 - Control composition
Improving lattice-mismatched multi-junction cells at McMaser

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
Improving lattice-mismatched multi-junction cells at McMaster

- Leverage existing Silicon technology
- Improve performance via tandem thin films
- Many material problems
- Problems with lattice mismatch
- Problems with anti-phase-boundaries
- Problems with twins creating defect planes
- Grow films on Silicon in McMaster MBE
 - Control the Silicon orientation
 - Control temperature
 - Control composition
Solving mismatch

- Traditional methods try to grow lattice matched materials
 - Nothing matches silicon
 - Why not ignore the match?
 - GaSb on silicon forms a low-energy defect network to handle mismatch
Solving mismatch

- Traditional methods try to grow lattice matched materials
 - Nothing matches silicon
 - Why not ignore the match?
 - GaSb on silicon forms a low-energy defect network to handle mismatch
Solving mismatch

- Traditional methods try to grow lattice matched materials
- **Nothing matches silicon**
 - Why not ignore the match?
 - GaSb on silicon forms a low-energy defect network to handle mismatch.
Solving mismatch

- Traditional methods try to grow lattice matched materials
- Nothing matches silicon
 - Why not ignore the match?
 - GaSb on silicon forms a low-energy defect network to handle mismatch.
Solving mismatch

- Traditional methods try to grow lattice matched materials
- Nothing matches silicon
- Why not ignore the match?
 - GaSb on silicon forms a low-energy defect network to handle mismatch
Solving mismatch

- Traditional methods try to grow lattice matched materials
- Nothing matches silicon
- Why not ignore the match?

- GaSb on silicon forms a low-energy defect network to handle mismatch
Solving mismatch

- Traditional methods try to grow lattice matched materials
- Nothing matches silicon
- Why not ignore the match?
- GaSb on silicon forms a low-energy defect network to handle mismatch

(a) [Image of GaSb on silicon]
(b) [Image of 5 nm layer]
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
 - Boundaries between opposite polar sections result in electrical defects
 - Substrates offcut from (100) can enforce surface reconstruction
 - Double stepped reconstruction eliminates APDs

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
 - Boundaries between opposite polar sections result in electrical defects
 - Substrates offcut from (100) can enforce surface reconstruction
 - Double stepped reconstruction eliminates APDs

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
- Boundaries between opposite polar sections results in electrical defects
 - Substrates offcut from (100) can enforce surface reconstruction
 - Double stepped reconstruction eliminates APBs

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
- Boundaries between opposite polar sections results in electrical defects
 - Substrates offcut from (100) can enforce surface reconstruction
 - Double stepped reconstruction eliminates APDs

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
- Boundaries between opposite polar sections results in electrical defects
- Substrates offcut from (100) can enforce surface reconstruction
 - Double stepped reconstruction eliminates APDs

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems.
- Boundaries between opposite polar sections results in electrical defects.
- Substrates offcut from (100) can enforce surface reconstruction.
 - Double stepped reconstruction eliminates APDs.

Unpublished figures removed.
Anti-Phase Boundaries

- Growing polar on non-polar semiconductors causes problems
- Boundaries between opposite polar sections results in electrical defects
- Substrates offcut from (100) can enforce surface reconstruction
- Double stepped reconstruction eliminates APDs

Unpublished figures removed.
Twins are a low energy defect that occurs spontaneously during growth.

- Colliding twin fronts result in high energy defects.
- Offcut substrates, in addition to solving APDs, appear to strongly reduce twinning.
Twins

- Twins are a low energy defect that occurs spontaneously during growth
- Colliding twin fronts result in high energy defects
- Offcut substrates, in addition to solving APDs, appear to strongly reduce twinning
Twins

- Twins are a low energy defect that occurs spontaneously during growth.
- Colliding twin fronts result in high energy defects.
- Offcut substrates, in addition to solving APDs, appear to strongly reduce twinning.
Twins

- Twins are a low energy defect that occurs spontaneously during growth.
- Colliding twin fronts result in high energy defects.
- Offcut substrates, in addition to solving APDs, appear to strongly reduce twinning.
Twins

- Twins are a low energy defect that occurs spontaneously during growth.
- Colliding twin fronts result in high energy defects.
- Offcut substrates, in addition to solving APDs, appear to strongly reduce twinning.
(211) Substrates

- Traditional Silicon work uses (100) Silicon substrates
- (211) orientation provides some distinct advantages
- Naturally eliminates APDs
- Natural asymmetry reduces twinning
- Appears to allow tilt of thin film to reduce strain

GaSb Vicinal

100 nm
(211) Substrates

- Traditional Silicon work uses (100) Silicon substrates
- (211) orientation provides some distinct advantages
 - Naturally eliminates APDs
 - Natural asymmetry reduces twinning
 - Appears to allow tilt of thin film to reduce strain
(211) Substrates

- Traditional Silicon work uses (100) Silicon substrates
- (211) orientation provides some distinct advantages
 - Naturally eliminates APDs
 - Natural asymmetry reduces twinning
 - Appears to allow tilt of thin film to reduce strain
(211) Substrates

- Traditional Silicon work uses (100) Silicon substrates
- (211) orientation provides some distinct advantages
- Naturally eliminates APDs
- Natural asymmetry reduces twinning
- Appears to allow tilt of thin film to reduce strain

Gabriel A. Devenyi
Future of Solar
(211) Substrates

- Traditional Silicon work uses (100) Silicon substrates
- (211) orientation provides some distinct advantages
- Naturally eliminates APDs
- Natural asymmetry reduces twinning
- Appears to allow tilt of thin film to reduce strain

Unpublished figures removed.
New Physics

- Many new designs attempt to utilize complicated physical phenomenon
 - Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
 - Intermediate band cells attempt to have a tandem cell in one device
 - Up/downconversion cells attempt to combine/split photons prior to absorption by the cell
 - Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry
- All of these methods are still theoretical
New Physics

- Many new designs attempt to utilize complicated physical phenomenon
- Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
 - Intermediate band cells attempt to have a tandem cell in one device
 - Up/downconversion cells attempt to combine/split photons prior to absorption by the cell
 - Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry
- All of these methods are still theoretical
New Physics

- Many new designs attempt to utilize complicated physical phenomenon
- Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
- Intermediate band cells attempt to have a tandem cell in one device
- Up/downconversion cells attempt to combine/split photons prior to absorption by the cell
- Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry

All of these methods are still theoretical.
Many new designs attempt to utilize complicated physical phenomenon

- Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
- Intermediate band cells attempt to have a tandem cell in one device
- Up/downconversion cells attempt to combine/split photons prior to absorption by the cell

- Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry
- All of these methods are still theoretical
New Physics

- Many new designs attempt to utilize complicated physical phenomenon
- Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
- Intermediate band cells attempt to have a tandem cell in one device
- Up/downconversion cells attempt to combine/split photons prior to absorption by the cell
- Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry

All of these methods are still theoretical
New Physics

- Many new designs attempt to utilize complicated physical phenomenon
- Hot carrier cells attempt to avoid thermalization losses by extracting carriers before they thermalize
- Intermediate band cells attempt to have a tandem cell in one device
- Up/downconversion cells attempt to combine/split photons prior to absorption by the cell
- Nanowire solar cells attempt to separate the light collection and carrier extraction steps via geometry

- All of these methods are still theoretical
Getting more light into solar cells

- Traditional concentrators collect light via lenses
 - Concentration improves efficiency
 - Tradeoff is optics size versus cell size
 - Concentrators require mechanical tracking
 - Photonic engineering offers an alternative way to capture light
Getting more light into solar cells

- Traditional concentrators collect light via lenses
- **Concentration improves efficiency**
 - Tradeoff is optics size versus cell size
 - Concentrators require mechanical tracking
 - Photonic engineering offers an alternative way to capture light
Getting more light into solar cells

- Traditional concentrators collect light via lenses
- Concentration improves efficiency
- Tradeoff is optics size versus cell size
- Concentrators require mechanical tracking
- Photonic engineering offers an alternative way to capture light
Getting more light into solar cells

- Traditional concentrators collect light via lenses
- Concentration improves efficiency
- Tradeoff is optics size versus cell size
- **Concentrators require mechanical tracking**
- Photonic engineering offers an alternative way to capture light
Getting more light into solar cells

- Traditional concentrators collect light via lenses
- Concentration improves efficiency
- Tradeoff is optics size versus cell size
- Concentrators require mechanical tracking
- Photonic engineering offers an alternative way to capture light
Light Scattering

- Light trapping increases the effective thickness of cells
- Reduces material requirements
- Careful control of re-emission angles have been shown to improve voltage
Light Scattering

- Light trapping increases the effective thickness of cells
- Reduces material requirements
- Careful control of re-emission angles have been shown to improve voltage
Light Scattering

- Light trapping increases the effective thickness of cells
- Reduces material requirements
- Careful control of re-emission angles have been shown to improve voltage
Metal nanoparticles have been shown to have strong interactions with light.

- Process is analogous to antennas and radio waves.
- Resonant scattering can be tuned by size/shape/composition.
- Self assembly of particles is one route to production.
Plasmonic Scattering

- Metal nanoparticles have been shown to have strong interactions with light
- **Process is analogous to antennas and radio waves**
- Resonant scattering can be tuned by size/shape/composition
- Self assembly of particles is one route to production
Plasmonic Scattering

- Metal nanoparticles have been shown to have strong interactions with light
- Process is analogous to antennas and radio waves
- Resonant scattering can be tuned by size/shape/composition
- Self assembly of particles is one route to production
Plasmonic Scattering

- Metal nanoparticles have been shown to have strong interactions with light
- Process is analogous to antennas and radio waves
- Resonant scattering can be tuned by size/shape/composition
- Self assembly of particles is one route to production
Conclusions

- Photovoltaics has many places left to improve
- McMaster is actively working on several aspects of improved cells
- There doesn’t have to be a single winner, climate and economy will determine what’s best in a given area
- Sustainable energy has a bright and sunny future
Photovoltaics has many places left to improve
McMaster is actively working on several aspects of improved cells
There doesn’t have to be a single winner, climate and economy will determine what’s best in a given area
Sustainable energy has a bright and sunny future
Conclusions

- Photovoltaics has many places left to improve
- McMaster is actively working on several aspects of improved cells
- There doesn’t have to be a single winner, climate and economy will determine what’s best in a given area
- Sustainable energy has a bright and sunny future
Conclusions

- Photovoltaics has many places left to improve
- McMaster is actively working on several aspects of improved cells
- There doesn’t have to be a single winner, climate and economy will determine what’s best in a given area
- Sustainable energy has a bright and sunny future
Acknowledgements

McMaster University

NSERC CRSNG

Brockhouse Institute for Materials Research

Canadian Centre for Electron Microscopy

Thank You