An Approach to Computational Thinking

Talk at the IEEE Hamilton Section Annual Technical Meeting Hamilton, Ontario, 2013-02-13/

Speaker

Jose Martinez Escanaverino Ph.D. B.Sc. (Eng.)

Full Professor, Higher Polytechnic Institute, Havana, Cuba, 1985-2008

Coordinator, Technical Sciences Section Academy of Sciences of Cuba, 2003-2008

> Oakville, Ontario, Canada escanaverino@hotmail.com

Opening remark

Problems cannot be solved by the same level of thinking that created them.

> Albert Einstein 1946-11-??

Talk outline

- Challenges keep coming.
- Are we ready?
- Traditional approach.
- Computational thinking.
- Proposed approach.
- Debts and outcomes.
- A real-life example.
- Conclusions

Challenges keep coming (1/4)

- Engineers and scientists still dedicate *too much effort and time* trying to solve the computational problems they find in their professional endeavors.
- And the size and complexity of these problems *grows everyday*: a quick look at engineering standards is convincing.

Challenges keep coming (2/4)

- Best problem solving environments are quite powerful, but most users lack a *sound background* on problem solving.
- This severely lowers the *proficiency ceiling* many users meet while working with such software tools.

Challenges keep coming (3/4)

- Due to ultimate limits on Moore's Law, every PC will have soon at least a two-core processor, whose potential is reached only when it executes parallel programs.
- Pioneers in this field warned in due time that the parallelization of algorithms asks for *new ways* to represent problems.

Challenges keep coming (4/4)

- Software development is still slow and tricky, especially when the programmers are not experts in the subject matter involved.
- One key issue is the adoption of a common language to express and exchange ideas on problems and algorithms.

Are we ready? (1/7)

A farmer has 125sheep and five dogs.How old is the farmer?

Demonstration Test at Pedagogic Seminar CubaVisión, 2002-11-13

Are we ready? (2/7)

- All the kids immediately began to find a solution by computing the data.
- They did what they were trained to do: rush to compute.
- Adding, subtracting and multiplying the data gave them a set of funny outcomes.

Are we ready? (3/7)

 Asked about why the farmer is 120 years old; a kid answered that "it takes a long time to raise so many animals."

 Adults asked about what is so nonsensical with this problem, often gave wrong explanations!

Are we ready? (4/7)

A small ladder at rest leans against the floor and the wall.
Knowing the two coefficients of friction, find the maximum angle of inclination of the ladder.

Are we ready? (5/7)

• Why this seemingly trivial problem turns so difficult to solve by engineering students, and even by some engineers?

• Why so many university textbooks assume that the contact between the ladder and the wall is frictionless?

Are we ready? (6/7)

- A tour through university websites may find more ladders leaning against smooth walls.
- These problems are only a few of the many that may be posed on the ladder under impending movement.
- Another problem from the same collection is given as follows.

Are we ready? (7/7)

- Again, we have the same small ladder leaning at rest under impending movement.
- Knowing normal and friction forces on the floor, and the angle of maximum inclination, find the coefficient of friction at the wall.

Traditional approach (1/5)

- A number of scholars *excessively simplify* their proposed problems, to skip solutions difficult to find by the students.
- Learning to solve problems just by doing, without an underlying theory, is not an efficient or far-reaching strategy.

Traditional approach (2/5)

- In class, instructors emphasize the solution of certain, so-called *typical* problems.
- For instance: Determine the behavior of a solenoid, knowing all their design data.
- Many typical problems are *direct* problems, with a *closed* solution.

Traditional approach (3/5)

- However, *atypical* problems do appear often in real life, and engineers are seldom prepared to solve them systematically.
- For instance: Determine the design data of a solenoid from the behavior of a sample.
- This, as an *inverse* problem, is harder to solve than its direct counterpart.

Traditional approach (4/5)

- Another traditional trend is to assign many *proposed* problems to the students, in order to reinforce their problem-solving skills.
- Nevertheless, there are so many possible problems that students can only cover an infinitesimal fraction of them.

Traditional approach (5/5)

Actually, a mathematical model with *n* variables may give rise to N_P problems, as shown below.

п	2	4	8	16
N_P	5	65	6 305	599 012
				20

Computational thinking (1/5)

 Nowadays, it is difficult to do science or engineering without a well-developed ability to think computationally.

• After some hesitation, most authors have stated that computational thinking should be focused towards *problem solving*.

Computational thinking (2/5)

- Computational thinking is now defined as the mind process of formulating problems and their solutions in a form executable by a computing agent.
- Lacking a constructive sense, computational thinking has not yet coalesced into a formal subject for academic study.

Computational thinking (3/5)

• However, the term *computational thinking* has been received with interest by a number of serious educators.

• It would be a nice substitute for the term *problem solving*, too worn as the title of elementary courses in computing.

Computational thinking (4/5)

- A similar state of affairs took place in the early 50s of the 20th century, where the term *cybernetics* became worn down by dilettantish misuse.
- Then, serious researchers, scholars and practitioners adopted the term *computer science*, to distinguish themselves apart.

Computational thinking (5/5)

- Along twenty years, the author has devised a theory of problem solving that may now set a rational and constructive path to the goals of computational thinking.
- Such an approach to computational thinking is briefly exposed in this presentation.

Proposed approach (1/20)

Problem solving milestones:

- 1. Receive or pose an informal problem.
- 2. Find or develop a mathematical model.
- 3. Pose the formal problem.
- 4. Find if the problem has a solution.
- 5. Obtain the solution, if it exists.

Proposed approach (2/20)

- The structures of the model, the problem, and the algorithm are essential in reaching most of the above-mentioned milestones.
- These structures may be effectively and intuitively represented and deduced, by *dichromatic graphs*.

Proposed approach (3/20)

Key concepts are linked in a hierarchy.

 Posing and solving a problem is a walk in the hierarchy.

• The walk begins in the model and finishes in the algorithm.

Proposed approach (4/20)

• Let's take a quick look of how to pose and solve the first problem on the small ladder under impending movement.

• In this problem, the coefficients of friction against the floor and the wall are known, and it is needed the maximum inclination angle of the ladder.

Proposed approach (6/20)

Proposed approach (7/20)

Proposed approach (8/20)

Proposed approach (9/20)

Proposed approach (10/20)

Proposed approach (11/20)

Resolvent 5 J_2 2 4 α The resolvent contains all the 3 f_1 algorithms!

• Let's focus now on posing and solving the second problem about the ladder under impending movement.

• In this problem, the inclination angle and the normal and friction forces against the floor are known, and we are seeking the coefficient of friction with the wall.

Debts and outcomes (1/5)

- It was creatively assimilated the work of a number of authors at institutions of Europe, North America, Russia and Japan.
- Some of our ideas have been published in scientific events developed in Cuba, The United States, Canada and The Netherlands.

Debts and outcomes (2/5)

The work of Dr. Donald R. Woods, and his colleagues at *McMaster University* in Canada, is internationally recognized.

• For us, his research on problem solving has been a source of inspiration and valuable ideas. We would like to send him greetings in his well-deserved retirement.

Debts and outcomes (3/5)

- Applying our approach, a software for the design of hydrodynamic sliding bearings was developed by one person.
- An important Cuban project centre failed to develop a similar system, even after using much more resources and time.

Debts and outcomes (4/5)

Optimum gears have been developed using *ISO* and *AGMA* standards, considered by some experts as not appropriate for design.
Each design of several special gear pairs in Cuba and Venezuela involved over 300 variables and a similar number of relations.

Debts and outcomes (5/5)

- Complex problems of industrial drive engineering in Venezuela were solved with the aid of the proposed approach.
- The results *surpassed* the proposals of both local experts and transnational enterprises.

A real-life example (1/18)

- *CARBONORCA* is the biggest anode factory in the aluminum industry of Venezuela; it supplies anodes to local users, and exports them to other countries in a joint venture with *Ormet*, a US enterprise.
- Its carbon plant may yield 140,000 t/year of electrode paste compacted as green anodes.

A real-life example (2/18)

- The heart of *CARBONORCA's* carbon plant is a large *Buss K550 KE* continuous kneader, which hot mixes coke dust and coal pitch to form electrode paste, at a mass flow rate of up to 28 t/h.
- Therefore, this machine is a key upstream link in the operation chain of the factory.

A real-life example (3/18)

The Buss kneader was supplied with its drive system. As prime mover, the drive had an *ABB DMA 315* DC electric motor, with a nominal power of 300 kW at 1500 rpm.
The fine carbon dust suspended in plant air takes down winding isolation of the motor, especially in its rotating armature.

A real-life example (4/18)

- Finishing May, 1995, the *ABB DMA 315* suffered a catastrophic failure that damaged beyond repair the interior of the motor. This halted the production of green anodes.
- The production of baked anodes continued as they were taken out of the well furnaces, but this buffer would last only a few days.

A real-life example (5/18)

• No spare motor was available, and key world electric motor manufacturers asked for several months to built one.

• As the author was already working there in another project on drives, *CARBONORCA* asked him for help in the solution of this urgent problem.

A real-life example (6/18)

- The author suggested top management to seek a temporary substitute motor at the large warehouses of other state-owned companies of the zone.
- He suggested to look first at the opencast iron ore mines of *FERROMINERA*, where the author had taught a course on gear units.

A real-life example (7/18)

At a *FERROMINERA* depot, the author found a *GE MD 418* CD shovel motor, with a nominal power of 150 hp at 400 rpm.
He suggested *CARBONORCA* to borrow this motor, and soon it was delivered to the central workshop of the company.

A real-life example (8/18)

• Meanwhile, the author posed himself the problem of driving the *Buss* kneader with the means now at hand.

• The *GE MD 418* has a nominal armature tension of 230 V, while for the *ABB DMA 315* this value is 530 V. The *BBC Veritron* armature converter installed for the latter can supply up to 620V and 800A.

A real-life example (9/18)

- Hypothesis 1: increasing armature tension of the *GE MD 418*, its speed also rises, and delivers a nominal power closer to 300 kW.
- Hypothesis 2: this rugged motor, with a peak torque 500% nominal, and a top safe speed of 1150 rpm, will endure the intended burden, at least a year.

A real-life example (10/18)

 Intuition is useful in engineering, but some hard numbers were badly needed, to check if dreams could come true.

• With this aim, the author posed and solved some appropriate computational problems, applying the same method proposed today.

A real-life example (11/18)

- Next two slides show a steady-state model of the separately-excited DC electric motor under full field flux.
- After that, it is shown one of the problems posed on the above-mentioned model, and the algorithm that solves said problem.

A real-life example (12/18)

 $U_a - (E_a + I_a R_a) = 0$ (1) $E_a - cn = 0$ (2) $P_{\rho}-I_{a}U_{a}=0$ (3) $P_{e} - (P_{m} + P_{t}) = 0$ (4) $P_{t} - R_{a}I_{a}^{2} = 0$ (5) $\eta P_{\rho} - P_{m} = 0$ (6)

Model

A real-life example (16/18)

- Calculations found that the shovel motor could deliver a mechanical power of up to 300 kW, but available pulleys for the V-belt transmission limit the value to 220 kW.
- This should be enough to drive the kneader and sustain a production close to normal, which is a good emergency solution.

A real-life example (17/18)

- Experts on application and repair of electric motors at the local state-owned companies told us that our ideas *would not work at all*.
- However, *they worked well*, allowing a rate of production of anode paste of 22 t/h, close to the normal level of 24 t/h.

A real-life example (18/18)

- Spare motors hastily acquired in China and the US lasted less than 15 days each, before being irreparably damaged.
- Again, the shovel motor came to the rescue, reassuring a nonstop 22 t/h production flow.
- The shovel motor was successfully relieved only by a new *ABB DMA 315* motor.

Conclusions (1/4)

- The proposed approach may determine whether any posed computational problem is solvable or not.
- This capability eliminates unnecessary doubts and trials, that become expensive losses of time in problem solving.

Conclusions (2/4)

• If the problem is solvable, the proposed approach can determine all possible algorithms that solve the problem.

• Wherever parallel algorithms exist, the proposed approach identifies them with crystal-clear transparency and precision.

Conclusions (3/4)

• The method has been successfully used in the solution of complex practical problems in different places and industries.

• This clear-box approach helps users feel the level of confidence required in applications of *great responsibility*.

Conclusions (4/4)

- The method is adequate to solve both simulation and optimization problems.
- It naturally offers an *integrated* treatment of simulation and optimization.

Closing remark

Resolve the problem after knowing its elements is easier than resolve the problem without knowing them. [...] Knowing is resolve. José Martí 1891-01-30

Thanks for your attention

Are there more questions, please?