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Background to “more electric” vehicle concepts

Vehicle power-train power- and torque-speed requirements
Machine and power electronics

Vehicle integration considerations

Energy sources
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Early electric road vehicle

Brushed dc traction system

Lloyd Electric delivery vehicle
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Hybrid or ‘More-electric’ road vehicles

Tilling-Stevens motor-bus;
6864cc; 28.3kW engine

Hybrid-electric racing
car, circa 1930’s
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Heated windscreen  Compartment warm-up Entertainment

Engine water pump " :

Electronic engine valve actuation L v

o

Engine lubricant pump

Brake by wire

Electric power steering
Electronically controlled suspension

Electrical air conditioning compressor  Automated gearbox

Note: Installed electrical capacity projected to rise to 15kW over next 5 years
(simple sum:- 15kW/12V = 1250A)
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‘More electric’ automotive drive-trains

‘Robotised]
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Example schematic for a minimal
hybrid-electric vehicle
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IC Engine
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Sensors

Accelerator pedal
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7.5 tonne delivery vehicles

3.5 tonne delivery vehicles

Courtesy of Smith EV, Washington, UK
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Reducing our carbon stiletto print
with electric trucks

NS

tkmaxx.com

Courtesy of Smith EV, Washington, UK
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Vehicle kinematics and power-train rating

5 mg sin o
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Expressing the wheel and traction machine angular velocities in terms of the vehicle
linear velocity yields:

0, Y 4 n 5
= — ®, =N —
s @ SN

From which the machine torque equation can be expressed in terms of the vehicle linear
velocity by substituting egns.(1, 2, 4 and 5) into egn.(3) :

d.r.m d.r
T, :Knt"]mjj{ ! j+[ v ﬂ v W{(kIr cos 6 +sin #)mg +Ep.CdAfv2}
r, n,.I, nz, )|dt nmn, 2

(6)

Mechanical power is torque multiplied by mechanical speed :

Pm = mem (7)
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Expressing the wheel and traction machine angular velocities in terms of the vehicle
linear velocity yields:

0, Y 4 n 5
= — ®, =N —
s @ SN

From which the machlne torque equation can be expressed in terms of the vehicle linear
velocity by substj 4 and 5) into egn.(3) :

)m

(k, cos @ +sin @

(6)

Mechanical power is torque multiplied by mechanical speed :

Pm = mem (7)
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NEDC vehicle reference driving cycle
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Vehicle /]
speed % W, \
(km/h) oo —
NIRRT RRER
NTRRTHRTRIRITAE
Cycle consists of : Cycle duration (s)

« 4 x ECE15 standard driving cycles with
enhanced acceleration

« 1x ECE sub-urban cycle
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low speed. /ﬂ{
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1.5 tonne vehicle on zero road gradient
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Traction machine torque vs. time
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=5 Traction machine torque - speed for a gear ratio of 8.83
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Brushless -
Induction

Brushless -
permanent
magnet

Brushless -
switch
reluctance
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1 Quadrant ‘chopper’ 4 Quadrant drive
N - .
+ L .
s1\ s\ D2 s4 \ D3
— @,
D1£F @ s2 \ /N b1 g3 | D4

S - S Motoring S1,S3 and D1,D3
Braking S2,S4 and D2,D4
Forward duty >50% _[ 1[
D1 S1 D1 Reverse duty<50% _[l [
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Rotor losses dissipated | 1 | gg
across airgap by convection s \ZN D2 s3 |\ N4 s \ZS De

| | |
S2 J\ /N b1 s J\ /\ D3| s6 J\ /\ ps
4

ey 3

Phase A Phase C

Phase A Phase C

Narrow airgap for Cast aluminium or »(\ m(
low reactive power copper rotor bars \
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Brushless permanent magnet motor
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Concentrated or Permanent
distributed multi-phase magnet rotor
winding topologies excitation
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Torque produced in +

' ' T T D4 T
pulses from interaction s1 = D6
of stator and rotor teeth \ AN S3 \ Zi S5 \ /\

D1 D3 D5
s2\ /N s\ /N se\ /N
N | |
‘ | phase
High windage loss  Narrow high Pl P2 P3 . P4
and noise precision airgap
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In—-line motor,

In—line motor,

cdirect drive to epicyclic gear
common bock axle stage and
dif ferential
Motor Motor
In—=line motor, one In-line motor, two
gear stage and geor stoges and
dif ferential dif ferential
il
L[] Motor Motor

90° motor drive, one
or two gear stages and
dif ferential

AN

Motor
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Prototype traction machine, gear-stage and differential

Total 59.8kg Total mass = 62.5kg
Peak power = 0.51 kW/kg Peak power = 0.69 kW/kg
H[ﬁ—y
41 5kq
n
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PM Machine
rotor

PM Machine
stator

Gear-stage

Differential
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Toyota Prius drive-train

Power Splitting Device

MG2
Sun Gear

Carrier

Oil Pump , Engine

Final Gears

Toyota Prius drive-train

[c) 2000 Toyata Mator Corp.
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Toyota Prius drive-train

P

Starter / generator

Traction
motor
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Toyota Prius :

Integrated power electronics

Driver display screen
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Torque generation in an electrical machine

P
L

5
= §)

Magnetic flux

density B (Tesla)
Shear stress 6 =K,BQ —/—
Ampere stream
Q (A/m)
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1 Torque generation in an electrical machine
50

Fan

Shear stress c =K,B Q
c = Output coefficient

Torque = /2 D’L K,B Q
Torque per unit rotor volume = 2c

K, factor which relates to the practical realisation of the
magnetic field and current sheet

B average airgap flux density - limited by maximum working
flux densities of stator/rotor iron and permanent magnets

Q electrical loading (total ampere stream per meter of airgap
circumference) - limited thermally by ability to dissipate
winding I°R loss
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Comparison of motor output coefficients
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N Ky B(T) Q(AM) o (kPa)
Brushed DC 1.0 0.7 20,000 14.0
Induction 0.81 0.57 32,000 14.7
Inverter fed IM 1.0 0.57 32,000 18.4
Synchronous 1.0 0.64 47,000 30.4
Brushless PM 0.94 0.9 50,000 42.3
Switched reluctance 1.29 0.3 50,000 19.4

Note: Q values assume forced air cooling of windings

Reference: J.G. West, IEE Power Division Colloquium on Motors and Drives for Battery Powered Propulsion, London, April 1993, Digest 1993/080
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Research traction machine examples

X
Machine type Induction Brushless PM Brushless PM
Cooling Water jacket Water jacket Direct oil
Rated torque (Nm) 120 120 60
Max. Speed (rpm) 7,500 10,000 20,000
Rated power (kW) 25.8 46.2 75.4
Total mass (kg) 86 42 13
Specific output (kW/kg) 0.3 1.1 5.6
Specific torque (kNm/m?) 12 30 81
Materials audit kg kg/kW kg kg/kW
Silicon iron 59.24 2.296 32.31 0.70
Copper 26.76 1.037 7.7 0.17
NdFeB Magnets - - 2.7 0.06

Department of Electrical and Computer Engineering
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Other machine materials, copper :

T

11/30/2010 C=3.8230

US$/Ib

A e L

Volume 956644.00 Open Interest 134981.00

0=3.7785 H=4.0395 L=3.7010

} ~4.0000
} ~3.5000
~3.0000
~2.5000
~2.0000
~1.5000

~1.0000

H 600000,

2002 2003 2004 2005 2006

2007

T T T
2008 2009 2010
Created with SuperChartz by Omega Research © 1997

Year

TFC Commodity Charts; http://tfc-charts.w2d.com/; 30-11-10

Copper raw material cost

1988 to 2002:
Average 1.0 $/1b, (+1.4/-0.72)

As well as machine mass and
volume, material resource
and cost impacted by move
to lower grade PM’s
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SLVASICL Typical induction motor traction drive efficiency map

%
P -120
/ B ~100 [082-85
g g W 79-82
= [176-79
‘60 = 073-76
2 m7073
N 0 M 67-70
\ 20
2 28 28 8 8 8 8 8 8 Manufacturer ~ Siemens
Speed (rpm) Peak torque 125 Nm
Base speed 4000 rpm
Max. speed 9000 rpm
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Typical brushless PM traction drive efficiency map
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Peak torque
Base speed
Max. speed
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Terminal constraints on machine design
Imposed by the power electronic converter

— r y Limited DC supply :
N i AN = limitation of machine phase voltage
—_ Iphase
V% : = Converter components and
L thermal capability of the machine:
{ N 2limitation of phase current during
\] continuous operation (nominal current)
: = limitation of phase current during

Intermittent operation (peak current)

Department of Electrical and Computer Engineering IEEE Hamilton Section
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et For traction machine design

EL3

2 operating points to satisfy:
« Torque at peak acceleration, and

« Maximum power.

But, within the converter supply constraints, there are
only 2 variables that influence Torque and Power:

* Phase rms emf coefficient (1) or

- Phase inductance (L,).

IEEE Hamilton Section

Department of Electrical and Computer Engineering
11t December 2013

McMaster University, Canada



VICIVIAS! Clo pesi gn considerations:
e
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Tass

* Supply constraints yield Py a4
* Limit on rms phase voltage, V.

* Limit on peak phase current, |,

T.=3pA,l, Pe:V‘;’_/10 sin(J)
d

Torque consideration Power consideration
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Minimal hybrid-electric power-train concept

Electrical Internal combustion
box machine engine
Additional Conventional
clutch clutch
Internal

~ -+ combustion

Integrated SR machine, engine (ICE)

flywheel and additional

clutch assembly
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Generator winding optimisation for extended speed

sy

E_. L] —il— __-t
i —s—
-8
—p— 5
u] ——
—— T
o
150 ENH) 20 IO 15 000 430

Machise speed frpmy

Power versus speed capability as a
function of turns per stator pole

Table V. Summary of machine phase cuments and system efficiency

with speed for discontinuons and continnous curment

EPM Tums per stator pole
53 ] 64 ] 70
L (A) | 23195 | 23056 | 21866 | 21478 | 206.31
2000 | Ies(A) | 130016 122.] 11744 | 11512 | 11165
Mas (%) | BB.SR B8.32 £0.00 89.37 #9.61
s (%) £0.4°
i (A} | 240019 211.2 | 21040 g 197.09% | 104.25%
3000 | D (A) | 11962 | 10922 [ 10945 f 104.85% | 104.13%
Mas (%) | 90.16 B9.94 90.08 00.53% | 90.60*
s (T} 80.9°
Lo (A)Y | 21479 § 199.67% | 191.88* | 187.27* | 186T77*
4000 | bne (A) | 10937 [04.8% | 103.02% | 102.28* | 10267*
Mas (%) | 90.08 90.51* | 90.68* | 90.76* | O0.B2*
s (%) 2&.8"
li (A} | 22183 § 200.26% | 192.8% | 194.2% | 154.24%
4500 | L (A) | 11354 | 106.79F | 105.68% | 109.47* | BLE2*
Mas (%) | 9102 Q0.51* | 90.08% [ BRSS9 [ 9200
s (T} £9.0°

*Achieved with continuous current operation
* Measured data

Ref.: [1]

Schofield et al.
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o s v ;‘“é Power train connection schemes

EL3

Primary energy store
options

. I
IC engine Generator)

| .
DC/DC  Traction
S .
_@ | converter  drive

|

|

|

|

| O | |

: Fuel cell | Il —:—. ‘|g| @
| I

: Battery —_ll_— _:_ Gearbox
A ]
) 1
| Flywheel | (59|~

: Super/Ultral | I ] DC Link
| Capacitors | T

Peak power buffer
options

Series; dc-dc converter interfaces energy source to dc-link
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;‘“é Power train connection schemes

EL3

Primary energy store

IC engine Generator|

|

| | Traction

me, =

: 0- : DC Link I
Fuel cell | || — ~|§|

| |

I |

| |

| Battery | = ==

| I

e o o o |

|
: Flywheel |- : f
: Superf.Ultra . :
| Capacitors | T DC/DC

__________ - converter
Peak power buffer

options

Series; dc-dc converter interfaces peak power buffer to dc-link
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Power train connection schemes

EL3

Primary energy store

: Super/Ultra
| Capacitors

| Flywheel _
Flyw Qe
.
-1
I
T

Traction
drive

Short-term energy/peak power buffer

Parallel; electrical system facilitates power buffer

Gearbox
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M@ﬂ%?g Example electric vehicle: 550-750Vdc traction system
T g

e 650
amie Vehicle Management Unit
and Data Acquisition
Crarger - f 600 +
[Hmnk] 3 ] G W0 SR L
. L Fuel cel 0 |
Traction motor, ~ /| Hvbciink | Control S | ‘ R ¢ ‘ :
gear-staeand L] 1] & | zbm z [l AR )1 ‘
differential = ion | Traction £ 500 i ‘ T
- = |
8 Focain =] £ 450
o = g | HH H\ HHHIl
400
— S
350

0 5000 10000 15000

Time /s
Forced air
cooling
F - - - -
: Region Al Region B | Region C
1.00 f — — f 0.70
. Activation polarisation : L
Hy inlet 0.90 1 (reaction rate loss) Pei‘ipower 0.63
Electronic > o~ Lo o
control unit = 0.80 | - N 0.56§
S 0.70 i - o 0.49 =
& 0.60 | Ohmic pplarisation” .- I | o4 2
o (resnstance Ioss) 8
O, /airi g 0.50 1 i | .| 0.35 5
% 0.40 1 i 1 0.28 3
& 0.30 | WV Concentration polarisatibn 021 g
% 020{ - : (gas transport loss) | \ 014 &
0.0 1 - — Voltage T 0.07
- - - - Power
. 0.00 \ T T \ T \ 0.00
Electrical power
connections 00 02 04 06 08 10 12 14
Current density / Acm .
Ref.: [2] Schofield et al.
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Fuel cell performance issues

Region Al Region B | Region C
1.00 — — i 0.70
+ Activation polarisation : N
0.90 - (reaction rate loss) Peik: power 0.63 ¢
> 0.80 - | i 0.56 =
T 0.70 - i i 0.49 =
S (.60 | Ohmic pplarisation | 042 S
® (resistapce loss) S
S 0.50 - i i 0.35 =
= o
o ‘ ' =
> 0.40 1 i 17 0.28 3
& 0.30 - | Concentration polarisation 0.21 g
o I
5: 0.20 1 : (gas transport loss) | \ 0.14 s
0.10 1 —Voltage|| 07
Power
0.00 N [ I | I I I I 0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Current density / Acm 2
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£

Battery terminal voltage with time :

650 700 ‘
600 650 Max. volts
| | |
z ] < 600 1N
&, 550 o
: 2 oo
= > 550
.S 500 I £
. o il
) )
£ 450 . &
@ [T {1 = 450 i H
400 400 1y Min. volts
N — " ”ﬁ
350 T T 350 T T T T T T T T T 1
0 5000 10000 15000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time /s Time /s
Zebra Sealed lead-acid
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Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery
75

)
&/

65 —

Battery capacity / Ah
N gl (6]] D
o1 o o1 o
| ] |

~
o
|

w
a1
l
I

w
o

0 20 40 60 80 100 120 140
Discharge current/ A
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Lead-acid battery performance issues

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery

75

70

65

Battery capacity / Ah
Y N (6] (6]] D
o (6a] o (6] o

w
(6]

W
o

- -x - Manufacturer's data @ 20C
+—- —=— Experimental @ 20C -
“A
b ¥ —
< .

_ S S
- — N A = =
T )
0 40 60 80 100 120 140

Discharge current/ A
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Lead-acid battery performance issues

VS .
' Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery
75
- -x - Manufacturer's data @ 20C
70 +—4& —=— Experimental @ 20C -
o5 » . — ¢ — Experimental @ 0C
N — x - Experimental @ -20C
A\ SN
< 60 : —
- AN T a
B '~ -
g 9 S =
% ) ~ ~ Ny S
(&) ~
550 k“~‘~\ - —
(<5} ~ o~
s =~ -~
D 45 S T~
>~ .. T~ -
~ .. "~ . . —
40 B — S —
TR el L.
O L
35 —
30 ] 1 1 1 1 1
0 20 40 60 80 100 120 140

Discharge current/ A
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£

Battery terminal voltage with time :

700 |
650 Max. volts

< 600 4|1

? 550 1 “

o .

B MM ..
450 ittt ,1 i 11‘1\”\““‘ I“ AT .
w00 M, Min. volts
350 : : . . . . . . . |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time /s

Sealed lead-acid
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Traction battery

TABLE Ill ZEBRA Z5C BATTERY DATA

ZEBRA Z5C Traction battery Type Zebra Z5C
Capacity 66Ah
Rated energy 17.8kWh
Open circuit voltage 278.6V
Max. regen voltage 335V
Max. charging voltage 308V
Min. voltage 186V
Max. discharge current 224A
Weight 195kg
Specific energy 91.2Wh/kg
Specific power 164W/kg
Peak power 32kW
Thermal Loss <120W
Cooling Air
Battery internal temperature 270 to 350°C
Ambient temperature -40 t0 +70°C
Dimensions (WxLxH) 533 x 833 x 300 mm
Number of cells per battery 216
Cell configuration 2 parallel strings of

108 series cells

Department of Electrical and Computer Engineering IEEE Hamilton Section
McMaster University, Canada 11th December 2013
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ZEBRA Z5C Traction battery

Contactor and fuse unit

CAN 2Db interface to vehicle
management unit (VMU)

Battery management unit (BMU)

TABLE Il ZEBRA Z5C BATTERY DATA

Type Zebra Z5C
Capacity 66Ah
Rated energy 17.8kWh
Open circuit voltage 278.6V
Max. regen voltage 335V
Max. charging voltage 308V
Min. voltage 186V
Max. discharge current 224A
Weight 195kg
Specific energy 91.2Wh/kg
Specific power 164W/ikg
Peak power 32kW
Thermal Loss <120W
Cooling Air
Battery internal temperature 270 to 350°C
Ambient temperature -40 to +70°C
. H . Dimensions (WxXLxH) 533 x 833 x 300 mm
Forced alr Ventllatlon Number of cells per battery 216
Cell configuration 2 parallel strings of
108 series cells

Department of Electrical and Computer Engineering IEEE Hamilton Section
McMaster University, Canada 11th December 2013
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Beta alumina ceramic tube with
compression bond seal.

Circular or ‘slim line’ Cloverleaf or ‘monolith’
Cross-section. Cross-section.
Department of Electrical and Computer Engineering IEEE Hamilton Section
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Battery capacity / Ah

D
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o

(6)]
(6)]

a1
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Battery performance issues

Peukert data for a Hawker and Zebra batteries

N
o

w
(6]

W
o

/Zebra battery
\ S
w < A
3 ~ N - .
3 ~ N S —
~ R -
. e Pb-acid|battery
T~ ..
-~ S -
[ E— ‘ k - \ -~ -
- -& - Manufacturer's data @ 20C Tt~ -
- . .
1 —=— Experimental @ 20C -~ -
e
— « — Experimental @ 0C T — . —— o
" —
T | — = - Experimental @ -20C
0 20 40 60 80 100 120 140

Discharge current/ A
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£

Battery terminal voltage with time :
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Current and voltage waveforms for single-step pulse discharging.
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Current and voltage waveforms for single-step pulse charging.
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Lead-acid traction battery model

University %ﬁ
\ X )

&

Rint(d)
— o
n
Eocf (SOC) <E9 Vierminal
100
—~ - 4O
@ . ki
g R - :
73 o0
§) o ‘6 \0 o. o\o o o .0 R »()"0"6.0- S, K
= 8--0.. 4 . 5 ‘% O &< 6% b:
o of % ‘ﬂ. . : \'B,,°~ 8., .0 o R A
E ._X'an LE s = 2 ,x::’(rx
IR S I N e T
e R R S T i I i T
g 10 - "u'--.“" e e -"’i“_,—o 'A ra
§ E "A ; s A Sar e
T e R TR T A,
c
3
£
qéu --o-- 007TA+20C ---o--- 014A +20C - -- 028A +20C
I
2 <o 042A420C ---x-- 084A +20C --a-- 133A+20C
[a)]
e 140A+20C ---s--- 175A +20C
1 T T T T T T
0 10 20 30 40 50 60 70

Discharged capacity / Ah

Voltage / V

12.0

115

11.0

10.5

e

e

M

Vd

a Test |]
— Est
0.0 0.2 0.4 0.6 0.8 1.0
Normalised SOC
1000

) o
g ‘.
w .
e o
2 5,
. 100 S
g == :
- o O O T I )
@ _ PR3 4 ==
8 qo* N _6.0"0{)‘0 & } Y
g .‘o '.O_,o--q-o o SN u__,.i__“_._‘,.._,o
RZ] . e 0--0 . cl.e-g @ @ & ¢
3 N > "____%._._;—_4_‘ e Z R St A 4 ok
= :“-“m-n AN -A"-’A
© LT A Ay et A AT AR
g 10 ----- T
£ —
§ o -007TA+20C = -014A+20C < -042A+200
g
O

coopy-- -084A+20C ---a-- -133A+20C ---=--- -175A+200 |

1 T T T T T T
0 10 20 30 40 50 60 70

Discharged capacity / Ah

Department of Electrical and Computer Engineering

McMaster University, Canada

IEEE Hamilton Section
11t December 2013



McMaster

University B

4

Variation in DC link supply to traction system

Simulated and measured battery terminal voltage for repetitive ECE15 driving
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Zebra traction battery model in Matlab/Simulink
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Mﬁ%ﬁ?ﬁ Multi-battery model in Matlab/Simulink
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M%ﬁ%?% Multi-battery control
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sy
' Specifications u27-12XP
Voltage 128V
Capacity (C/5) 130 Ah
Dimensions including terminals 306x173x225 mm
(LxWxH) 12x6.8x8.6 in
BCI| Group Number Group 27
Weight (approximate) 19.5kg/42.9 Ibs
Terminals, female-threaded M8 x 1.25
Specific energy 85 Whikg
Energy density 140 Whl
Max. cont. current 150 A
Standard
Discharge Mua;:éw sec. 300 A
@23°c [P
Cut-off voltage 10V
Charge voltage 146V
Standard Float 138V
Charge | Recommended 65 A
Charge time 2.5 hrs
DC internal resistance 5 mOhm

Do not expose to temperatures above 60°C
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3.5 tonne delivery vehicle
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Supercapacitor peak power buffer
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Supercapacitor load testing
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Dissemination of TSB DESERVE research project
activities to UK Govt. Cabinet Minister
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Generator interfacing issues — control philosophy
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Motivating factors for new vehicle concepts

Nitrogen oxides emissions by source: 1970-2006

Emissions of Sulphur dioxide: 1970-2006
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