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Presentation overview : 

1 Background to “more electric” vehicle concepts 

2 Vehicle power-train power- and torque-speed requirements 

3 Machine and power electronics 

4 Vehicle integration considerations 

5 Energy sources 

6 Summary 
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Early electric road vehicle 

Lloyd Electric delivery vehicle 

Brushed dc traction system 
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Electric road vehicle infrastructure 

Electric vehicle and electrolytic rectifier charging station 
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Hybrid or ‘More-electric’ road vehicles 

Tilling-Stevens motor-bus; 

6864cc; 28.3kW engine 

Hybrid-electric racing 

car, circa 1930’s 
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Automotive applications of electrical machines and drives  

Heated windscreen Compartment warm-up 

Engine water pump 

Engine lubricant pump 

Automated gearbox 

Electric power steering Electrically heated catalytic converter 

Electrical air conditioning compressor 

Electronic engine valve actuation 

Entertainment 

Electronically controlled suspension 

Brake by wire 

Note:  Installed electrical capacity projected to rise to 15kW over next 5 years 

           (simple sum:- 15kW/12V = 1250A) 
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‘More electric’ automotive drive-trains 

Integrated motor-generator (IMG) 

Starter clutch 
IC Engine 

Gear shift 

control lever 

Gear-box 

ECU 

IMG ECU Vehicle 

ECU 

IC Engine 

ECU 

Accelerator pedal 

Sensors 

Sensors 

High power 

battery 

Inverter 

‘Robotised’ gear-box 

Steering rack 

Example schematic for a minimal 

hybrid-electric vehicle 
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Courtesy of Smith EV, Washington, UK 

7.5 tonne delivery vehicles 

Fleet Conversions 

3.5 tonne delivery vehicles 
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Courtesy of Smith EV, Washington, UK 

7.5 Tonne All-Electric Delivery Vehicle 
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Vehicle kinematics and power-train rating 
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Expressing the wheel and traction machine angular velocities in terms of the vehicle 

linear velocity yields: 

w

w
r

v


w

tm
r

v
n

  

















































 2.

2

1
sincos

.

.

.
vACmgk

n

rd

dt

dv

n

mrd

rn

J

r

Jn
T fdr

tt

wf

tt

wf

wtt

w

w

mt
m 



mmm TP 

From which the machine torque equation can be expressed in terms of the vehicle linear 

velocity by substituting eqns.(1, 2, 4 and 5) into eqn.(3) :  

Mechanical power is torque multiplied by mechanical speed :  

(5) (4) 

(7) 

(6) 
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From which the machine torque equation can be expressed in terms of the vehicle linear 

velocity by substituting eqns.(1, 2, 4 and 5) into eqn.(3) :  

Mechanical power is torque multiplied by mechanical speed :  

(5) (4) 

(7) 

(6) 
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•    4 x ECE15 standard driving cycles with          

 enhanced acceleration 

•    1 x ECE sub-urban cycle 
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‘More electric’ vehicle machine technologies 

Brushed dc 

Brushless - 

induction 
Brushless - 

switch 

reluctance 

Brushless - 

permanent 

magnet 
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Brushed dc motor 
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Induction motor 

Cast aluminium or 

copper rotor bars 

 Rotor losses dissipated 

across airgap by convection 

Narrow airgap for 

low reactive power 
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Brushless permanent magnet motor 
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magnet rotor 

excitation 

Concentrated or 

distributed multi-phase 

winding topologies 
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Switched reluctance motor 

High windage loss 

and noise 
Narrow high 

precision airgap 

Torque produced in 

pulses from interaction 

of stator and rotor teeth 
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Traction motor, gear and differential configurations 

 

 
 



Department of Electrical and Computer Engineering 

McMaster University, Canada 

IEEE Hamilton Section 

11th December 2013 

Prototype traction machine, gear-stage and differential 
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PM Machine 

rotor 
PM Machine 

stator 

Differential 

Gear-stage 

Traction motor, gear and differential integration 
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Toyota Prius drive-train 

Toyota Prius drive-train 
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Toyota Prius drive-train 

Traction 

motor 

Starter / generator 
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Driver display screen 

Toyota Prius : 

Integrated power electronics 

‘More electric’ vehicle power electronics and control 
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Magnetic flux 

density B (Tesla) 

Ampere stream 

Q (A/m)  

Torque generation in an electrical machine 

L 

D 

s 

Shear stress  s = Ku B Q 
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Torque generation in an electrical machine 

Shear stress  s = Ku B Q 

 s   Output coefficient  

Torque = p/2 D2L Ku B Q 

Torque per unit rotor volume = 2s 

Ku factor which relates to the practical realisation of the 

magnetic field and current sheet 

B   average airgap flux density - limited by maximum working 

flux densities of stator/rotor iron and permanent magnets  

Q  electrical loading (total ampere stream per meter of airgap 

circumference) - limited thermally by ability to dissipate 

winding I2R loss 
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Comparison of motor output coefficients 

 KU B (T) Q (A/m) s kPa) 

Brushed DC  1.0 0.7 20,000 14.0 

Induction  0.81 0.57 32,000 14.7 
 

Inverter fed IM 1.0 0.57 32,000 18.4 

Synchronous  1.0 0.64 47,000 30.4 

Brushless PM  0.94 0.9 50,000 42.3 

Switched reluctance   1.29 0.3 50,000 19.4 
 

 

Note: Q values assume forced air cooling of windings 

 

 
Reference: J.G. West, IEE Power Division Colloquium on Motors and Drives for Battery Powered Propulsion, London, April 1993, Digest 1993/080 
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Machine type 
 

Induction Brushless PM Brushless PM 

Cooling Water jacket Water jacket Direct oil 

Rated torque (Nm) 120 120 60 

Max. Speed (rpm) 7,500 10,000 20,000 

Rated power (kW) 25.8 46.2 75.4 

Total mass (kg) 86 42 13 

Specific output (kW/kg) 0.3 1.1 5.6 

Specific torque (kNm/m3) 12 30 81 

Materials audit         kg          kg/kW        kg        kg/kW  

Silicon iron       59.24         2.296      32.31       0.70  

Copper       26.76         1.037        7.7          0.17  

NdFeB Magnets        -                 -        2.7          0.06  

    

 

Research traction machine examples 
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US $ / lb 
 

Year 
 

TFC Commodity Charts; http://tfc-charts.w2d.com/; 30-11-10 

 

1988 to 2002: 

Average 1.0 $ / lb,  (+1.4 / -0.72) 

Other machine materials, copper : 

As well as machine mass and 

volume, material resource 

and cost impacted by move 

to lower grade PM’s 

Copper raw material cost 
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Manufacturer  Siemens 

Peak torque 125 Nm 

Base speed 4000 rpm  

Max. speed 9000 rpm 
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Terminal constraints on machine design 

imposed by the power electronic converter 

Iphase

Vdc

Limited DC supply : 

limitation of machine phase voltage 

 

Converter components and 

thermal capability of the machine:   

limitation of phase current during 
continuous operation (nominal current) 

limitation of phase current during 
intermittent operation (peak current) 
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2 operating points to satisfy: 

•  Torque at peak acceleration, and 

•  Maximum power. 

 

But, within the converter supply constraints, there are 

only 2 variables that influence Torque and Power: 

•  Phase rms emf coefficient (   ) or 

•  Phase inductance (    ). 

 

dL

o

For traction machine design 
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•  Supply constraints yield Pe(max), 

•  Limit on rms phase voltage, Vs 

•  Limit on peak phase current, Iq 

Torque consideration Power consideration 

Design considerations: 
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Minimal hybrid-electric power-train concept 
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Power versus speed capability as a 

function of turns per stator pole 

Generator winding optimisation for extended speed 

Ref.: [1]  Schofield et al. 
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Series; dc-dc converter interfaces energy source to dc-link  

Power train connection schemes 
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Series; dc-dc converter interfaces peak power buffer to dc-link  

Power train connection schemes 
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Parallel; electrical system facilitates power buffer 

Power train connection schemes 
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Example electric vehicle: 550-750Vdc traction system 

Ref.: [2]  Schofield et al. 
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Fuel cell performance issues 
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Lead-acid battery performance issues 

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery 
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Lead-acid battery performance issues 

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery 
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Lead-acid battery performance issues 

Peukert data for a Hawker 12V, 70Ah sealed lead-acid battery 
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TABLE III  ZEBRA Z5C BATTERY DATA

Type Zebra Z5C

Capacity 66Ah

Rated energy 17.8kWh

Open circuit voltage 278.6V

Max. regen voltage 335V

Max. charging voltage 308V

Min. voltage 186V

Max. discharge current 224A

Weight 195kg

Specific energy 91.2Wh/kg

Specific power 164W/kg

Peak power 32kW

Thermal Loss <120W

Cooling Air

Battery internal temperature 270 to 350°C

Ambient temperature -40 to +70°C

Dimensions (WxLxH) 533 x 833 x 300  mm

Number of cells per battery 216

Cell configuration 2 parallel strings of

108 series cells

ZEBRA Z5C Traction battery 

Traction battery 
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TABLE III  ZEBRA Z5C BATTERY DATA

Type Zebra Z5C

Capacity 66Ah

Rated energy 17.8kWh

Open circuit voltage 278.6V

Max. regen voltage 335V

Max. charging voltage 308V

Min. voltage 186V

Max. discharge current 224A

Weight 195kg

Specific energy 91.2Wh/kg

Specific power 164W/kg

Peak power 32kW

Thermal Loss <120W

Cooling Air

Battery internal temperature 270 to 350°C

Ambient temperature -40 to +70°C

Dimensions (WxLxH) 533 x 833 x 300  mm

Number of cells per battery 216

Cell configuration 2 parallel strings of

108 series cells

ZEBRA Z5C Traction battery 

Battery management unit (BMU) 

Contactor and fuse unit 
CAN 2b interface to vehicle 

management unit (VMU) 

Forced air ventilation 
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Circular or ‘slim line’ 

cross-section.  

ZEBRA battery, Beta-alumina cells  

Beta alumina ceramic tube with 

compression bond seal.  

Cloverleaf or ‘monolith’ 
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Battery performance issues 
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Variation in DC link supply to traction system  

Simulated and measured battery terminal voltage for repetitive ECE15 driving 
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Courtesy of Smith EV, Washington, UK 

7.5 Tonne All-Electric Delivery Vehicle 
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Rechargeable Lithium-Ion Traction Battery 
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Rechargeable Lithium-Ion Traction Battery 

Do not expose to temperatures above 60oC 
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Rechargeable Lithium-Ion Traction Battery 
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Courtesy of Smith EV, Washington, UK 
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(a)  ICE/HPM machine and passive (full-bridge diode) rectification stage. 

 

 

 

 

 

 

 

 

 

 

(b)  Schematic of HPM generator cross-section 

Fig. 2.  HPM Generator system components and machine concept. 

 

 

 

 

 Fig. 1.12  Structure of the HESM with a two-part rotor [1.17].  
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Fig. 4.1  Schematic of a series hybrid EV power-train and typical DC-link voltage 

variation during urban driving. 
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Generator interfacing issues – control philosophy 

turn, is substituted in to the phase back-EMF calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Five operating scenarios of the HPM generator with respect to the 
vehicle system DC-link voltage levels. 
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Fig. 4.15  Five operating scenarios of the HPM generator with respect to 
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(b) Stators and WF rotor 

Fig. 7.  Stages of prototype HPM generator hardware build. 
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Fig. 4.4  DC-link voltage and peak phase back-EMF with-respect-to the WF excitation 
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(a)  Electrical measurements at a DC-Link voltage of 40V.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Electrical measurements at an average DC-Link voltage of 136V.   
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Motivating factors for new vehicle concepts 
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All of the main vehicle related pollutants have reduced over the past 10 

years due to emissions reduction legislation and improved engine

technologies

– this against a background increase in vehicle numbers

– the exception is carbon (CO and CO2) which is still

increasing, hence the various LOW CARBON initiatives
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All of the main vehicle related pollutants have reduced over the past 10 

years due to emissions reduction legislation and improved engine

technologies

– this against a background increase in vehicle numbers

– the exception is carbon (CO and CO2) which is still

increasing, hence the various LOW CARBON initiatives
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Source:  IET Clerk-Maxwell Lecture, 19th February 2009, London, UK and BERR 

UK Energy Flow Chart 2007 
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2050 CO2 target means change across all sectors 

Source:  IET Clerk-Maxwell Lecture, 19th February 2009, London, UK
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2050 CO2 target means change across all sectors 

Source:  IET Clerk-Maxwell Lecture, 19th February 2009, London, UK



Department of Electrical and Computer Engineering 

McMaster University, Canada 

IEEE Hamilton Section 

11th December 2013 

Presentation review : 

1 Background to “more electric” vehicle concepts 

2 Vehicle power-train power- and torque-speed requirements 

3 Machine and power electronics 

4 Vehicle integration considerations 

5 Energy sources 
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