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1. Introduction
HVDC technologies:

Around 145 HVDC installations worldwide (in operation or planned for very near
future). Two distinct technologies exists:

 Line-commutated current-source converters (LCCs):
 Thyristor type

« Technology well established for high power. It’s also referred to as “Classic”
HVDC

« The most power transmission line installed in the word transmit 7200MW,
with a voltage rated at 800kV DC and 1000kV AC (China)

« Forced-commutated voltage-source converter (VSCs)
« GTO or in most industrial cases IGBT type
« It represents the recent technology in DC power transmission

* First VSC-based PWM-controlled HVDC system was installed in Sweden in
1997 (3MW, 10km distance and 20kV DC)



1. Introduction
Advantages of VSC over LCC:

Independent control of the reactive and active powers of each converter
Avoidance of commutation failures due to disturbances in the AC network

Ability to connect the VSC-HVDC system to a weak ac network or even to a
passive network (when no generation source is available)

Faster dynamic response due to higher PWM, which result to smaller filter size
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1. Introduction

VSC topologies:
Numerous converter topologies exists for VSC. Four main categories can be
established:

Two-Level Multilevel diode-clamped
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1. Introduction
MMC advantages:

Advantages of Modular Multilevel Converter (MMC):

« Low frequency modulation
- Lower transient peak voltages on IGBT, which will lead to a lower losses

« Very low THD, hence no need for High-pass filters or very small size
« Modular structure, scalable to different power and voltage levels
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2. MMC topology overview

e At normal operation, S1 and S2 are
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2. MMC converter overview
Example: Suppose we have a MMC-9levels (i.e. 8 SMs/arm)
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2. MMC converter overview

MMC overview:

Transformer

Insertion Resistor
Star Point Reactor




2. MMC converter overview

MMC overview:
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3. MMC models

Depending on the type of study different type of modeling are presented:
« Model 1 — Model based on nonlinear IGBT models

« Model 2 — Model based on simplified switchable resistance

« Model 3 — Switching Function of Arm (SF-arm)

« Model 4 — Average Value Model of MMC (AVM-MMC)

Model 1 Model 2 Model 3 Model 4




3. MMC models

Model 1 - Models based on nonlinear IGBT models

« In this case IGBT/diode are modeled by nonlinear resistor and an ideal switch.
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3. MMC models
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3. MMC models

Model 2 - Models based on simplified switchable resistance

IGBT and diodes are represented by two-value resistors (Ron and Roff). A reduction is
performed to reduce the number of electrical nodes that describe converter.

arm

J

arm(t) ZrSM _eq_ |(t) arm(t)+ZVSM _eq_ |(t AT)

r2(t).(rit) +R;)
r2(t)+ri(t)+R,)

r2(t)
Vsum eq(t AT)= Ve eq(t AT){I’Z('[)-Fr:l-(t)"'Rcj

I

SM _eq (t) =

\“

Advantages:

» Reduction of electrical nodes to 3 nodes, without loosing the variable information of each SM.
» Low computation time

Inconvenient:

»The model is hard-coded, hence the user has no more access to SM circuits
»The V-I curve of IGBT/diode is not modeled



3. MMC models
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3. MMC models

Model 3 — Switching function of Arm

* Each MMC arm are modeled as controlled current and voltage sources for ON/OFF states and

half diode bridge for Blocked state.
* These models can be used to study harmonics generated and control syste

for energy regulation of MMC-arm.
* It suppose that Capacitor voltages balancing control operate correctly
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3. MMC models

Model 3 — Switching function of Arm

Advantages:

» Reduction of electrical nodes to 3 nodes, without loosing the variable information of
each SM.

»Very Low computation time.

» Circulating currents and the linear conduction losses can be represented

»The energy transferred from ac and dc sides into each arm of the MMC is taken into
account

Inconvenient:

»SMs are no longer represented

» Balancing controls of capacitor voltages in each arm cannot be studied using this
approach.

»Should be used with care when dealing with MMC having < 51Level




3. MMC models
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3. MMC models

Model 4 — AVM (Average Value Model)

e The AC and DC side characteristics are modeled as controlled current and voltage sources.

* These models cannot be used to study harmonics generated by such converters.

 AVM model suppose that internal variables of MMC (Capacitor voltages and current of each
arm) are controlled correctly
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3. MMC models

Model 4 — AVM (Average Value Model)

Advantages:
»Reduction of electrical nodes
»Very Low computation time.

Inconvenient:

»MMC arm are no longer represented

» Lower level control cannot be studied using this approach.
» Blocked state behavior cannot be accurately modeled




3. MMC models
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4. Control system

Basic idea:

By linearizing the power equation, active and reactive power can be decoupled, thus:
* Regulating the phase angle -> active power is controlled

* Regulating the voltage amplitude -> reactive power is controlled

” P — VS>\(/ ® sin(o) o P, = fot(5)
@ <_ V.V, cos(8) —V.2
Q, =3 RCO‘:‘(( )~V < Q, = fet(Vy)

However the control system is much more complex

Upper control (VSC control)
Since MMC topology is a VSC type, the generic Outer/Inner Control can be used

Lower control (MMC control)
Controller related to the MMC topology, in order to control internal variables



4. Control system

Upper level control
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5. HVDC-MMC model in EMTP-RV

HVDC link modeled in EMTP-RV

Pac control Vpc control
SRC1 VSC 1 Cable 70km1 VSC 2 SRC?
MMC MMC
+ p— — +
ny VA
Equivalent source
VSC-MMC station
Underground cable

DC fault AC fault (3LT)
pole-to-pole

NB: This test case is included in the examples folder of EMTP-RV 2.5



HVDC-MMC model in EMTP-RV

Subsystem structure of the VSC-MMC station
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P (pu)

voltage (pu)

Model comparisons

Step change on active power reference

Simulation configuration:

MMC-401Level (N = 400SMs/arm)

Active power reference (Pref) of MMC-1 is reduced from 1 to 0.5 pu at t=0.5s

1 F T T T T T ] -0.1¢ T T T T T
ol Pref | g -0.15
. Model 1,2,3 and 4 g 02 Model 1, 2 and 3
0.6 . 3 -0.25 i
C r r r r r _0.3 ol r r r r r
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.45 0.5 0.55 0.6 0.65 0.7 0.75
time (s) time (s)
MMC-1 Active power MMC-1 phase A, difference current iOliffa
L1 upper arm : :
105 Model 1, 2 and 3
1
0.95 lower arm
Model 1,2 and 3

0.45 0.5 0.55 0.6 0.65 0.7 0.75
time (s)

MMC-1 phase A upper and lower arms, Vo



Model comparisons

3LG AC fault

Simulation configuration:

MMC-401Level (N = 400SMs/arm)

Three-phase to ground fault of 200ms after 1sec of simulation
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MMC-2 dc current: | 4¢ MMC-2 dc voltage: V.



Model comparisons

3LG AC fault

Simulation configuration:

MMC-51Level (N = 50SMs/arm)

Three-phase to ground fault of 200ms after 1sec of simulation

2 9 L T T T T L L T 1 ;
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5 1 : 1 3 o5 Model 1, 2, 3 and 4
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8 _1ﬁ k | g '05 u
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MMC-2 dc current: | 4¢ MMC-2 dc voltage: V.



Model comparisons

DC pole-to-pole fault

Simulation configuration:

MMC-401Level (N = 400SMs/arm)

Permanent Pole-to-pole DC fault at 1.9sec of simulation
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Computation performances

Computation performances in EMTP-RV

401-levels MMC based HVDC link was tested for 1sec simulation.
The simulation time is compared for all models
The best computing performance is given by Model 4, however Model 3 is very fast and
more accurate. Model 1 and 2 dependent on the number of MMC levels simulated.

Time step Computation time (s) in function of SMs/arm
Model
(ns)
20 SMs/arm 50 SMs/arm 100 SMs/arm | 400 SMs/arm

#1 10 258 822 2,106 13,459
#2 10 37 65 114 441

#3 10 18 18 18 18

#4 10 15 15 15 15

#4 100 2 2 2 2




4. Real-time simulation
Introduction

Objective is to perform Hardware In the Loop (HIL) simulation.

By means of interfacing the real control system of SIEMENS with a numerical MMC-HVDC
link + AC grid

Host PC

TCP/IP

Numerical model >

Real Control

Gate
signals

MMC-HVDC link +
France-Spain grid

Electrical
measurements




4. Real-time simulation

A HVDC-MMC transmission system is used to verify the SSN-MMC model
proposed.

In order to achieve a real-time simulation, two steps are required:

Step 1: Transfer the original MMC based HVDC system model achieved in EMTP-
RV to the Matlab/Simulink software using SimPowerSystem (SPS) and Artemis
tools.

Step 2: Transfer from offline to real-time simulation (using Opal-RT simulator)

Step 2:

Real-time model
on Opal-RT system

Step 1:

EMTP-RV :>
model

Matlab/simulink model

with SPS and Artemis
Toolboxes

(offline simulation

e The generic control system developed in Simulink is directly interfaced with
EMTP-RV by means of a DLL
* Detail MMC model (reference model) is kept on EMTP-RV.



4. Real-time simulation
Offline to real-time simulation

Step 1: Transfer form EMTP-RV to Matlab/Simulink
Interfacing by mean of a DLL between these two programs is performed

Matlab/Simulink limitations:

*  MMC model with non-linear IGBT/diode models (Model 1) can not be modelled.
(Specially for high level MMC)

* France-Spain grid can not be modelled. A simplified model has to be used

* Small resistances have to be added between some connection ( i.e. connection between
the wideband Cable and the MMC)

Difference between the two programs:

EMTP-RV Matlab/simulink (SPS/ARTEMIS)
SimPowerSystem:
Trapezoidal integration and * Continuous
Integration Method Euler backward with half time * Discrete (trapezoidal rule)
step for discontinuities RT-Lab:

* ARTEMIS art5 (order 5)

Equation type Nodal equations State space equations




4. Real-time simulation
Offline to real-time simulation

Step 2: Transfer form offline to real time simulation

1. Partitioning of the system is necessary for multiprocessor usage
* Determine the most suited partition in order to optimize the computation time of
each processor
* Add stubline and delays where it’s necessary in order to parallelize the CPU

Only MMC model 2 has been studied since Model 3 and 4 does have any technical challenge
in real time modeling and performances

CPU1: VSC-MMC station #1 CPU2: VSC-MMC station #2
CPUa: Larm=0.15% l’mﬂw Larm=0.15% CPUA4:
equivalent 400/320 kV C=2.5mF + 300KV C=2.5mF 400/320 kV equivalent
ZT =18% r’\’v“ 4 C J } r’\’v“ ZT =18%
1 2 2 1
(: ) 70km DC cable @D :'-(: )
Main AC @@ Bypass ] ! Bypass P Main AC
Breaker Breaker C D Breaker Breaker
MMC-101L MMC-101L
CPUS: Rectifier Control CPUSG: Inverter Control
Upper Level Lower Level Lower Level Upper Level
|| Control > control 1 < control < control |




4. Real-time simulation
Offline to real-time simulation

Real-time Model accuracy verification
Scenario 1: Start-up sequence

* All capacitor voltages are initially set to zero and all SMs are at BLOCKED state.
*  “main AC breaker” devices are closed and “bypass breaker” devices are opened

0.1 0.35¢ : : : :
g 0.05 E 0.3~ ul
5 0 % 02
3 -0.05 S 02
0.1 r r r r T t r r r r
0.1 0.12 0.14 0.16 0.18 0.2 0.1 0.12 0.14 0.16 0.18 0.2
time (s) time (s)
MMC current upper arm of phase Sum of all capacitor voltages of
A station #1 MMC upper arm phase A station #1
0.3 T T T T 020 . T —
3 3 015 .
% & o1- -
S S 0.05 -
01 r r r r 0 = : E
01 0.12 0.14 0.16 0.18 0.2 0.106 0.1065 0.107 0.1075 0.108
time (s) time (s)
MMC voltage upper arm of phase A Zoomed waveforms, MMC voltage

station #1 upper arm of phase A station #1



P inverter (pu)

reactive power (pu)

4. Real-time simulation
Offline to real-time simulation

Real-time Model accuracy verification:

Scenario 2: Three-phase AC Fault

A three-phase-to-ground fault is applied at T=2s on the ac side between CPU2 and PCU4

Reactive power flowing out of ac grid into
the station#2

i L L L L L 1
I
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current (pu)

4. Real-time simulation
Offline to real-time simulation

Real-time Model accuracy verification

Scenario 3: Pole-to-pole DC Fault

Permanent DC fault between the positive and negative poles in Station #2 is applied at 3

s of simulation time
clearing fault method:

* All thyristors (K2) are fired and all IGBTs are blocked after the fault
* The “Main AC Breakers” of both VSC-MMC stations are opened after two cycles
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4. Real-time simulation
MMC Performances

The objective of this study is to evaluate the feasibility and performance of the MMC
model in real-time simulation.

In order to guarantee the passage through each level, the sampling time must
respect certain criteria.

The smallest time interval between two different levels is found where the slope of
the desired sine wave is the highest.

For NLC modulation, the controller sampling time-step should respect the following
inequality in order to guarantee the replication of each MMC level:
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4. Real-time simulation

MMC Performances

CPU-based and FPGA-based implementations were developped for MMCs having up to 401

Levels
Details:

*Transmission capacity of the system is 1,000 MW.

*DC side is represented with a dc cable and a dc voltage source of 640kV.

*OP5600 real-time simulator from Opal-RT. 3 quad-core processors (for a total of 12 Intel
Xeon CPUs) that communicate through a shared memory of 8 GB, and they are able to
communicate with the FPGA board through a 2"d generation PCle link.

CPU1:
AC source

CPU4: VSC-MMC station
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1,060 MVA
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CPU3: Control system
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4. Real-time simulation
MMC Performances

CPU-based model

CPU4: VSC-MMC station

400/320 KV
1,060 MVA
ZT =18%
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Multi-CPU MMC model

Maximum number of SMs/arm that can be simulated in real-time with the multi-CPU MMC
setup is about 230 SMs/arm

In HIL configuration, the latency produced by communication overhead and I/O
management is estimated to reach 9us. The curves must be shifted and the maximum
number of SMs/arm for real-time CPU-based simulations now reduces to 160 SMs/arm.



4. Real-time simulation
MMC Performances

ZT =18%
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4. Real-time simulation
MMC Performances

Model validation : Three phase to ground fault for 150ms at PCC. MMC 401 Level.
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4. Real-time simulation
MMC Performances

*For both ASPs, the FPGA runs at 2.4 us

*The execution times depicted in this figure include CPU4 and CPUS5 since they are in series.
*FPGA-ASP1 MMC model has a poor performance in comparison with the CPU-based model.
This is explained by the important amount of data that has to be exchanged between the
FPGA and the CPU5 connected through the PCle link (2x6N+6 values).

*FPGA-ASP2 model is the best among those reported in this paper. It is able to achieve an
execution time of 9 ps. It does not depend on the number of SMs. The FPGA-ASP2 setup is
more realistic within the context of HIL simulation, where the gating signals are provided by
a physical controller to the FPGA through its low latency 1/Os.

L N
400 \ N!_C sampling time limit

350 \k

300 FPGA-ASP2
Pz

200 ~ FPGA-ASP1

150
100 \,\SZQ—Q
50 o o

J

0 5 10 15 20 25 30 35 40 45
execution time (us)



5. Conclusion

Four types of MMC model suited for EMT-type studies have been developed and presented:

»Model 1 is currently the most detailed model, but requires very high computing times with
available numerical methods. It can be used as a highly accurate reference model and for
calibrating simplified models.

»Model 2 allows reducing the converter circuit for achieving much higher computing
speeds. This model provides accurate results when the balancing control of each capacitor
has to be analyzed.

»Model 3 delivers further improvements in computational performance. It should be used
with caution when the number of levels decreases (<101 Level). This model can account for
circulating currents and energy storage in each arm.

»Model 4 is based on average value method. It allows increasing the time-step to speed up
computing times. DC side modeling remains less accurate.

Real time simulation for MMC has been developed:

>t has been shown that the CPU-based MMC model is limited to 231 levels. This limit is
reduced to 161 levels for HIL simulations due to latencies in communications and I/Os.

»Two different FPGA-based MMC model setups has been presented. In the second setup
(ASP2) the BCA is implemented on the FPGA and the lowest execution time of 9 us is
achieved. Moreover, the FPGA based MMC arm models run at 2.4 ps. These execution times
do not depend on the number of MMC levels and can go up to 400 SMs/arms.
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