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Video 

This video explains: 

http://news.ufl.edu/2008/12/03/baby-vital-signs/  
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How does it work? Doppler Effect! 

Constant Velocity  

 Frequency Shift 

Periodic Chest Wall Movement 

 Phase Shift 
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• Mix received signal with part of transmitted signal as 

reference in mixer (similar to direct down-conversion): 

A Simple Detection Method 
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Small Angle Approximation (Linear) 
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FM discriminator technique. 
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• Fortunately, if the distance between radar sensor and 

target is small enough, close-in phase noise (slow 

variation) of R(t) and T(t) are correlated.  

 Range Correlation Effect 

How about  ? 
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A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G. Kovacs, “Range Correlation and I/Q 

performance benefits in single chip silicon Doppler radars for non-contact cardiopulmonary signs 

sensing,” IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, pp. 838-848, March 2004 7 



Earliest Research Report 
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• J. C. Lin, "Noninvasive Microwave Measurement of Respiration," 
Proceedings of the IEEE, vol. 63, no. 10, p. 1530, Oct. 1975. 

Rabbit 

Human 



Early Research Effort 
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• K.-M. Chen and H.-R. Chuang, “Measurement of Heart and 
Breathing Signals of Human Subjects Through Barriers with 
Microwave Life-Detection Systems,” IEEE EMBC 1988. 
– 10GHz: 1.5 ft of dry bricks 
– 2GHz: 3 ft of dry bricks 

• H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic Clutter-
Canceler for Microwave Life-Detection System,” IEEE Trans. 
Instrumentation and Measurement, Vol. 40, No. 4, August 1991. 

10 GHz 
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• 0.25 µm BiCMOS 

• 3.75mm x 3.75mm 

• 1.6 GHz transmitted 

• Output power = 6.5dBm  

 

First Non-Contact Vital Sign Sensor Chip 
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A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, “0.25m CMOS and BiCMOS Single Chip 

Direct Conversion Doppler Radars for Remote Sensing of Vital Signs,” IEEE International Solid 

State Circuits Conference Digest of Technical Papers, pp. 348-349, 2002. 

Free-running VCO. No PLL. 



• 0.25 µm CMOS 

• 2.4 GHz transmission 
frequency  

• Direct-conversion – no IF 
and no image-reject filter 

• Free running VCO – no 
PLL, no crystal. 

• Quadrature receiver – to 
avoid null-point problem. 

 

2nd Non-Contact Vital Sign Sensor Chip 
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A. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G. Kovacs, “Range Correlation Effect on ISM Band I/Q 

CMOS Radar for Non-Contact Vital Signs Sensing,” IEEE MTT-S International Microwave Symposium 

Digest, Vol. 3, pp. 1945-1948, 2003. 



2003 – present 

 

Research @ University of Florida 
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CW Radar Carrier Frequency 

4 ( ) 4 ( )4 ( ) 4 ( )
( ) cos( )h hr r

x t x tx t x t
B t

  


   
    

Y. Xiao, J. Lin, O. Boric-Lubecke, V. Lubecke, “A Ka-Band Low Power Doppler Radar System for 

Remote Detection of Cardiopulmonary Motion,” Proceedings of the 27th IEEE Engineering in Medicine 

and Biology Society Annual International Conference, pp. 7151-7154, 2005. 13 

• Short wavelength is more sensitive to small displacement  

- improve signal level while keeping transmitted power low. 

 Increase the carrier frequency. 

 

Long wavelength  

 Small  

Short wavelength  

 Large  

Same x 

x x 



Double-Sideband Transmission/Detection  

Example @ Ka-Band 

Baseband 
Output 

B(t) 

LO2 LO1 

LNA Mixer IF_AMP 

Mixer 

Mixer AMP BPF AMP 

(0.1-10 Hz) 
(26-40 GHz) 

Double-sideband transmission and detection  

 no image rejection needed  simple architecture 

 Feasible for monolithic integration on one chip 
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Ka-band Bench-Top System 

LabVIEW 

Ka radar 

Antenna 

Subject 

under test 

Baseband 

DAQ 
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User Interface 
Labview – data acquisition and signal processing 
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Measurement from Four Sides 

Antenna

BackFront

Left

Right

LSB: 26.54 GHz 

USB: 27.66 GHz 

• Two power levels: 14.2 μW, 350 μW 

• Five distances: 0.5m, 1m, 1.5m, 2m, 2.5m 

Y. Xiao, C. Li, J. Lin, “Accuracy of A Low-Power Ka-Band Non-Contact Heartbeat Detector 

Measured from Four Sides of A Human Body,” IEEE MTT-S International Microwave 

Symposium Digest, pp. 1576-1579, June 2006. 17 



Typical Test Result 
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Test Results 

SUMMARY OF HEART RATE DETECTION ACCURACY  
Distance (m) Front Left Right Back 

Double sideband transmitting power: 14.2 µW 

0.5 99.1% 96.3% 100% 97.6% 

1 89.8% 89.8% 93.2% 100% 

1.5 98.9% 89% 93.8% 94.3% 

2 85.2% 80.5% 97.4% 93.6% 

2.5 83.3% 85.7% 85.1% 85.5% 

Double sideband transmitting power: 350 µW 

0.5 100% 100% 100% 100% 

1 94.8% 94.7% 93.2% 100% 

1.5 98.1% 97.6% 100% 100% 

2 100% 100% 100% 100% 

2.5 95.1% 100% 95.2% 97.2% 

 19 



• Very good accuracy achieved with very low transmission power. 

• Accuracy better than 80% from any side, at any distance, and under 

either power level. 

• Measurement from the back: the best performance! WHY? 

Interesting Observations 
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Nonlinear Doppler Phase Demodulation  

and  

Measurement of Vibrations 

21 



Nonlinear Doppler Phase Demodulation 

when  = 90 and  

xh(t), xr(t) <<  

xr(t) <<  

However, at high frequency (short wavelength), 

the displacement might not be small enough and 

the small angle approximation might not be valid. 
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Small angle approximation: 



Nonlinear Doppler Phase Demodulation 
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C. Li, Y. Xiao, J. Lin, "Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector 

Measuring from Four Sides of a Human Body," IEEE Transactions on Microwave Theory and 

Techniques, IMS2006 Special Issue, Vol. 54, No. 12, pp. 4464-4471, December 2006. 23 



Accurate Measurement of Periodic Motion 

• For a single tone vibration, magnitudes of harmonics 

in baseband spectrum are determined by: 

– Residual phase 

– Wavelength 

– Displacement of vibration 
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The displacement of vibration can be accurately 

determined from the ratio of harmonics! 

C. Li, J. Lin, "Non-Contact Measurement of Periodic Movements by a 22-40GHz Radar Sensor Using 

Nonlinear Phase Modulation," IEEE MTT-S International Microwave Symposium Digest, pp. 579-582, 

June 2007 24 
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Measurement Example 
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• Movement period T = 3 sec 
amplitude = 2 mm 

• fRF: 40 GHz,  

• Transmission power: 50 µW 

• Distance: 1.65m 

(a) Baseband signal, spectrum (b) Displacement extraction, 

self-verification 25 

2.056 mm 

2.045 mm 



• PCB modules 

• IC chips: RFIC 

• System-in-Package: Antennas integrated 

Development of Integrated Radar Sensors 

at University of Florida 

26 



PCB Modules 
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External ADC and Signal Processing: 

Output connected to data acquisition 

module (DAQ) and notebook computer. 

Both radar module and DAQ can be 

powered by USB cable, external power 

supply/charger, or battery. 

  

On-board ADC and Signal Processing: 

Onboard ARM processor and ADC. No 

external DAQ and notebook computer 

needed. Powered by a battery. 

  



Search and Rescue Robot 

28 

Wireless data link sends detected data to a remote station. 



Double-Sideband Radar Sensor Chip 
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f1 = 60~520 MHz; f2 = 4.6~5.7 GHz UMC 0.18 µm CMOS 

1.3×1.6 mm2 

C. Li, Y. Xiao, J. Lin, "A 5-GHz Double-Sideband Radar Sensor Chip in 0.18-µm CMOS 

for Non-contact Vital Sign Detection," accepted, IEEE Microwave and Wireless 

Components Letters, 2008 29 



Test Result – Output Spectrum 
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Spurs will be out of band and filtered out after down-conversion 



Test Result – Vital Sign Detection 
0 3 6 9 12 15

-1

0

1

0 20 40 60 80 100
0

0.5

1

Beat/Min

S
p

e
c
tr

u
m

Respiration 

Harmonic Heartbeat 

 

0 3 6 9 12 15
-1

0

1

0 20 40 60 80 100
0

0.5

1

Beat/Min

S
p

e
c

tr
u

m

Respiration 

Harmonic Heartbeat 

 

(a)

0 3 6 9 12 15
-0.5

0

0.5

0 20 40 60 80 100
0

0.5

1

Beat/Min

S
p

e
c

tr
u

m

Respiration 

Heartbeat 
Harmonic

 

0 3 6 9 12 15
-0.5

0

0.5

0 20 40 60 80 100
0

0.5

1

Beat/Min

S
p

e
c
tr

u
m

Respiration 

Heartbeat Harmonic

 

(b)

0.5 m 

2 m 

31 



Radar Receiver with Gain Control 
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DAQ CPLD

5.8 GHz Radar Receiver

UMC 0.13 µm CMOS 

1.2×1.2 mm2 

C. Li, X. Yu, D. Li, L. Ran, J. Lin, "Software Configurable 5.8 GHz Radar Sensor Receiver 

Chip in 0.13 μm CMOS for Non-contact Vital Sign Detection," IEEE RFIC Symposium 

Digest of Papers, June 2009 
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Test Result 

Power: 1.5 V battery 

3-wire program: Xilinx XC9536 CPLD 

Antenna: 2-by-2 patch array, 9 dB gain 

DAQ: NI USB-6008, 12 bit, 0-5V input  
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 Flip-chip radar transceiver (UMC 90nm CMOS), two PCB patch 

antennas, and DC biasing through blue wires. 

 Weight less than 10 gram (0.3 ounce). Size 31.2 mm x 45 mm.  

60 GHz Flip-Chip Integrated Micro-Radar 

34 

T.-Y. J. Kao, A. Y.-K. Chen, T.-M. Shen, Y. Yan, J. Lin, "A Flip-Chip-Packaged and Fully 

Integrated 60 GHz CMOS Micro-Radar Sensor for Heartbeat and Mechanical Vibration 

Detections," IEEE RFIC Symposium Digest of Papers, June 2012. 



Block Diagram of 60 GHz Micro-Radar 
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 Indirect down-conversion with passive mixers – low flicker noise 

 I/Q generation at IF 
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Experiment – I/Q Channel Test  

Actuator vibrating at distance (D) = 0.3 m away 

displacement  (A ) = 1 mm, f = 1 Hz 

Q near optimal point, 

I near null point 

I near optimal point, 

Q near null point 
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Complex Signal Demodulation 

 Optimal and null detection points 

Complex signal demodulation (CSD):  
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Experiment – Small Mechanical Vibration Detection  

38 

Vibration (f = 1 Hz, D = 0.3m): 

→ minimum “detectable” 

displacement A = 20 μm 

All data points are 

normalized to the largest 

CSD spectrum peak (A = 1 

mm, D = 0.3 m) 

 

→ A = 0.2 mm can be 

detected at D =2.1 m away 

increase 

distance 



Experiment – Heartbeat Detection  

 Subject sitting on a chair 0.3 m in 

front the radar. 

 At t = 0 ~ 7 sec, Q was around the 

optimal point, and I was near the 

null point.  

 After t = 9 sec, I channel started 

to take over the detection due to 

slight body movement (null point 

every λ/4). 

 Baseband noise voltage is around 

1mVrms, corresponding to a 

baseband SNR around 5 (14 dB) 

(Holding breath) 
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Problem of Random Body Movement 

During Vital Sign Measurement 

A Solution… 

40 



Random Body Movement Cancellation – Concept 

Heart
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41 

• Cardiorespiratory movements on both sides of the body move in the 

same direction w.r.t to their detecting radars 

• Random body drift movements are in the opposite directions w.r.t. to 

their detecting radars 



Random Body Movement Cancellation – Theory 
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y(t) (random body movement) disappeared! 



Random Body Movement Cancellation – Experiment 
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Isolation between two radars: antenna polarizations & slight frequency 

offset between TX and RX  



Random Body Movement Cancellation – Result 
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First Demonstration of Noncontact Vital Sign 

Measurement on Treadmill 
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τd

SIL Radar 1

Sbb1(t)

SIL Radar 2

Not 
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τd

d0 = 1m

s0 = 2m

SIL: Self-Injection Locking 

F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, "Single-

Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign 

Detection With Random Body Movement Cancellation," Microwave Theory and 

Techniques, IEEE Transactions on, vol. 59, pp. 3577-3587, 2011. 



Applications 

• Search-and-rescue 

• Human healthcare; Animal care 

• Radar in cell phone - lie (or emotion) detection radar 

• Sports, video games, … 

• When the complete radar system can be made very 
small… 
– small radar sensor chip + small antenna + small robot + wireless 

ad hoc network + wireless energy or energy harvesting 

– Searching survivors under rubbles will be much more effective 
with a swarm of small robots, e.g., robotic ants.   

 



• Doppler micro-radar sensors have been 
demonstrated – PCB modules, RFIC, System-in-
Package (SiP). 

• Small micro-radars can be added to many electronic 
devices – computers, phones, tablets 

• The technology can be used to detect any motion of 
an object reflecting radio waves 

• With proper signal processing, useful and interesting 
information can be extracted for various applications 
(biomedicine, biometrics, …). 

• New hardware architectures and sign processing 
algorithms are being developed by many groups in 
the world. 

Summary 
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