Noncontact Detection of Vital Signs and Vibrations Using Micro-Radar

Prof. Jenshan Lin University of Florida Gainesville, Florida

Outline

- Noncontact Detection of Vital Signs (Respiration and Heartbeat)
 - Detection Method
 - History
 - Examples

Noncontact Measurement of Vibrations

- Nonlinear Doppler Phase Demodulation
- Experimental Verification

Integration of Micro-Radar Sensor Chips

- PCB Modules
- CMOS Chips
- SiP with Antennas
- Applications

What is it?

This video explains: http://news.ufl.edu/2008/12/03/baby-vital-signs/

Video

How does it work? Doppler Effect!

$$\begin{aligned} x(t) &= v_0 t \\ T(t) &= \cos\left[2\pi ft + \phi(t)\right] \\ T(t) &= \cos\left[2\pi ft - \frac{T(t)}{d_0} + \frac{T(t$$

A Simple Detection Method

• Mix received signal with part of transmitted signal as reference in mixer (similar to direct down-conversion):

$$T(t) = \cos\left[2\pi ft + \phi(t)\right]$$

$$R(t) \approx \cos\left[2\pi ft - \frac{4\pi d_0}{\lambda} - \frac{4\pi x(t)}{\lambda} + \phi(t - \frac{2d_0}{c})\right]$$

$$T(t) \times R(t) \Rightarrow \text{Baseband Signal } B(t):$$

$$B(t) \approx \cos\left[\frac{4\pi d_0}{\lambda} + \frac{4\pi x(t)}{\lambda} + \theta_0 + \Delta\phi\right]$$

$$B(t) \approx \cos\left[\frac{4\pi d_0}{\lambda} + \frac{4\pi x(t)}{\lambda} + \theta_0 + \Delta\phi\right]$$

 θ_0 = Phase delay in receiver circuit

 $\Delta\phi=\phi(t)-\phi(t-\frac{2d_0}{2})$

Small Angle Approximation (Linear)

It is similar to measuring phase noise using FM discriminator technique.

How about $\Delta \phi$?

$$T(t) = \cos\left[2\pi ft + \phi(t)\right]$$

$$R(t) \approx \cos\left[2\pi ft - \frac{4\pi d_0}{\lambda} - \frac{4\pi x(t)}{\lambda} + \phi(t - \frac{2d_0}{c})\right]$$

$$B(t) \approx \cos\left[\frac{4\pi d_0}{\lambda} + \frac{4\pi x(t)}{\lambda} + \theta_0 + \Delta\phi\right] \longrightarrow 0 \text{ @ short-range}$$

 Fortunately, if the distance between radar sensor and target is small enough, close-in phase noise (slow variation) of R(t) and T(t) are correlated.

→ Range Correlation Effect

A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G. Kovacs, "Range Correlation and I/Q performance benefits in single chip silicon Doppler radars for non-contact cardiopulmonary signs sensing," *IEEE Trans. Microwave Theory Tech.*, Vol. 52, No. 3, pp. 838-848, March 2004

Earliest Research Report

 J. C. Lin, "Noninvasive Microwave Measurement of Respiration," Proceedings of the IEEE, vol. 63, no. 10, p. 1530, Oct. <u>1975</u>.

Early Research Effort

- K.-M. Chen and H.-R. Chuang, "Measurement of Heart and Breathing Signals of Human Subjects Through Barriers with Microwave Life-Detection Systems," IEEE EMBC <u>1988</u>.
 - 10GHz: 1.5 ft of dry bricks
 - 2GHz: 3 ft of dry bricks
- H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, "Automatic Clutter-Canceler for Microwave Life-Detection System," IEEE Trans. Instrumentation and Measurement, Vol. 40, No. 4, August <u>1991</u>.

First Non-Contact Vital Sign Sensor Chip

- 0.25 µm BiCMOS
- 3.75mm x 3.75mm
- 1.6 GHz transmitted
- Output power = 6.5dBm

0>

tures

0.0

Buffe

2nd Non-Contact Vital Sign Sensor Chip

- 0.25 µm CMOS
- 2.4 GHz transmission frequency
- Direct-conversion no IF and no image-reject filter
- Free running VCO no PLL, no crystal.
- Quadrature receiver to avoid null-point problem.

A. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G. Kovacs, "Range Correlation Effect on ISM Band I/Q CMOS Radar for Non-Contact Vital Signs Sensing," *IEEE MTT-S International Microwave Symposium Digest*, Vol. 3, pp. 1945-1948, 2003.

2003 – present

Research @ University of Florida

CW Radar Carrier Frequency

Short wavelength is more sensitive to small displacement
 - improve signal level while keeping transmitted power low.
 → Increase the carrier frequency.

$$B(t) = \cos\left(\frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda} + \phi\right) \cong \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Same Δx

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$
Short wavelength λ

$$\int \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda}$$

Y. Xiao, J. Lin, O. Boric-Lubecke, V. Lubecke, "A Ka-Band Low Power Doppler Radar System for Remote Detection of Cardiopulmonary Motion," *Proceedings of the 27th IEEE Engineering in Medicine and Biology Society Annual International Conference*, pp. 7151-7154, 2005.

Double-Sideband Transmission/Detection Example @ Ka-Band

Double-sideband transmission and detection
→ no image rejection needed → simple architecture
→ Feasible for monolithic integration on one chip

Ka-band Bench-Top System

User Interface

Labview – data acquisition and signal processing

Measurement from Four Sides

- Two power levels: 14.2 μW, 350 μW
- Five distances: 0.5m, 1m, 1.5m, 2m, 2.5m

Y. Xiao, C. Li, J. Lin, "Accuracy of A Low-Power Ka-Band Non-Contact Heartbeat Detector Measured from Four Sides of A Human Body," *IEEE MTT-S International Microwave Symposium Digest*, pp. 1576-1579, June 2006.

Typical Test Result

Test Results

SUMMARY OF HEART RATE DETECTION ACCURACY								
Distance (m) Event Left District								
Distance (m)	Front		Left		Right		Васк	
Double side	band tra	ins	mitting	рс	wer: 14	· .2	μW	
0.5	99.1%		96.3%		100%		97.6%	
1	89.8%		89.8%		93.2%		100%	
1.5	98.9%		89%		93.8%		94.3%	
2	85.2%		80.5%		97.4%		93.6%	
2.5	83.3%		85.7%		85.1%		85.5%	
Double sidepand transmitting power: 350 µW								
0.5	100%		100%		100%		100%	
1	94.8%		94.7%		93.2%		100%	
1.5	98.1%		97.6%		100%		100%	
2	100%		100%		100%		100%	
2.5	95.1%		100%		95.2%		97.2%	_

Interesting Observations

- Very good accuracy achieved with very low transmission power.
- Accuracy better than 80% from any side, at any distance, and under either power level.
- Measurement from the back: the best performance! WHY?

Nonlinear Doppler Phase Demodulation and Measurement of Vibrations

Nonlinear Doppler Phase Demodulation

Small angle approximation:

$$B(t) = \cos\left(\frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda} + \phi\right)$$

$$\approx \frac{4\pi x_h(t)}{\lambda} + \frac{4\pi x_r(t)}{\lambda} \qquad \text{when } \phi = 90^\circ \text{ and } x_h(t), x_r(t) <<\lambda$$

However, at high frequency (short wavelength), the displacement might not be small enough and the small angle approximation might not be valid.

Nonlinear Doppler Phase Demodulation

Periodic body movements due to heartbeat and respiration

C. Li, Y. Xiao, J. Lin, "Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring from Four Sides of a Human Body," *IEEE Transactions on Microwave Theory and Techniques*, IMS2006 Special Issue, Vol. 54, No. 12, pp. 4464-4471, December 2006.

Accurate Measurement of Periodic Motion

The displacement of vibration can be accurately determined from the ratio of harmonics!

C. Li, J. Lin, "Non-Contact Measurement of Periodic Movements by a 22-40GHz Radar Sensor Using Nonlinear Phase Modulation," *IEEE MTT-S International Microwave Symposium Digest*, pp. 579-582, June 2007

Measurement Example

- Movement period T = 3 sec amplitude = 2 mm
- *f*_{RF}: 40 GHz,
- Transmission power: 50 µW
- Distance: 1.65m

Development of Integrated Radar Sensors at University of Florida

- PCB modules
- IC chips: RFIC
- System-in-Package: Antennas integrated

PCB Modules

External ADC and Signal Processing: Output connected to data acquisition module (DAQ) and notebook computer. Both radar module and DAQ can be powered by USB cable, external power supply/charger, or battery.

On-board ADC and Signal Processing: Onboard ARM processor and ADC. No external DAQ and notebook computer needed. Powered by a battery.

Search and Rescue Robot

Wireless data link sends detected data to a remote station.

Double-Sideband Radar Sensor Chip

C. Li, Y. Xiao, J. Lin, "A 5-GHz Double-Sideband Radar Sensor Chip in 0.18-µm CMOS for Non-contact Vital Sign Detection," accepted, *IEEE Microwave and Wireless Components Letters*, 2008

Test Result – Output Spectrum

RF VCO tuned to the highest

RF VCO tuned to the lowest

Spurs will be out of band and filtered out after down-conversion

Test Result – Vital Sign Detection

Radar Receiver with Gain Control

C. Li, X. Yu, D. Li, L. Ran, J. Lin, "Software Configurable 5.8 GHz Radar Sensor Receiver Chip in 0.13 µm CMOS for Non-contact Vital Sign Detection," *IEEE RFIC Symposium Digest of Papers*, June 2009

Test Result

Detect from the back @ 0.5m away

Power: 1.5 V battery 3-wire program: Xilinx XC9536 CPLD Antenna: 2-by-2 patch array, 9 dB gain DAQ: NI USB-6008, 12 bit, 0-5V input

Detect from the front @ 1.5m away

60 GHz Flip-Chip Integrated Micro-Radar

- Flip-chip radar transceiver (UMC 90nm CMOS), two PCB patch antennas, and DC biasing through blue wires.
- ✤ Weight less than 10 gram (0.3 ounce). Size 31.2 mm x 45 mm.

T.-Y. J. Kao, A. Y.-K. Chen, T.-M. Shen, Y. Yan, J. Lin, "A Flip-Chip-Packaged and Fully Integrated 60 GHz CMOS Micro-Radar Sensor for Heartbeat and Mechanical Vibration Detections," *IEEE RFIC Symposium Digest of Papers*, June 2012.

Block Diagram of 60 GHz Micro-Radar

- Indirect down-conversion with passive mixers low flicker noise
- ✤ I/Q generation at IF
- Same VCOs for up- and down-conversion range correlation effect

Experiment – I/Q Channel Test

Actuator vibrating at distance (D) = 0.3 m away displacement (A) = 1 mm, f = 1 Hz

I near null point

I near optimal point Q near null point

Complex Signal Demodulation

Combining I and Q channels

→ Quadrature(I/Q) radar receiver needed

Experiment – Small Mechanical Vibration Detection

Vibration (f = 1 Hz, D = 0.3m): \rightarrow minimum "detectable" displacement A = **20 µm**

> All data points are normalized to the largest CSD spectrum peak (A = 1 mm, D = 0.3 m)

 \rightarrow A = 0.2 mm can be detected at D =2.1 m away

Experiment – Heartbeat Detection

(Holding breath)

- Subject sitting on a chair 0.3 m in front the radar.
- At t = 0 ~ 7 sec, Q was around the optimal point, and I was near the null point.
- After t = 9 sec, I channel started to take over the detection due to slight body movement (null point every λ/4).
- Baseband noise voltage is around 1mV_{rms}, corresponding to a baseband SNR around 5 (14 dB)

Problem of Random Body Movement During Vital Sign Measurement

A Solution...

Random Body Movement Cancellation – Concept

- Cardiorespiratory movements on both sides of the body move in the same direction w.r.t to their detecting radars
- Random body drift movements are in the <u>opposite directions</u> w.r.t. to their detecting radars

Random Body Movement Cancellation – Theory

Front:
$$S_{f}(t) = \exp\left\{j\left[\frac{4\pi x_{h1}(t)}{\lambda} + \frac{4\pi x_{r1}(t)}{\lambda} \oplus \frac{4\pi y(t)}{\lambda} + \phi_{1}\right]\right\}$$

Back: $S_{b}(t) = \exp\left\{j\left[\frac{4\pi x_{h2}(t)}{\lambda} + \frac{4\pi x_{r2}(t)}{\lambda} \oplus \frac{4\pi y(t)}{\lambda} + \phi_{2}\right]\right\}$
 $x_{h1}, x_{h2}, x_{r1}, x_{r2}$: physiological movements
 $y(t)$: random body movement

Combine signals from both sides:

$$S_{fb}(t) = S_{f}(t) \cdot S_{b}(t) = \exp\left\{j\left[\frac{4\pi \left[x_{h1}(t) + x_{h2}(t)\right]}{\lambda} + \frac{4\pi \left[x_{r1}(t) + x_{r2}(t)\right]}{\lambda} + \phi_{1} + \phi_{2}\right]\right\}$$

y(t) (random body movement) disappeared!

Random Body Movement Cancellation – Experiment

Isolation between two radars: antenna polarizations & slight frequency offset between TX and RX

Random Body Movement Cancellation – Result

C. Li, J. Lin, "Random Body Movement Cancellation in Doppler Radar Vital Sign Detection," *IEEE Transactions on Microwave Theory and Techniques*, vol. 56, issue 12, pp. 3143-3152, December 2008.

First Demonstration of Noncontact Vital Sign Measurement on Treadmill

SIL: Self-Injection Locking

F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, "Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection With Random Body Movement Cancellation," *Microwave Theory and Techniques, IEEE Transactions on,* vol. 59, pp. 3577-3587, 2011.

Applications

- Search-and-rescue
- Human healthcare; Animal care
- Radar in cell phone lie (or emotion) detection radar
- Sports, video games, ...
- When the complete radar system can be made very small...
 - small radar sensor chip + small antenna + small robot + wireless ad hoc network + wireless energy or energy harvesting
 - Searching survivors under rubbles will be much more effective with a swarm of small robots, e.g., robotic ants.

Summary

- Doppler micro-radar sensors have been demonstrated – PCB modules, RFIC, System-in-Package (SiP).
- Small micro-radars can be added to many electronic devices computers, phones, tablets
- The technology can be used to detect any motion of an object reflecting radio waves
- With proper signal processing, useful and interesting information can be extracted for various applications (biomedicine, biometrics, ...).
- New hardware architectures and sign processing algorithms are being developed by many groups in the world.

Thank you for your attention!