Modeling the Package of a GaN Power Transistor

Jens Flucke, Franz-Josef Schmückle, Matthias Rudolph, and Wolfgang Heinrich

Contents

- Introduction: GaN Power HEMTs at FBH
- Package and modelling approach
- Element extraction
- Measurements
- Conclusions
GaN Power HEMTs at FBH: Applications

Base stations (mobile communications, WIMAX, 1...4 GHz)
- Discretes
- Switch-mode amplifiers
- Focus on:
 - power
 - efficiency
 - linearity

Satcom, radar
- X-band discrete power devices and MMICs
- C- and Ka-band robust LNAs
- Focus on:
 - linearity & efficiency
 - robust LNAs

FBH GaN Technology: Full MMIC Capability

- GaN/AlGaN epitaxial growth on 3” SiC wafers
- Complete 3” HFET process
 - power bars and MMICs
 - 0.5 µm down to 0.15 µm gate technology
 - via technology (dry etched and laser assisted)
- Passive components:
 - 3 metal levels
 - electroplated Au air bridge
 - MIM capacitors
 - NiCr resistors
 - spiral inductors
Packaged Power Bar: 30 W

- **Geometry:** 5 x 8 x 250 µm
- **P_{max}** = 29 W
- **Linear gain:** 20 dB
- **P_{1dB}** = 14 W
- **Very high gain-power product**

Packaged Power Bar: 60 W

- **Geometry:** 11 x 8 x 250 µm
- **P_{max}** = 60 W @ 28 V_{DS}, 2 GHz
- **PAE:** 41%
- **Linear gain:** 15 dB
- **80 W heat dissipation**
Single Chip 100 W Power Bar (Feed-line, 40 mm)

- Design:
 - 10x8x500 μm
 - field-plate
- P_{max} at 27 V$_{\text{DS}}$: 50 dBm (101 W) cw
- Gain: 14 dB
- PAE 39%

![Graph showing the relationship between input power (dBm) and output power (dBm), PAE (%), and gain (dB).](image)

Contents

- Introduction: GaN Power HEMTs at FBH
- Package and modelling approach
- Element extraction
- Measurements
- Conclusions
The Package under Consideration

- Kyocera power package
- Chip soldered to flange (heat sinking)
- Wire bonding
 - gate and drain
 - source: to ground (base plate)

Statement of Problem (I)

Task
- describe packaged power HEMT
- for: circuit design, package optimization

- 2 GHz type, 60 W
- frequency range up to 4 / 6 GHz of interest
Statement of Problem (II)

Challenges

- **Low impedance levels of transistors (large gate width)**
 - Extraction from S parameter measurements becomes inaccurate

- **Package description needs em simulation**
 - no simple models available
 - coupling effects cannot be neglected a priori

- **Measurement possible only in test fixture**
 - Deembedding of transistor data not straightforward

Approach

- **3D electromagnetic simulation of package**
 - multi-port analysis -> N-port
 - yields S and Z matrix (up to 10 GHz)
 - additional runs: varying bond wire length

- Define suitable equivalent-circuit topology

- Extract circuit elements from em simulation data

- Verify by measurements

- Combine package model with small-signal / large-signal model of HEMT unit cell
The N-Port Description (I)

For 11 unit cells: $22 + 2$ ports
Equivalent Circuit Topology

- Equivalent-circuit topology
 - single capacitor @ gate and drain
 - inductors along the feeding line
 - bond-wire inductances
 ▶ including coupling gate/drain
 ▶ inductance matrix

EM Simulations

The structure under investigation

- software: CST MWS (FDTD method)
- internal (lumped) ports at transistor cells
- parasitics of internal ports deembedded
EM Simulations: Surface Currents (I)

- Assists in understanding
- Impedances at internal ports: 1 Ω (gate), 50 Ω (drain)

EM Simulations: Surface Currents (II)

- Excitation at gate lead (top view)
EM Simulations: Surface Currents (III)

- Excitation at gate lead (bottom view)

EM Simulations: Surface Currents (IV)

- Excitation at drain lead (top view)
EM Simulations: Surface Currents (V)

- Excitation at drain lead (bottom view)

Contents

- Introduction: GaN Power HEMTs at FBH
- Package and modelling approach
- Element extraction
- Measurements
- Conclusions
Element Extraction

Procedure

- simulate structure with all unit cells connected
 - result: S and Z matrix (24 x 24)
- consider 2 port between single cell (i) and gate or drain lead
 - all remaining ports open

- extract C from Z matrix
- extract \(L_{ij} \)
 - varying bond wire length in order to check \(L(\text{bond}) \)

Element values: Capacitance C

Extraction as described before from 2-ports for each unit cell (i)

- topology with a single C on gate and drain is validated
- frequency dependence: allows description by constant value
Gate Inductances (I)

Bond wire inductance (25 µm single wire), when varying wire length
- extracted value: 916 pH / mm (rule of thumb 1nH/mm)

![Graph showing Gate Inductances (I)]

- Example
 - $L(\text{bond}) = 940$ pH
 - $L(p34) = 50$ pH
 - $L(p34) = 45$ pH
 -

causes uneven distribution
power vs. unit cell
Drain Inductances

Bond wire inductance (3 x 25µm-wires, ca. 25 µm apart), when varying wire length

- extracted value: 716 pH / mm (gate: 916 pH / mm)

Mutual Inductances (I)

Gate side (pitch 400 µm)

- mutual inductance up to 40% of L(bond)
- only next 2 neighbours relevant
Mutual Inductances (II)

Gate side to drain side
- self inductances ca. 900 pH
- dependence on distance
 - "3" next to "11": highest value
- magnitude: max. 5%
 - compared to 40% on same side

Contents
- Introduction: GaN Power HEMTs at FBH
- Package and modelling approach
- Element extraction
- Measurements
- Conclusions
Comparison with Measurements (I)

Simulation
- measured S parameters of unit cells (on-wafer)
- equivalent circuit model above

vs. measurement of packaged transistor in test fixture

Comparison with Measurements (II)

S(11): magnitude and phase
Comparison with Measurements (III)

$S(21)$: magnitude and phase

Comparison with Measurements (IV)

$S(22)$: magnitude and phase
Comparison with Measurements (V)

- Agreement in S_{ij} good up to 4...5 GHz
- Remaining deviations may be due to
 - non-uniformity of unit cells
 - restriction to the model topology
 - lumped/distributed characteristics
 - imperfections of the em simulation

Conclusions

- Lumped equivalent-circuit modeling OK up to 4...5 GHz
- but: em simulation is needed to determine element values

- Mutual inductances play important role
 - between neighbouring bond wires: 40%
 - between different sides: 5%

- Feeding structure causes uneven power distribution over cells
 - at 2 GHz still moderate
 - pronounced at higher frequencies
 - optimizing the package is important (e.g., widen the lead)