Behavioral Modeling of Nonlinear Amplifiers with Memory

Michael Steer
with
Jie Hu
and Aaron Walker

Copyright 2009 to 2011 by M. Steer, J. Hu and A. Walker.
Not to be posted on the web or distributed electronically without permission.
Which Is America's Best City?
Based on metrics like school performance, green space, and cultural amenities, Raleigh, N.C., ranks No. 1 in Businessweek.com’s first Best Cities ranking

By Venessa Wong

RALEIGH NO. 1
To most residents of Raleigh, it may not come as a surprise that their city earned the title of America’s Best City. Raleigh shows the cultural graces that go along with anchoring the so-called Research Triangle, home to North Carolina State University, Duke University, and the University of North Carolina at Chapel Hill. Among its many attributes the city sports 867 restaurants, 110 bars, and 51 museums, according to Onboard Informatics, as well as a thriving social scene, good schools, and 12,512 park acres, equal to several times the green space per capita in cities like New York and Los Angeles, according to the Trust for Public Land. It also offers a great deal on nights and weekends—from concerts and opera, to the NHL’s Carolina Hurricanes and college sports, to the 30,000-square-foot State Farmers Market.

BETTER, NOT BIGGER
With help from Bloomberg Rankings, Businessweek.com evaluated 100 of the country’s largest cities based on 16 criteria including: the number of restaurants, bars, and museums per capita; the number of colleges, libraries, and professional sports teams; the income, poverty, unemployment, crime, and foreclosure rates; percentage of population with bachelor’s degrees or higher; public school performance; park acres per 1,000 residents; and air quality. Greater weighting was placed on recreational amenities such as parks, bars, restaurants, and museums per capita, educational attainment, school performance, poverty, and air quality. As living in great cities can be expensive, affordability was not taken into account.
And … (for the US) Current rankings

- No. 1 Region to Find Knowledge Workers, Forbes
- No. 1 Best City for Business, Forbes
- No. 1 Area for Tech Business, Silicon Valley Leadership Group
- No. 1 City with the Happiest Workers, Hudson Employment Index
- No. 2 Most Educated City, American Community Survey
- No. 3 Best City for Entrepreneurs, Entrepreneur.com
- No. 3 Top Metro Overall, Expansion Management Mayor’s Challenge
- No. 3 High Value Labor Market Quotient, Expansion Management
- No. 3 Top States for Work Force Training, Expansion Management
Outline

• Background

• Nonlinear Metrology
 – Novel 1-channel VSA-based NVNA
 – Novel Hybrid NVNA

• Behavioral Modeling
 – Grey-Box Model ID Methodology
 – ID Algorithm & Hybrid GA Optimizer
 – Modeling CoSite Interference
Multi Slice Behavioral Model

• Wired Characterization Utilizing IMD Phase Information
 – High power amplifier at 450 MHz, suitable for CDMA450 standard
Model Fit

- Single slice fit underestimates IM3 magnitude, splits difference in phase asymmetry
Model Fit

~3°
Model is an Application Specific Abstraction

- Applications of nonlinear behavioral models
 - Compact RF transistor models
 - PA linearization
 - Model long-term memory
 - Wireless transceiver RF frontend
 - Top-down design
 - Design space exploration
 - Bottom-up verification
 - Design verification
 - Cosite simulation
 - Co-located radios
 - Same frequency band
 - Similar to Near-Far problem

![Diagram of wireless transceiver RF frontend](image)

- Gain, NF, Linearity, Filter roll off, ...
- Transistor, R, L, C, ...
- FIR, IIR, Polynomial, ...
- Top-Down Design Specification
- Bottom-Up Verification
- Design and test component
NC STATE UNIVERSITY

Modeling Broadband Response (EMI)

TX1 (1-tone @500MHz)

PA → Band Filter → Antenna

TX2 (WCDMA @900MHz)

PA → Band Filter → Antenna

RX

LNA

Band Filter

2f2

2f1 + f2

2f1

f2 + f1

2f2 - f1

f2 - f1

2f1 - f2
Types of RF Nonlinear Behavioral Models

Model attributes
- **Fidelity** (frequency range & accuracy of the modeled response)
- **Development complexity** (model parameter estimation)
- **Simulation compatibility & speed**
- **IP protection**

<table>
<thead>
<tr>
<th>Model examples</th>
<th>Formula-based: Computationally efficient, Low fidelity (for top-down design)</th>
<th>Circuit simulator-based: Computationally complex, High fidelity (for verification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-box</td>
<td>Parametric models (IP3, NF, ...)</td>
<td>X-parameter (Harmonic balance, memory modeled in fundamental band)</td>
</tr>
<tr>
<td></td>
<td>Power series</td>
<td>Volterra series (modify simulator, complex parameter estimation)</td>
</tr>
<tr>
<td></td>
<td>Memory Polynomial</td>
<td></td>
</tr>
<tr>
<td>Grey-box</td>
<td>Weiner-Hammerstein family Multi-slice</td>
<td>General RF frontend model (general circuit simulator, complex parameter estimation)</td>
</tr>
<tr>
<td>(structure based on physical insight)</td>
<td>Weiner-Hammerstein w/lin-feedback</td>
<td></td>
</tr>
</tbody>
</table>

Grey-box model
- High fidelity for verification & cosite simulation
- Supported in general circuit simulators
Grey-box Model ID, Prior Work vs. Here

Model ID Algorithm: a typical Parameter Estimation Step

- **Response**
- **Excitation**
- **Parameterize Model**

DUT Measurement → **Select Response** → **Error Function** → **Optimizer**

Model ID Algorithm:
- General ID algorithm minimize user intervention
- Experiment design ensure no under-determined optimization problem

Case-by-case ad-hoc ID algorithm
- Simple models with easily derived expression

Deterministic optimizer (depend on initial solution supplied, prone to trapping in local optimums)

General models require circuit simulation
- Hybrid-Genetic optimizer find multiple optimums for user selection (typical stochastic optimizer find only 1 global solution)
Nonlinear Metrology: Background

- **What is measured**
 - VNA: Ratios (between excitation and response)
 - NVNA: Signals (power, phase)

- **Calibration** (receiver & test-set frequency response)
 - VNA: Relative (between port waves)
 - NVNA: Relative + **Absolute** (within a signal)

- **‘Absolute’ phase calibration**
 - Phase measured is **relative to sampling time**
 - Need receiver w/linear-phase
 - **Different spectral components in a signal**
 - Delay by same amount
 - Correct phase dispersion error
 - Multi-harmonic generator (maintain relative phase)
 - Characterize using linear-phase RX
 - Nose-to-nose oscilloscope, electro-optical sampling.
 - **Using the phase transfer standard**
 - 1) determine phase dispersion error
 - 2) serve as phase transfer mechanism
NL Metrology, Prior Work vs. This Work

- Broaden NVNA application
 - Phase essential to IM cancellation in multi-stages circuits
 - Use available instruments (1-channel receiver, no multi-harmonic generator)
 - Improvements (dynamic range, tone spacing)

- NVNA using broadband receivers
 - 4-ch sub-sampling receiver & multi-harmonic generator
 - 60dB dynamic range
 - 1-ch VSA & switches & AWG & sampling oscilloscope
 - 75dB dynamic range
 - Power/area efficient for on-chip self-characterization

- NVNA using narrowband receivers
 - 4-port VNA & multi-harmonic generator
 - Tone spacing 1.242MHz (80dB dynamic range) (10MHz in commercial version)
 - 4-port VNA & phase-lock CW source & sampling oscilloscope
 - Tone spacing 200Hz (40dB dynamic range, increasing to 80dB at 200kHz)
1-ch VSA-based NVNA

- 1-ch VSA-based NVNA
 - AWG & sampling oscilloscope
 - Repeatability verified [Remley06]
 - 1-ch VSA & switches
 - 75dB dynamic range
 - 36MHz bandwidth
 - In-band characterization only
 - Mimic multiple synchronous channels
 - Apply to on-chip self-characterization
 - Ubiquitous integrated receivers
 - Power/area efficient

- Sub-sampling Mixer-based NVNA [Verspecht95]
 - Multi-harmonic generator
 - Determine receiver phase dispersion error
 - 4-ch sub-sampling receiver
 - 60dB dynamic range
 - 20GHz bandwidth
Nonlinear Metrology: 1-ch VSA-based NVNA (Chapter 3.2)

- Mimic multiple synchronous channels
 - Repeat multi-tone excitation
 - Hot-switch port waves
 - Continuous sampling during switching interval
 - Align sequential meas. using sampler timebase
 - Excitation/distortion on f-grid
 - Design minimum tone spacing

\[
T_{\text{Sig}} = n \times T_{s, \text{AWG}}
\]
\[
T_{\text{Sig}} = m \times T_{s, \text{VSA}}
\]

Concatenate wave segments or
(uniform time duration, equal DFT bins for noise to distribute)
1-ch VSA-based NVNA

- Verify with sub-sampling mixer-based NVNA
 - Linear TF: $\text{Mag} < 0.2\, \text{dB}$, $\text{Phase} < 2\, \text{deg}$
 - NLTF: $\text{Mag} < 10\%$, $\text{Phase} < 5\, \text{deg}$
4-port VNA-based Hybrid NVNA

- **Hybrid NVNA**
 - Phase-lock CW source
 - Relate phase of during power sweep
 - Sampling oscilloscope
 - Relate phase of diff. spectral components
 - Tone spacing
 - 40dB dynamic range @200Hz
 - Increasing to 80dB @200kHz
 - Limited by oscilloscope memory depth & spectral leakage (FFT window)

- **4-port VNA-based NVNA** [Blockley05]
 - 4-port VNA
 - 80dB dynamic range
 - 250kHz instantaneous bandwidth
 - Multi-harmonic generator
 - Relate phase of diff. spectral components
 - 20GHz bandwidth achieved in NVNA
 - Tone spacing
 - 1.242MHz (10MHz in commercial version)
4-port VNA-based Hybrid NVNA

- DUT measurement
- 2-tone excitation (200kHz tone-spacing @2GHz)

Phase jumps due to switching attenuators in excitation source
Time-Invariant Phase

- ‘Absolute’ phase measurement
 - DUT port waves characterized as signals
 - Phase jumps in excitation is part of signal

- Time-Invariant phase
 - Previously considered only for alignment [Blockley06]
 - Phase is relative to sampling time
 - Cancel phase variation in excitation
 - Phase contribution only from DUT: DUT characterization

\[
Y(f_{IM}) = \sum_n \sum_{\bar{m}_{n,IM}} \frac{(n: \bar{m})}{2^n} |A_2|^{m-2} |A_1|^{m-1} |A_1|^{m_1} |A_2|^{m_2} H_n(\bar{m}) \\
\times e^{j(\theta_{A_1}(m_1-m_1)+\theta_{A_2}(m_2-m_2)+\theta_{H_n}(\bar{m}))} \\
= e^{j(\theta_{A_1}(m_1-m_1)+\theta_{A_2}(m_2-m_2))} \\
\times \left[\sum_n \sum_{\bar{m}_{n,IM}} \frac{(n: \bar{m})}{2^n} |A_2|^{m-2} |A_1|^{m-1} |A_1|^{m_1} |A_2|^{m_2} H_n(\bar{m}) \right] e^{j(\theta_{H_n}(\bar{m}))} \\
= e^{j(\theta_{A_1}(m_1-m_1)+\theta_{A_2}(m_2-m_2))} \left[|Y(f_{IM})| e^{j(\theta_{DUT}(|A_1|,|A_2|,H))} \right] \\
\phi'_{f_{IM}} = \phi_{f_{IM}} - (\theta_{A_1}(m_1-m_1)+\theta_{A_2}(m_2-m_2)) \\
= \theta_{DUT}(|A_1|,|A_2|,H)
Grey-box Model ID Methodology

Model ID Algorithm: a typical Parameter Estimation Step

Response → DUT Measurement → Select Response
Excitation → DUT Model → Simulator Response Calculation → Error Function
Parameterize Model

Optimizer
Local: Gradient, Simplex
Global: GA, SA

Model Parameters

Case-by-case ad-hoc ID algorithm
Simple models with easily derived expression
Deterministic optimizer (depend on initial solution supplied, prone to trapping in local optima)

General ID algorithm minimize user intervention
General models require circuit simulation

Hybrid-Genetic optimizer find multiple optima for user selection (typical stochastic optimizer find only 1 global solution)

Experiment design ensure no under-determined optimization problem
Identification Algorithm

- **Case-by-case**
 - Deterministic optimizer
 - Depend on initial solution
 - Trap in local optimum

- **General RF frontend model**
 - Multiple solution
 - Due to incomplete/noisy data
 - Stochastic optimizer
 - Find multiple local optima
 - & global optimum
 - Minimize user intervention

Deterministic Optimizer

1 solution S_{Lin}, S_{NL}

- $S_{Lin}(0)$
- $S_{Lin}(k)$
- $S_{Lin,Init} (held const)$
- S_{NL}
- $S_{NL} (held const)$

Stochastic (1st pass estimate)

- Select S_{Lin}
- Select S_{NL}

Multiple solution

- $S_{Lin,Init}$ optional
- $S_{NL,Init}$ optional

Due to incomplete/noisy data

- General RF frontend model
 - Multiple solution
 - & global optimum
 - Minimize user intervention

L-N-L [Boutayeb95]
N-L-N [Zhu95]

L-N-L [Crama05]
L-N [Vandersteen99]
Model Optimizer

- **Stochastic optimizer**
 - **Conventional hybrid-GA**
 - 1 global optimum
 - **Parallel-GA [Quintero08]** & **Niching-GA [Dilettoso06]**
 - Multiple sub-populations
 - Around local optimums
 - **Tree Anneal [Bilbro90]** & **No-Revisit-GA [Yuen08]**
 - Record past searches to guide future searches

- **Hybrid-GA optimizer**
 - Record past searches
 - Exist population around local optimums
 - Use as initial solution in local search
Model Optimizer

- Hybrid-GA performance
 - Find global & multiple local optimums
 - User select based on error and physical intuition
 - Number of function evaluations
 - Same to 1/7th of conventional hybrid-GA
Power Amplifier w/Long-term Memory

- Model fundamental and IM3 transmission response
 - Asymmetric phase of IM3
 Due to baseband impedance (parameterize as freq. varying)
 Parameterize impedance in other bands as constant
 - Identified baseband impedance
 Reflect inductive nature of bias network
 Correlates with S21 measurement
Power Amplifier w/Long-term Memory

- Modeled transmission response
 Up to 2-tone P_{-1dB}; -20dBc IM3 (state-of-art Black-box model P_{-4dB})
Cosite Interference

- **Cosite interference**
 Co-located radios in same frequency band
 Similar to Near-Far problem

- **Cosite simulation**
 Formula-based BER evaluation [Isaacs91]
 Using parametric models (IP3, NF),

- **Measurement**
 Modulated signal, >2 port: phase can’t be measured
 Amplitude measurement to be modeled

Co-located Radios

- **TX (Wanted)**
- **Band Filter**
- **PA**
- **RX (Victim)**
- **Band Filter**
- **LNA**

TX (Interferer)

- **Band Filter**
- **PA**
- **TX (Interferer)**
- **Band Filter**
- **LNA**
- **RX (Victim)**

Diagram:

- **Phase-Lock CW Sources 10 MHz**
- **Vector Signal Generator**
- **4-port VNA**
- **Power Meter**
- **VSA**
- **Anachroic Chamber**
- **500MHz Filter**
- **PA ZHL1042J**
- **900MHz Filter**
- **PA ZRL1150LN**
- **TX1 (1-tone @500MHz)**
- **TX2 (WCDMA @900MHz)**
- **RX**
- **LNA UPC1678GV**
- **Horn**
- **Load**
Cosite Interference

- Model broadband EMI transmission response
- Notch centered at IM frequencies $2f_2$ & $2f_2-f_1$
 Due to baseband impedance (parameterize as freq. varying)
 Correlates with S21 measurements
Summary

- **Nonlinear Characterization** (for multi-tone excitation)
 - 1-ch VSA-based NVNA
 - 1-channel receiver (power/area efficient for on-chip self-characterization)
 - 75dB dynamic Range
 - 4-port VNA-based hybrid NVNA
 - Phase-locked CW source as effective phase transfer mechanism when using narrowband receivers
 - Tone spacing 200Hz (40dB dynamic range, increasing to 80dB at 200kHz)

- **Grey-box Model ID for RF Frontend**
 - General ID algorithm for minimum user intervention
 - Hybrid-GA optimizer to find multiple optimums
 - Direct calculation algorithm for Volterra circuit analysis
 - Model PA w/long-term memory
 - Fidelity up to P-1dB (comparable to state of the art)
 - Model cosite interference
 - Fidelity in broadband EMI response
References

