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Outline

e Background

e Passive Intermodulation Distortion (2 parts)

— Part 1, PIM effects, Electro-Thermal PIM
» Test Equipment, Microwave Circuits / Antennas

— Part 2, PIM effects
 Non Electro-Thermal PIM, Filter PIM

e Behavioral Modeling
— Behavioral model
— Measurement Equipment

e Simulation and Modeling of Large Systems

— Part 1, New circuit concepts
— Part 2, fREEDA




PIM Measurement System
(Analog Canceller)



Problem

 Need to measure small signals in the presence of

large signals.
— E.g. GPS recelver, radar, distortion measurement
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Cancellation Theory

e Sum with equal amplitude/anti-phase signal of
original signal
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Cancellation Theory

« Amplitude Measurements Only
« Non Newton-Based Iteration

Cancellation Errors

 Phase error:
— Mostly result of errors in § and a in 85 equation
— Dependent on phase separation of signals
— Can be minimized in iteration

 Amplitude error:
— Results from path non-linearities
— Dependent on phase, frequency, time
— More sensitive than phase errors due to sole reliance on
amplitude measurement
— Minimized through path amplitude calibration




I
Amplitude Calibration

« Standard (baseline): Generate calibration matrix: Ampl. vs. Freq.
— Occurs pre-test
— Does not capture time-dependent or phase-dependent effects
— Only needs to be done once (ideally)
— Speed depends on density of matrix
— Inherent interpolation error

* In-line: Perform calibration on-the-fly
— Occurs during cancellation
— Minimizes time-dependency : ®)
— Very fast: single measurement
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' Target [terations Meas. analog cancellation
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High Dynamic Range Measurement

» Cancellation Dynamic Range (DR():
— Ratio of the highest-power signal that can be cancelled to
the minimum detectable signal (MDS) after cancellation
— Not simple combination of C, and DRy
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High Dynamic Range Measurement

e Limits on Dynamic Range:
— RF signal source spurious leakage
o Suppressed inherently through cancellation

— Coupling of external RF emissions
o Suppressed through RF shielding/isolation

— AC power supply leakage
* Eliminate by using DC power (i.e. batteries)

— System thermal noise

o Ultimate limit on cancellation: quantization error
— Quantization in DAC leads to finite resolution for VM output

ste

. C%n be improved with attenuation at a cost to dynamic range
— Quantization in receiver leads to finite resolution for

measurement

» Calibration accuracy cannot exceed measurement accuracy
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Two-Tone IMD Measurement

e Two-tone IMD measurement system bullt using
separate cancellers for each channel

e Can be used for transmission or reflection

Stimulus f DUT Path
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I
Intermodulation Dynamic Range, DR,

 The change in reference makes DR, theoretically
Independent of DUT characteristics and system
configuration.

++++++++ ‘.,,,+.,,,+,+,,+,,,++.,,+..“‘..“‘.“.‘.““.““.‘ DUTlnput Power

DRy, IL /RL
----------------------------------------------------------- DUT OQutput Power

.......................................................... MEXi mum UndiStortEd
1 Received Signal

......................................... | S Measured Cancelled
Power

Minimum Detectable
Signal (MDS)

12



-
Two-Tone IMD Measurement

e Key to high dynamic range: linearity

— |solators reduce undesired mixing of channels through reverse
path

— Minimize external spurious content
« External RF coupling, AC supply leakage

— Low-PIM components:
« Silver-plated
* Physically large
e Distributed implementations

e Bandwidth Limitations:

— |Isolators (typically half-octave):

* Narrowest bandwidth in system, but only limits frequency range of a
single channel

— Shared channel components

* Wider bandwidth than isolators but must include entire frequency
range from lower IM product to upper IM product

— Bandwidth limitations only affect maximum tone separation;
system emphasis is on very small tone separation (to 1 Hz)
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Measured Results (DR,3)
e« 460 MHz with an input power of 26 dBm.
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A
Measured Results (DR;3)

e Spurious tone at 1 MHz only shows up in upper IM3 In

transmission
— Source currently unknown
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Measured Results (PIM)

e Pasternack PE6154, PE6152
— Standard 2W terminations, similar form-factor
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Measured Results (PIM)

 Pasternack PE6097 (5W), PE6035 (10W)
— High power, terminations with large “finned” aluminum

heatsinks
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Summary PIM Measurement
e Analog Canceller

Minimum DRy3 :

e Transmission: 94 dBc at 1 Hz (C; = 60 dB)

» Reflection: 111 dBc at 1 Hz (C; = 50 dB)

Minimum DR, ; between 100 Hz — 30 kHz:

e Transmission: 113 dBc (C; = 60 dB)

» Reflection: 130 dBc (C; = 50 dB)

Limited improvement with additional cancellation except at Af < 10

Hz

» At these tone separations, the MDS is the phase noise off the carrier
signals: extra cancellation directly reduces the MDS, improving DR 3

Spurious tones reduce performance at 10 MHz, and 100 MHz

e Sources currently unknown
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Time-Frequency Effect
Filter PIM
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-
Delay Effects in Filters

BANDPASS FILTER ; w | w
P ([} —— :.. L _‘ _______
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Thesis:

Can we use variation in group delay
to develop an optimum waveform to
create large nonlinear effects.
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Switched Tone Response of a Filter
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Time-Frequ

ency Response o
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Modeling
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-
Memory Effect

Fulse ADS Sim: 7th-Order Lowpass Prototype at Center Frequency
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Linear PIM
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File Edit VYiew Insert Tools Desktop Window Help « M File Edit View Insert Tools Desktop Window Help u
DedE kh RAO® € 0H 8O0 DedE kh RAO® € 0H 8O0
bt = 9.8925e0-007 =, tg= 99937007 5, FFT blocks = 128 ts’[ar’[ =1.1517e-00E =, tend = 1.1626e-006 =, FFT blocks =128
2 T T T T T T T T T 2 T T T T T T T T T

\/Du[ (v alts)
(|
‘v’wt (v olts)
=

_2 | | | 1 | 1 1 1 1 _2 | | | 1 | 1 1 1 1
0 nz 04 0B 08 1 12 1.4 168 18 2 1] nz 04 0B 08 1 1.2 1.4 165 1.8 2
Tirme (microseconds) Time (microseconds)
2r 2r
1581 181

Signal Amplitude
aignal Amplitude

Freguency (MHz) Freguency (MHz)

26



NC STATE UNIVERSITY

Stepped Two-tone Signals

Frequency separation stepped logarithmically from 1 kHz to 1 MHz
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Time-Frequency Effects: Linear Transient Distortion
e What are the effects of these transients on wireless

o
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Time-Frequency Effects: Linear Metrology

Iy
e How do we measure : ; [
parameters of coupled resonator i f""f“ n i
circuits? t . L 1 1
Figure 5: Equivalent lowpass cireuit after source is zeroed

> the Q factor of the outer resonators NGO VO Lo 2

in a chain may be determined dt, = RCu Cu  RCy O

with time-domain analysis 2

r=

In (VOZ)— In (VR2 (t))

Envelope Decay at Input Port, 7th-order S00-MHz filters
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Time-Frequency Effects: Linear Metrology
« How else can we exploit transients for metrology?
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Time-Frequency Effects: Nonlinear Metrology

o Can we exploit filter properties for nonlinear measurements?
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Linear Amplification by Time-Multiplexed Spectrum

 How can we improve linearity by T T measured
applying time-frequency techniques? | "
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Summary: Time-Frequency Effects

Narrowband transients last longer than expected.

co-site interference

(a) identified resonant cascade as a source of long tails

(b) developed a differential-equation simplification

(c) showed frequency-dependence of the tails causes pulse overlap
(d) evaluated ISI and IMD for frequency-hopping scenarios

Used filter transients to develop new measurement technigues:

(a) Q-factor of a single resonator

non-destructive testing

(b) bandwidth, without S-parameters

(c) broadband S-parameters from a single time-domain trace

(d) device passband from a single input port

Time-multiplexing & filtering — LITMUS:
reduces IMD associated with amplitude modulation

transmitter
linearity




-
Summary

e High dynamic range measurement system

* Time-Frequency effects produce apparent
PIM
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Review of Time-Frequency
Effects

35



Time-Frequency Effects: Tucker/Eaglesfield (1946)

e commonly-used
6-element ¢ . . o

bandpass L
filter 83

(4)
(2‘ Fig. 6. Pulse waveforms in G-glement filter
/ section (banduidth = 1oo cfs); applied _F?-
] / ; encies, (1) 2,650 /s = mid-band, (2) 2,600 cfs,
Fig. 3. [J-_eu:'rr.:u.uf 5 Y- e t[;] zlgioi.&, {4) z.400 ¢fs.
metrical filier,

Filtered Pulse Responses

» while analyzing non-ideal (transmission-characteristic) filters...
» oscilloscopes can capture filtered pulse envelopes
» differential operators (precursor to Laplace Transforms)

can be used to solve for analytical forms for pulse responses

“Transient response of filters,” Wireless Engineer, Vol. 23, pp. 36-42 & 84-90, Feb-Mar. 1946 36



Time-Frequency Effects: Hatton (1951) & McCoy (1954)

e amplitude transients
& frequency transients
for a single resonator

24 /

i ::/ X—(Til——

Lol / j%ﬁ
u; , 0.8] /

T 0'.— 0.6 / Normalized output frequency |
o leviation
T 7 y + Lx sio Ax COS \X| L4
e b [ S S B - de
() I ] [ 2 s34 5 8 D'h_ +2x¢7 0 pin (xf) + 2772
i i 0.2
Fig. 1 c_ R L Fig. 6 _ -

x = (AN/0.5B)

Initial Frequency at
Midban

Typical amplitude transient accompanying the o

Circuit used in calculations. i(t)=cos w,t, t<0; frequency transients for various amounts of 0 1 2 ’ :

N 1 . decentering. All jumps have size 2/T. Curve 6 = nBt, Radians

i(t) = cos w,t, t >0; center frequency of tuned cir- A: decentering = 0. Curve B: decentering = ¢ a single tuned circuit to a rectangular-step
L . 3 3 L . - . i = 1/2. ig. 2—Response of a single tuned circuit to a rectangular-

Cult = Wa, haﬂdWIdth Of tHnEd Clrcult = 2/Ti ml - t|J3 E:r{:e D?u;zgegt.ﬂgz;ezte—ﬂ?g‘l/2.‘" 1Y/ frequency shift, starting at midband frequency.

- kI/'I'; wy = wy + kz/T.
Normalized Amplitude Transients Normalized Freque

» while comparing frequency-modulation to amplitude-modulation...
» overshoots in amplitude & frequency are possible
for input frequency transitions within a filter’s passband

“Simplified FM transient response,” MIT, Cambridge, MA, Tech. Rep. 196, Apr. 1951
“FM transient response of band-pass circuits,” Proc. IRE, vol. 42, no. 3, pp. 574-579, Mar. 1954

ncy Transients
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Time-Frequency Effects: Blinchikoff (2001)

e Lowpass vs. bandpass
transient responses

u, (t) ~u, (ty )cos(apt+6) ™|

100 H

-100 H

200 H

» transient response at midband 00
Is a time-scaled version of the 400

Iowpass turn-on response 500

Filtering in the Time and Frequency Domains, Raleigh, NC: SciTech Publishing, Inc., 2001.
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Time-Frequency Effects: Chohan/Fidler (1973)

e frequency transients,
steps of phase/frequency : 39 trequency step a5 2
at filter input g ouf T e fer

| i J
28 4-0 52
normalised time

» while investigating filtering effects

for any order & any Q value

o
N

i |
© ©
[+)] ]
o
m
[

on FSK- and PSK-type signals... al
5 8r phase step,
] ) § 14l 2nd-order filter
» generalized earlier g
narrowband Laplace methods s T
v o6l

1 1 1 1
18 24 30 36
normalised time

“Generalised transient response of bandpass
transfer functions to FSK and PSK-type signals,”
Electronics Letters, vol. 9, no. 14,

pp. 320-321, July 1973. Normalized Frequency Transients 39

...1.0

Fig. 2



Time-Frequency Effects: Vendik/SamoiIova_(1997)

e resonators: transmission line

& microstrip

» attributed nonlinearities to
(a) crystalline structure
(b) charge carrier density
(c) Abrikosov vortices

> resistance is a function of current
|2 (x t)

O

R (x,t) =R |1+———

“Nonlinearity of superconducting transmission
line and microstrip resonator”

IEEE Trans. Microw. Theory Tech., vol. 45,
no. 2, pp. 173-178, Feb. 1997.
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-40
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POWER
(dB)
-30 -25 =20 -15 =10 -3
INCIDENT POWER (dB)
(a)
OUTPUT _5p
POWER
=70
_Bn L
-850
-100
-30 -25 -20 -15  -10 -5
INCIDENT POWER (dB)
(b)
Fiz. 7. Output power of first (/") and third (/") harmonies as functions of
incident power £,.;. The power 13 normalized to the characteristic power

Pyo(a) 02, =10000; . 1: 300, 2: 1000, 3: 2000; (b) (2., =1000; ¢}, : 1: 300,
2: 1000, 3: 2000, In the figure, dashed line corresponds to the slope of power
1; dashed-dotted line corresponds to the slope of power 3. 40



Time-Frequency Effects: Pereda (1992)

e estimation of quality factor from resonant decay

p
S(nAt) =Y Asexp (i + j2n fi)nAt)

=1

Prony analysis

» while investigating resonance
In dielectric resonators...

for n=0,---,N -1, (1)

TABLE [-A

COMPARISON OF THE RESONANT FREQUENCIES AND ()-FACTORS OF THE SIX
LowesT MoDES OF AN ISOLATED DR OBTAINED BY VARIOUS METHODS,
AXISYMMETRIC MODES

» reduced time to compute resonant

frequencies and quality factor F{G;E;“ > r.;GHTMO' - TEo;
. ) z (GHz) F(GHz) @
using FDTD and Prony analysis Moment oo ass 75w 768
_ _ Mthog oy 48604 40819 7538 76921 83311 30102
“Computation of resonant frequencies and Measured
quality factors of open dielectric resonators [10] a8 5 760 86
by a combination of finite-difference time- :drzfﬁ{':[ 4862 47 7504 7 8320 302

domain and prony’s methods,”
IEEE Microwave and Guided Wave Letters,
vol. 11, no. 2, pp. 431-433, Nov. 1992.
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Time-Frequency Effects: Dunsmore (1999)

 TiIme-domain coupled-resonator filter tuning

» while working at Hewlett-Packard Microwave Instruments Division...

» showed how to tune individual resonators using time-domain return loss

Freq. Resp. w/2nd Resenater Miatuned Time Resp. w/2nd Resonotor Mistuned
o r. 0
ol IS
~ —1D
- - ™ J A /
kel f .
- _2p ﬂ! E - 15 1 ﬁ
P v “ .2 —40 A
- a 2
= 30 | § _=p 1 1 13\
? -40 4 " -80 i 1
1.06 1.14 1.22 1.30 1.38 -0 0 10 20 30 40 SO
Frequency Response (GHz) Time Response (ns)
Figure 2: Frequency response (left) and time domain response (right) of the return loss (S11) of a perfectly
tuned filter (lighter trace) and a filter with the second resonator mis-tuned (darker trace),

“Tuning band pass filters in the time domain,”
IEEE MTT-S Int. Microw. Symp., Anaheim, CA, June 1999, pp. 1351-1354. 42



NC STATE UNIVERSITY

Time-Frequency Effects: Courtney (1999)

 Frequency measurements from time-domain traces

» while trying to determine broadband permittivity and permeability
of a sample material...

1_' | L L L L L L '_-
I incident pulse _
05 | 27,{0) b
[ - 1
s |
ol L s :
% 1st reflected pulse ]
» found a way to measure T and I’ a e 4
by time-domain-reflectometry b srdrotectodpube
with nanosecond impulses S TS S S
0 2 4 6 8
time - ns

Fig. 3. The simulated incident and computed first and second reflected
waveform components.

“One-port time-domain measurement of the approximate permittivity and permeability of materials”
IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 551-555, May 1999. 43



Time-Frequency Effects: Hung et. al. (2002)

* Nonlinear distortion reduction by time-multiplexing

» working with optical cable television transmission...

OS-SCM transmitter transmitier output spectrum
subcarfier group | oF

i I —————— 0 fsamp  Zeamp
HHBAAR Gk
]

» found a way to reduce IMD
by transmitting
subcarrier frequencies
in different time slots

Fig. 1 Nonlinear distortion reduction scheme using OS-SCM and OTDM

Subcarriers arc divided into M groups, cach group may contam up to
N subcarners, M>N, i <M, n<N

“Optical sampled subcarrier multiplexing scheme for nonlinear distortion reduction in lightwave CATV

networks,” Electronics Letters, vol. 38, no. 25, pp. 1702-1704, Dec. 2002.
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