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Outline 
• Background 
• Passive Intermodulation Distortion (2 parts) 

– Part 1, PIM effects, Electro-Thermal PIM 
• Test Equipment, Microwave Circuits / Antennas 

– Part 2, PIM effects 
• Non Electro-Thermal PIM, Filter PIM 

• Behavioral Modeling 
– Behavioral model 
– Measurement Equipment 

• Simulation and Modeling of Large Systems 
– Part 1, New circuit concepts 
– Part 2, fREEDA 
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PIM Measurement System 
(Analog Canceller) 

3 



NC STATE UNIVERSITY 

Problem 
• Need to measure small signals in the presence of 

large signals. 
– E.g. GPS receiver, radar, distortion measurement 
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Cancellation Theory 
• Sum with equal amplitude/anti-phase signal of 

original signal 
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Cancellation Theory 
• Amplitude Measurements Only 
• Non Newton-Based Iteration 
Cancellation Errors 
• Phase error: 

– Mostly result of errors in β and α in θS equation 
– Dependent on phase separation of signals 
– Can be minimized in iteration 

• Amplitude error: 
– Results from path non-linearities 
– Dependent on phase, frequency, time 
– More sensitive than phase errors due to sole reliance on 

amplitude measurement 
– Minimized through path amplitude calibration 
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Amplitude Calibration 
• Standard (baseline): Generate calibration matrix: Ampl. vs. Freq. 

– Occurs pre-test 
– Does not capture time-dependent or phase-dependent effects 
– Only needs to be done once (ideally) 
– Speed depends on density of matrix 
– Inherent interpolation error 

• In-line: Perform calibration on-the-fly 
– Occurs during cancellation 
– Minimizes time-dependency 
– Very fast: single measurement 
– No interpolation error 
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Analog Cancellation 
• Initial  cancellation is 

statistical 
– Cancellation converges 

to 70-90 dB 
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High Dynamic Range Measurement 
• Cancellation Dynamic Range (DRC): 

– Ratio of the highest-power signal that can be cancelled to 
the minimum detectable signal (MDS) after cancellation 

– Not simple combination of CA and DRR 
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High Dynamic Range Measurement 
• Limits on Dynamic Range: 

– RF signal source spurious leakage 
• Suppressed inherently through cancellation 

– Coupling of external RF emissions 
• Suppressed through RF shielding/isolation 

– AC power supply leakage 
• Eliminate by using DC power (i.e. batteries) 

– System thermal noise 
• Ultimate limit on cancellation: quantization error 

– Quantization in DAC leads to finite resolution for VM output 
step 
• Can be improved with attenuation at a cost to dynamic range 

– Quantization in receiver leads to finite resolution for 
measurement 
• Calibration accuracy cannot exceed measurement accuracy 
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Two-Tone IMD Measurement 
• Two-tone IMD measurement system built using 

separate cancellers for each channel 
• Can be used for transmission or reflection 
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Intermodulation Dynamic Range, DRIM 
• The change in reference makes DRIM  theoretically 

independent of DUT characteristics and system 
configuration.  
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Two-Tone IMD Measurement 
• Key to high dynamic range: linearity 

– Isolators reduce undesired mixing of channels through reverse 
path 

– Minimize external spurious content  
• External RF coupling, AC supply leakage 

– Low-PIM components: 
• Silver-plated 
• Physically large 
• Distributed implementations 

• Bandwidth Limitations: 
– Isolators (typically half-octave): 

• Narrowest bandwidth in system, but only limits frequency range of a 
single channel 

– Shared channel components 
• Wider bandwidth than isolators but must include entire frequency 

range from lower IM product to upper IM product 
– Bandwidth limitations only affect maximum tone separation; 

system emphasis is on very small tone separation (to 1 Hz) 
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Measured Results (DRIM3) 
• 460 MHz with an input power of 26 dBm. 
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Measured Results (DRIM3) 
• Spurious tone at 1 MHz only shows up in upper IM3 in 

transmission 
– Source currently unknown 
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Measured Results (PIM) 
• Pasternack PE6154, PE6152 

– Standard 2W terminations, similar form-factor 

16 Lower IM3 
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Measured Results (PIM) 
• Pasternack PE6097 (5W), PE6035 (10W) 

– High power, terminations with large “finned” aluminum 
heatsinks 
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Summary PIM Measurement  
• Analog Canceller 

– Minimum DRIM3 : 
• Transmission: 94 dBc at 1 Hz (CT = 60 dB) 
• Reflection: 111 dBc at 1 Hz (CT = 50 dB) 

– Minimum DRIM3 between 100 Hz – 30 kHz: 
• Transmission: 113 dBc (CT = 60 dB) 
• Reflection: 130 dBc (CT = 50 dB) 

– Limited improvement with additional cancellation except at Δf < 10 
Hz 
• At these tone separations, the MDS is the phase noise off the carrier 

signals: extra cancellation directly reduces the MDS, improving DRIM3 
– Spurious tones reduce performance at 10 MHz, and 100 MHz 

• Sources currently unknown 
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Time-Frequency Effect 
Filter PIM 
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Delay Effects in Filters 

SOURCE LOAD 

BANDPASS FILTER 

GROUP DELAY 

TRANSMISSION 

Thesis: 
Can we use variation in group delay 
to develop an optimum waveform to 
create large nonlinear effects.  

Antenna 

BPF 
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Switched Tone Response of a Filter 

Bandpass 
Filter 

Low 
Noise 
Amp 

Antenna 

Analog-to 
-Digital 
Converter 

f1 , f2 

2f1 – f2, 2f2 – f1 

f1 , f2 

2f1 – f2 
2f2 – f1 

probe signal 
linear reflection 

nonlinear reflection 

f1 , f2 
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Time-Frequency Response of a Filter 
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Modeling 
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Memory Effect 

microseconds 
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Linear PIM 
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Stepped Two-tone Signals 
Frequency separation stepped logarithmically from 1 kHz to 1 MHz  

 
 



NC STATE UNIVERSITY 

•  What are the effects of these transients on wireless   
              communications? 

Filtered frequency-hopping pulses, 900-MHz 4% filter 
User 1 at 10 dBm, User 2 at -20 dBm 
900 MHz, 100 ns guard interval 

measured 

  sharp filtering can degrade  
       received signal-to-noise ratio 

Nearest work: 
     Chohan/Fidler (1973) -- impact on FSK  
                    & PSK, no metric 

measured 

MTT, 12/08 

Time-Frequency Effects:  Linear Transient Distortion 
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Time-Frequency Effects:  Linear Metrology 

900-MHz stimulus tone turned off at t = 0 ns 

  the Q factor of the outer resonators 
       in a chain may be determined 
       with time-domain analysis 

simulated 

( ) ( )( )2 2
0ln ln R

t
V V t

τ =
−

1 1 2
1

N N N1 N1 N N1

(0) (0) (0) 2 (0)dV V I V
dt R C C R C

= − − = −

•  How do we measure 
parameters of coupled resonator 
circuits? 

IET, 03/09 

Nearest prior work: 
     Pereda (1992) -- Prony analysis,  
                                  dielectric resonators,  
                                  not a ‘coupled’ structure 
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Time-Frequency Effects:  Linear Metrology 

  2-port S-parameters can be extracted 
       from short-pulse time-domain responses 

•  How else can we exploit transients for metrology? 

Nearest prior work: 
     Courtney (1999) – 
           permittivity measurements,  
             nanosecond impulses 

Time- & frequency-domain views, short pulses 
465-MHz 1% Chebyshev filters 

simulated 

simulated 

measured 
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Time-Frequency Effects:  Nonlinear Metrology 

  a device’s passband 
      can be extracted  
      from 1 port 

•  Can we exploit filter properties for nonlinear measurements? 

  IP3 of an amplifier can be measured 
       using a filter & switched-tone source 

Nearest prior work:  Walker (2005) – 
     steady-state two-tone testing 

Simulated fast-switching filter response 
7th-order 465-MHz Chebyshev design 
(a) input, 1 tone, (b) output, 1 tone, (c) output, 2 tones 

Passband extraction for bandpass filter 
7th-order 900-MHz Chebyshev design 

IET, 09/09 

measured 

31 



NC STATE UNIVERSITY 

•  How can we improve linearity by  
     applying time-frequency techniques? 

  the IMD associated with amplitude modulation 
       can be reduced by trading signal bandwidth 
       for smaller Peak-to-Amplitude Ratio 

Wideband & narrowband spectra for N = 10 
generated by Agilent N6030A + QM3337A modulator 

measured 

measured 

IET, 09/09 

Distortion reduction for N = 20 
non-multiplexed (red) vs. multiplexed (blue) 
Ophir 5162 amplifier 

Linear Amplification by Time-Multiplexed Spectrum 

LITMUS 
circuit architecture 
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Summary: Time-Frequency Effects 
Narrowband transients last longer than expected. 
 

(a)  identified resonant cascade as a source of long tails 
 

(b)  developed a differential-equation simplification 
 

(c)  showed frequency-dependence of the tails causes pulse overlap 
 

(d)  evaluated ISI and IMD for frequency-hopping scenarios 
 
Used filter transients to develop new measurement techniques: 
 

(a)  Q-factor of a single resonator 
 

(b)  bandwidth, without S-parameters 
 

(c)  broadband S-parameters from a single time-domain trace 
 

(d)  device passband from a single input port 
 

Time-multiplexing & filtering — LITMUS: 
 

   reduces IMD associated with amplitude modulation 

co-site interference 

non-destructive testing 

transmitter 
linearity 33 
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34 

 
• High dynamic range measurement system 
• Time-Frequency effects produce apparent 

PIM 

Summary 
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Review of Time-Frequency 
Effects 
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Time-Frequency Effects:  Tucker/Eaglesfield (1946) 

  differential operators (precursor to Laplace Transforms)  
       can be used to solve for analytical forms for pulse responses 

  oscilloscopes can capture filtered pulse envelopes 

•  commonly-used 
     6-element 
     bandpass 
     filter 

Filtered Pulse Responses 

  while analyzing non-ideal (transmission-characteristic) filters… 

“Transient response of filters,” Wireless Engineer, Vol. 23, pp. 36-42 & 84-90, Feb-Mar. 1946 36 
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Time-Frequency Effects:  Hatton (1951)  & McCoy (1954) 

“Simplified FM transient response,” MIT, Cambridge, MA, Tech. Rep. 196, Apr. 1951 
“FM transient response of band-pass circuits,” Proc. IRE, vol. 42, no. 3, pp. 574-579, Mar. 1954 

  overshoots in amplitude & frequency are possible 
       for input frequency transitions within a filter’s passband 

•  amplitude transients  
     & frequency transients 
     for a single resonator 

Normalized Amplitude Transients Normalized Frequency Transients 

  while comparing frequency-modulation to amplitude-modulation… 
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Time-Frequency Effects:  Blinchikoff (2001) 

Filtering in the Time and Frequency Domains, Raleigh, NC: SciTech Publishing, Inc., 2001. 

•  Lowpass vs. bandpass  
     transient responses 

  transient response at midband 
      is a time-scaled version of the 
      lowpass turn-on response 

( ) ( ) ( )0cosb l Nu t u t tω θ≈ +
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Time-Frequency Effects:  Chohan/Fidler (1973) 

Normalized Frequency Transients 

frequency step as a 
percentage of B, 
2nd-order filter 

phase step, 
2nd-order filter 

•  frequency transients, 
     steps of phase/frequency 
      at filter input 

  generalized earlier 
       narrowband Laplace methods 
       for any order & any Q value 

  while investigating filtering effects 
       on FSK- and PSK-type signals… 

“Generalised transient response of bandpass  
  transfer functions to FSK and PSK-type signals,” 
Electronics Letters, vol. 9, no. 14, 
  pp. 320-321, July 1973. 39 
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Time-Frequency Effects:  Vendik/Samoilova (1997) 

•  resonators: transmission line 
                          & microstrip 

  attributed nonlinearities to 
          (a)  crystalline structure 
          (b)  charge carrier density 
          (c)  Abrikosov vortices 

  resistance is a function of current 

“Nonlinearity of superconducting transmission  
  line and microstrip resonator” 
IEEE Trans. Microw. Theory Tech., vol. 45, 
  no. 2, pp. 173-178, Feb. 1997. 

2

1 1 2
0

( , )( , ) 1 I x tR x t R
I

 
= + 
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Time-Frequency Effects:  Pereda (1992) 

“Computation of resonant frequencies and  
  quality factors of open dielectric resonators 
  by a combination of finite-difference time- 
  domain and prony’s methods,” 
IEEE Microwave and Guided Wave Letters, 
  vol. 11, no. 2, pp. 431-433, Nov. 1992. 

•  estimation of quality factor from resonant decay 

  reduced time to compute resonant  
      frequencies and quality factor  
      using FDTD and Prony analysis 

Prony analysis 

  while investigating resonance 
       in dielectric resonators… 
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Time-Frequency Effects:  Dunsmore (1999) 

“Tuning band pass filters in the time domain,” 
IEEE MTT-S Int. Microw. Symp., Anaheim, CA, June 1999, pp. 1351-1354. 

  showed how to tune individual resonators using time-domain return loss  

  while working at Hewlett-Packard Microwave Instruments Division… 

•  Time-domain coupled-resonator filter tuning 
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Time-Frequency Effects:  Courtney (1999) 

•  Frequency measurements from time-domain traces 

  while trying to determine broadband permittivity and permeability 
        of a sample material… 

  found a way to measure Τ and Γ 
      by time-domain-reflectometry 
      with nanosecond impulses 

“One-port time-domain measurement of the approximate permittivity and permeability of materials” 
IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 551-555, May 1999. 43 
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Time-Frequency Effects:  Hung et. al. (2002) 

•  Nonlinear distortion reduction by time-multiplexing 

“Optical sampled subcarrier multiplexing scheme for nonlinear distortion reduction in lightwave CATV  
    networks,” Electronics Letters, vol. 38, no. 25, pp. 1702-1704, Dec. 2002. 

  found a way to reduce IMD 
      by transmitting 
      subcarrier frequencies 
      in different time slots 

  working with optical cable television transmission… 
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