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Circuit-Level Behavioral Modeling 
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Linear Sub-Circuit Behavioral Modeling 

Behavioral Model is the Linear Subcircuit 
Described by 
       (M + N) x (M + N) Y Parameters       
Reduce to   N x N  Y Parameters    
Harmonic Balance 
       Use   N x N Parameters Directly   
SPICE 
       Use Impulse Response 
       or Use Pole-Zero Approximation  

Transient Analysis of Microwave Circuit 

Behavioral Model is an Impulse 
Response 
Augmentation Network Used to 
Facilitate Incorporation of Behavioral 
Model 
      Frequency and Time Banding 
Effect of the augmentation network 
removed during simulation.  
Response of linear network is limited 
in time and frequency. 
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Coding 
Example 
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Modeling Scope 

5 

Can handle  

1
1

2 32 3
1 1
2 2 3 3

1 1 1

( )( )
( ), , ( ), , , ,

( ) ( )( ) ( )
( ) , , , , , ,

( ), , ( )

n
n

n n

n

dx tdx t
x t x t

dt dt
d x t d x td x t d x t

y t F
dt dt dt dt

x t x tτ τ

 
 
 
 

=  
 
 − −
 
  

 

 



Where y(t) is either an i(t) or a v(t). 
 
Also in any type of analysis we want dy/dx  The exact derivatives (w.r.t. time 
or frequency etc.) we want depend on the type of analysis we are doing 
(transient, wavelet, harmonic balance).  The derivatives needed are calculated 
using ADOL-C under control of the analysis routines.  This is why the same 
model can be used in any type of analysis. 

ADOL-C is one of the many support libraries. 



NC STATE UNIVERSITY 

Electro-Thermal Resistor Code 
Quick Once Over of Element Code 
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Electro-Thermal Resistor Code 
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Evaluation Routine 

This is the only executable code 

The same model close is used in all analyses: DC, Transient; 
Wavelet; Large Signal Noise, Harmonic balance; Analyses  
(32 altogether).  
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What can be 
Modeled that 
Could not be 

Modeled Before 
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VCSEL 

10 



NC STATE UNIVERSITY 

Bottom 
DBR 

Top 
DBR 

p-
contact 

Oxide 

Light 
Output 

Active 
Region 
n-contact 

VCSEL Modeling 

 Single Mode Rate Equations 
 
Carrier density 
dN(t)/dt =ηi(I(t)-IL(T))/τ – N(t)/τnr – G(T)(N(t)-
N0(T))S(t)/(1+εS(t)) 
 
Photon density 
dS(t)/dt = -S(t)/τp + βN(t)/τr + G(T)(N(t)-N0(T))S(t)/(1+εS(t)) 
 
Temperature 
dT(t)/dt = -T(t)/τth + (T0+(I(t)V(t)-P0(t))Rth)/τth 

Leakage Current 

IL = IL0exp[(-a0+ a1N0 + a2N0T- a3/N0)/T] 

Temperature dependence of Gain and Transparency 

G(T)  = G0(ag0 + ag1T +ag2T2) / (bg0 + bg1T +bg2T2) 

N0(T) = Nt0(cn0+cn1T+cn2T2) 

Transim Power vs Current
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   Power and Wavelength degradation due to two components 

Electro-Optics 

Optical Power 
Wavelength z=12m z=12m

m 

f1=12mm, R=0.04 f2=12mm, R=0.04 

Detector 

Lens2 Lens
1 

Vcsel 

No feedback 

L1 feedback 

L1+L2 feedback 

No feedback 

L1 feedback 

L1+L2 feedback 

Output power  
degradation due  

to single and  
double lens feedback 

Output wavelength  
degradation due  

to single and  
double lens feedback 

With: 
Mark Niefeld 
Ravi Pant 
Univ. of Arizona 

Feedback Results: 
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Code 
void Vcsel::eval(adoublev& x, adoublev& vp, adoublev& ip) 
{ 
  // x[0]: terminal current, I 
  // x[1]: photon density, vm0 
  // x[2]: carrier density, vn0 
  // x[3]: temperature, T 
  // x[4]: dI/dt 
  // x[5]: dvm0/dt 
  // x[6]: dvn0/dt 
  // x[7]: dT/dt 
  adouble delta = 1e-8; 
  adouble zn = 1e7;  
  adouble q = 1.6e-19; 
  vp[0] = 1.721 + 275*x[0] - 2.439e4*x[0]*x[0] + 1.338e6*x[0]*x[0]*x[0] 
          - 4.154e7*x[0]*x[0]*x[0]*x[0] + 6.683e8*x[0]*x[0]*x[0]*x[0]*x[0] 
          - 4.296e9*x[0]*x[0]*x[0]*x[0]*x[0]*x[0]; 
  ip[0] = x[0]; 
  adouble T = t0 + x[0]; 
  adouble G = g0 * (ag0 + ag1*T + ag2*T*T)/(bg0 + bg1*T + bg2*T*T); 
  adouble Nt = nt0 * (cn0 + cn1*T + cn2*T*T); 
     adouble Il = il0 * exp((-a0 + a1*zn*vn0+a2*zn*vn0*T - a3/(zn*vn0))/T);  
} 

2
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Large Signal 
Noise Modeling 
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         Flicker Noise 

Phase noise modeled 
in the time domain. 

VCO 
1/f noise comes 
from chaos. 

Laminar Regions 

PHASE NOISE 

+ Large Signal Noise 
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VSS = 0V 

VSS = 6V 

Phase Noise is Fully Predictive 
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With 1 ps delay for each transistor 

Measurement of power gain 
v/s input power 

Large  
Signal  
Noise 

With no delay. 

X-band 
MMIC 
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Deterministic differential equation: 

Stochastic differential equation 

random noise term 

The Ito form 

- Named after Japanese mathematician  
  K. Ito in the late 40s. He formulated 
  the theory of Stochastic integration. 
- Evaluation at the starting point  
  on each interval. 
- Requires no estimation of future 
  values. 
- Used in models where stochastic  
processes are assumed purely white. 

The Stratonovich form 

- Named after Russian engineer R. L. 
Stratonovich in the mid 60s. 
- Evaluation at the mid-point  
  on each interval. 
- Requires estimation of future 
  values. 
- Used in models where stochastic 
  processes are not purely white. 

Either form will produce different end results but are both mathematically “right”. 

Which form to use is a modeling issue.  

The Ito form requires new numerical techniques for solving an SDE. The 
Stratonovich form can be solved using techniques of classical calculus which 
is a significant advantage. 

Modeling Noise 

18 
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Electro-Thermal Physical 
Transistor Model 

19 



NC STATE UNIVERSITY 

Electro-Thermal Modeling of PA 
Batty/Snowden 
Univ. Leeds 

CONVERT NONLINEAR THERMAL 
PROBLEM INTO A LINEAR 
PROBLEM 
KEY CONCEPT IS TIME DILATION 

TIME 
CONSTANTS 
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The first implementation of a Physical Transistor Model directly into a 
general purpose simulator: LPM (Leed’s Physical Model) (implementation 
by University of Leeds in fREEDA). This is a full electro-thermal model of 
MESFETs and pHEMTs. Full device physics. 
This can only be done in fREEDA because of state variables and universal 
error concepts (not just KCL). 

Temperature rise in junction of MMIC 
with 500 kHz tone. 
Gain of MMIC is a function of 
temperature. 
Gain varies with modulation of a signal. 

Electro-thermal model construction. 
21 
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Highest level of integrated global modeling  
of complex microwave subsystem, to date. 
 
Illustrates impact of thermal effects on total 
System performance. 
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ELECTRO-THERMAL ELECTRICAL ONLY 

TWO TONE TEST 

DISTORTION 

INCREASED 
DISTORTION 
DUE TO 
THERMAL 
EFFECTS 

MMIC Temperature Variation 

Electro-Thermal Simulation essential to accurate design. 

Variations in temperature due to 
– turn-on transient (pulsed operation) 
– modulation (variation of signal level) 

For a Ka band MMIC typically there is a 
4 dB drop in gain for a 30 K increase in 
temperature. 
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Application: Modeling 
of a Quasi-Optical 
Power Combiner 
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Quasi-Optical Power Combining 
Amplifier 
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  COMPLETENESS 

UNIT 
CELL 

SYSTEM 

ARRAY 



NC STATE UNIVERSITY 

Essential Problems 
in CAE of QO Systems 

• Generally There is Not a Common Reference Node 
 
 
 
 
 

• Concerns Whenever Switching Between Domains 
•      Time--Domain Frequency Domain Conversions:  Aliasing 

etc. 
• Electrically Large Distributed Structures 
• Metrology  (Model Verification) 
•      A Defined Metrology (Calibration/Measurement Procedure)  
•     Does Not Exist. 25 

There is No Such Thing as a Node 
Voltage as Required in Current 
Microwave Circuit Simulators 
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Grid Amplifier 
System 
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Near-Field Radiation 
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Unit Cell 3x3 Grid 5x5 Grid 10x10 Grid 
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Electromagnetic Modeling of 
Quasi-Optical Systems 
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FEM and FDTD Methods Require 3D Volume Discretization 
– Boundary Conditions Required on Volume Terminations 
– Large Amounts of Memory and CPU Time Required 
  

MoM Requires Only 2D Planar Discretization 
– Green’s Functions Incorporate the Effects of Complete System 
– Green’s Functions are Interchangeable for Modeling a Variety 
   of Quasi-Optical System Configurations 

Interfacing Surfaces in Quasi-Optical Systems are Distributed 
Over Electrically Large Distances 

3D Volume Discretization is     
      Inefficient 
 
2D Planar Discretization is Ideal 
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Nodal Admittance Matrix Determination 
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Nodal Admittance  Description Required in Microwave Circuit Simulators 
Process: Guess a node voltage and calculate node current. 

LOCAL 
REFERENCE 
NODE 
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Input Reflection 
Coefficient 

“unit cell” 

solid line:  Circuit/MoM simulation            dashed line:  measurement 

r

3 X 3 grid 5 X 5 grid 
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Nodal Admittance Matrix Determination 
Nodal Admittance  Description Required in Microwave Circuit Simulators 

Process: Guess a node voltage and calculate node current. 

LOCAL 
REFERENCE 
NODE 
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Development of a Quasi-Optical Green’s 
Function 

G G GE Ef EQO= +
Green’s Function Developed in Piece-wise Fashion 

GEm ⇒  modal fields

GEf ⇒  free of any QO components
G EQO ⇒  QO fields
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Measurement Setup 
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Transistor Model 
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Nonlinear Electro-Thermal Element 
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LINEAR  
ELECTRICAL 
NETWORK 

 
 

i = f(x1,x2) 
v= g(x1,x2) 

ELECTRICAL 
COMPONENT 

THERMAL  
COMPONENT h(t)=h(v(t),i(t)) 

v,i T= x2 

THERMAL GROUND (0 K) 

i 

v 

h 

T 
THERMAL 
NETWORK 

CUTSET 

CUTSET 
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EKV Model (v2.6) 
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Inverter in fREEDA netlist 

Also read SPICE netlist (can be mixed with fREEDA native netlist.) 

40 
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EKV 2.6 Model 
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Parallelization 
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Splitting Delay Element 
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Splitting one delay element, (a), into two sub-delay elements, (b), 
showing the delay element with two local reference terminals. 
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Flow 
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Multi-Processor Implementation 
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Multiprocessor 
Implementation 
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fREEDA Parallelization 
 Divider Circuit  
  Chain of 12 Dividers 
  Number of Non Linear State Variable (ns) :  1238 
  Number of Linear Element (nm):  229  

48 
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Circuit is partitioned at Delay Elements 
Super Linear Speed Up 
Load factors (on 4 core) (3-3-3-3) 
Load factors (on 6 core) (2-2-2-2-2-2) 
Load factors (on 8 core) (2-2-2-2-1-1-1-1) 
 

On a single core most 
time 68% is in model 
evaluation. Matrix solve is 
11% of the simulation 
time. 
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fREEDA Parallelization 
 20-bit Adder 
         Number of Non Linear State Variable (ns) :  2174 
           Number of Linear Element (nm):  465 
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Circuit is partitioned at Delay Elements 
Super Linear Speed Up 

On a single core 54.8% of 
the time is in model 
evaluation. Matrix solve is 
0.85% of the simulation 
time. 
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Speed-Up 
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WORKLOAD DISTRIBUTION ACROSS THE CORES 

Speed-Up 

Parallelization Overhead 
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fREEDA and REMCOM’s xFDTD 

fREEDA GUI is iFREEDA 
Based on QUCS Schematic Capture and 
Display Front-End (GPL license) 
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Distributions 
• fREEDA 2 

– Current on-line distribution 
– Circa November 2010 
– Mostly GPL/LGPL licensed 

• fREEDA 3 
– Current in-house version 
– Mostly  BSD Licensed 

• Some Trilinos packages currently LGPL to be transferred to BSD  
– Compiles cross-platform (Mac, Windows, Unix) 
– Conversion from spice netlist (-like) to XML 
– To Do: 

• Update GUI (iFREEDA) 
• Spice to freeda3 translator 
• Documentation 
• Commercialization 

– Kernal and standard library will be open source 
• Comemrcialization: 

– Model libraries 
– Specialized analyses. 
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fREEDA 
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Similar to 
Quite Universal Circuit Simulator  
Developers 
Michael Margraf <michael.margraf@alumni.tu-berlin.de> 
owner of the project, GUI programmer  
http://qucs.sourceforge.net 

Based on the QT graphics package: 
http://www.trolltech.com 
 

http://qucs.sourceforge.net/�
http://qucs.sourceforge.net/�
http://qucs.sourceforge.net/�
mailto:michael.margraf@alumni.tu-berlin.de�
http://www.trolltech.com/�
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fREEDA Commercialization 
 Open Source / Open Licensing 
        BSD License (Open to companies to do what they want) 
 Parallel Simulator 
  Two Commercialization Efforts under way 

55 
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Modeling Challenge: Non KCL 

But KCL tells us 
We do not know how to 
handle some important 
aspects of the real world 
in a circuit simulator! 

Two Terminal Element with Delay 

SIMULATOR TECHNOLOGY IMPOSES A LIMIT ON WHAT CAN BE MODELED 

CIRCUITS ARE AN ABSTRACTION 56 
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