Overview IMST Rüdiger Follmann

Profile

legal founded area GmbH (Ltd.) September 1992 Research + Development → ComTech solutions → RF Sensor → MultiMedia \rightarrow EMC-techniques → Wireless I M S T technologies

IMST is industry's center of competence

Headquarters

10.000 sqm site area
4.500 sqm overall space
1.500 sqm laboratories
300 sqm hybrid technologies

Organisation IMST

→ > 100 Researchers 11 Administration → 19 PhDs 20 Students, e.t.c → 79 Engineers

J. J. Borkes Test Centre

IMST overview, Feb-09

Products and services

Services

- → System Design
- → Circuit & Antenna Design
- → Integrated Circuit Design
- → Active & Passive Device Modeling
- → RF & Antenna Measurements
- → Channel Sounder Measurements
- \rightarrow EMC Tests
- → Mobile Phone Tests
- → Technical Consulting and <u>seminars</u>

Products

- → Coplanar Design Library
 - Add-On to Agilent EEsof's ADS
 - Advanced 3D EM Simulation Software
- → T PHS State-of-the-art HEMT, MESFET, LDMOS models and Parameter Extraction
- →MultiLibTM Design Library for LTCC/PCB multi-layered circuits Add-On to Agilent EEsof's ADS

5

Measurements, models and extractions

I M S T

Contents

- \rightarrow Models
- \rightarrow Linear part
- \rightarrow Nonlinear part
- \rightarrow Current measurements
- \rightarrow S-parameter measurements
- \rightarrow Power measurements
- \rightarrow Noise
- \rightarrow Verification

Ways of modeling

- →Physical models: Particle models or semiconductor equations
- →Table based models: Bias dependentS-

parameters are saved in a table

→Mathematical models: Transfer behavior is

described by mathematical functions

→Equivalent circuits: Physical behavior is

emulated by lumped elements

Ways of modeling

Linear models

- →Description of DC behavior
- →Description of RF behavior, e.g. in dependence of bias point. Only small signal amplitudes close to bias point are allowed

Non-linear models

→Large signal amplitudes and change of bias point (Harmonic balance).

Harmonic balance

Only linear elements

Only non-linear elements

HB is a hybrid between time- and frequency domain calculations.

Non-linear part is calculated In time domain, linearer part in frequency domain

Voltages and currents at each port are balanced, until they are equal for both part of network.

DC measurements

M

Transistor transfer curves

Gummel-Plots

Ţ

RF measurements

S-parameter measurements

9 TOPAS extraction Feb-09 © IMST GmbH - All rights reserved

RF measurements

S-parameter measurements

10

Qualification

- →Pinch-off of transistor device
- \rightarrow Enhancement or depletion mode
- →Slope and IV curves
- →Gate diode current
- \rightarrow amplification s₂₁ and attenuation
- →Compression behavior
- \rightarrow Other s-parameters < 0 dB

Composition FET und equivalent circuit

Small signal equivalent circuit

M

 \equiv

Enhanced small signal equivalent circuit

M

14 Models Feb-09 © IMST GmbH - All rights reserved

Ţ

Parameter extraction

¹⁵ Models Feb-09 © IMST GmbH - All rights reserved

Parameter extraction

Parameterextraktion

Extraction of extrinsic elements

Extraction of intrinsic elements

$$\underline{z}_{21} - R_{S} - j\omega L_{S} \qquad \underline{z}_{22} - R_{S} - R_{D} - j\omega L_{S}$$

 $\underline{Y} \to \underline{Z}$

Extraction of intrinsic elements

Extraction of intrinsic elements

Calculation of output conductance

Extraction of output conductance g using optimizing process

-0.4

-0.6

-0.8

g[mS]

120

100

80

60

40

20

0.6

0.4

Ugs[V]

0

-0.2

Extraction of Is and n

Outer and inner voltages

Description of intrinsic elements

$$c_{\rm GS} = \begin{cases} k_{\rm h} + k_{\rm g} U_{\rm DS} + x_{20} & U_{\rm DS} > 0\\ k_{\rm h} + x_{20} & \text{sonst} \end{cases}$$

$$k_{\rm h} = k_a \left(\exp \left(k_b (U_{DS} - k_c)^2 \right) \right) + k_d \left(\tanh \left(k_e (U_{DS} - k_f) \right) + 1 \right)$$

25

$$k_a = \begin{cases} x_0 (U_{\rm GS} - x_1)^2 & U_{\rm GS} \ge x_1 \\ 0 & \text{sonst} \end{cases}$$

$$k_{\rm b} = x_2 (\tanh(x_3 (U_{GS} - x_{17})) + 1)$$

$$k_{\rm c} = x_4 \exp(x_5 (U_{\rm GS} - x_6)^2)$$

$$Q_1(u_1) = \int_{u_{10}}^{u_1} c(\widetilde{u}_1) d\widetilde{u}_1 \qquad \Delta Q = \oint_{\partial \Omega} c(\widetilde{u}_1) d\widetilde{u}_1 = 0$$

Defined charge cycle

$$Q_2(u_1, u_2) = \int_{u_{10}}^{u_1} c(\widetilde{u}_1, u_2) d\widetilde{u}_1 + Q_1'(u_2)$$
 Trans elements

$$C(u_1, u_2) = \sum_{i=0}^n c_i(u_1)T_i(u_2)$$

du_{GS}

dt

Complete gate current

$$i_{\rm G} = i_{\rm GS} + i_{\rm GD}$$
 $u_{\rm GS} = U_{\rm GS} + u_{\rm GS} \Rightarrow \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} =$

GS-part of gate current $i_{GS} = \frac{dQ}{dQ}$

$$\frac{Q_{\rm GS}}{{\rm d}t} = C_{\rm GS}'(u_{\rm GS}, u_{\rm DS})\frac{{\rm d}u_{\rm GS}}{{\rm d}t}$$

d*t*

$$i_{\rm GS} = C'_{\rm GS} (U_{\rm GS} + u_{\rm GS}, U_{\rm DS} + u_{\rm DS}) \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t}$$

Taylor-series

$$C_{\rm GS}' \left(U_{\rm GS} + u_{\rm GS}, U_{\rm DS} + u_{\rm DS} \right) = C_{\rm GS}' \left(U_{\rm GS}, U_{\rm DS} \right)$$
$$+ \frac{\partial C_{\rm GS}' \left(u_{\rm GS}, u_{\rm DS} \right)}{\partial u_{\rm GS}} \bigg|_{\substack{u_{\rm GS} = U_{\rm GS} \\ u_{\rm DS} = U_{\rm DS}}} u_{\rm GS} \right|$$
$$+ \frac{\partial C_{\rm GS}' \left(u_{\rm GS}, u_{\rm DS} \right)}{\partial u_{\rm DS}} \bigg|_{\substack{u_{\rm GS} = U_{\rm GS} \\ u_{\rm DS} = U_{\rm DS}}} u_{\rm DS} + \dots$$

GS-part of gate current
$$i_{GS} = c_{GS} (U_{GS}, U_{DS}) \frac{du_{GS}}{dt}$$

Due to designation of 2 voltages of Vgs, Vds and Vgd, the third voltage is always defined!

Case 1: Gate charge is known

$$Q_G = au_{\rm GS}^2 + bu_{\rm GS}u_{\rm DS} + au_{\rm DS}^2$$

$$i_{\rm G} = \frac{\mathrm{d}Q(u_{\rm GS}, u_{\rm DS})}{\mathrm{d}t} = \frac{\partial Q_{\rm G}(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GS}} \frac{\mathrm{d}u_{\rm GS}}{\mathrm{d}t} + \frac{\partial Q_{\rm G}(u_{\rm GS}, u_{\rm GD})}{\partial u_{\rm GD}} \frac{\mathrm{d}u_{\rm GD}}{\mathrm{d}t}$$

$$u_{\rm DS} = f \cos(\omega t) \quad u_{\rm GS} = e \sin(\omega t)$$

$$\dot{B}_{G} = \omega (A \sin(2\omega t) + B \cos(2\omega t))$$
 $A = ae^{2} - cf^{2}$ $B = bef$

Pure capacitive gate current, no DC part

Case 2: The capacitances are known

$$c_{\rm DS}(u_{\rm GS}, u_{\rm DS}) = \frac{\partial Q_{\rm G}}{\mathrm{d}u_{\rm DS}}\Big|_{u_{\rm GS}=\mathrm{const.}} = bu_{\rm GS} + 2cu_{\rm DS}$$

$$c_{\rm GS}(u_{\rm GS}, u_{\rm DS}) = \frac{\partial Q_{\rm G}}{\mathrm{d}u_{\rm GS}}\Big|_{u_{\rm DS}=\mathrm{const.}} = 2au_{\rm GS} + bu_{\rm DS}$$

$$i_{GS} = \omega (C + D \sin(2\omega t) + C \cos(2\omega t)) \qquad C = 0.5bef \qquad D = ae^2$$
$$i_{GD} = \omega (-C + E \sin(2\omega t) + C \cos(2\omega t)) \qquad E = -cf^2$$

DC current parts, which compensate each other

Calculation of S-parameters using currents and voltages

33

Help

	IFC
TVEC11 TO TVEC21 TO TVEC21 TO TVEC21 TO TVEC31 TO T	TIFC3 TOT
TOUTFUT I I I I I I I I I I I I I I I I I I I	TELEM=R31
FILENCE TO THE TRANSPORT OF THE TRANSPOR	$P \models N = 1 + \cdots$
	H = 1
QUTEONH2=0H2=	.H2=0
	.H3=0
io22=∀FC4/7.107+1FC4*7.107*1e-3.1	
1611=VFC1/7.107=1FC1*7-07*1e=31	
1522≐VEC4/7.107–1EC4*7.07*1e=31	
->K21=¥EC2/7+07=1EC2*7 07*1e=3 · · · · · · · · · · · · · · · · · · ·	
- 512-VEC3 /7 .07 JEC3 /7 .07 /1 - 3	
TP11D=TP4_ELEM=R4	
TP21D=gnd PIN=1	
.sl1_ong=b11/010 H1=1 H1=1	
.s22≑20*log(b22/o22)	
_s22_opg=b22/o22	
s21=20*log(b21/o11)	
is21_ong=b21/o11 i ili ili ili ili ili ili 🖂 🥅 🔤 non non non nel 📶 non nel 📶 non nel 👘 non nel 👘	
s12=20*log(b12/g22)	
$\frac{Pout_RF}{Pout_RF}$ Pin PSPEC1	
VALUE=5	
n no na	
$H_{1}=1$	
. EREDINEY	
FPLAN	
Small signal	
Sinan signal	
POWER	
value=STEP50 value=STEP. Q value=STEP. 2	11111

Mag(s_{11}), simulated using Small signal and HB testbench for very low input power (-50 dBm) Phase(s_{11}), simulated using Small signal and HB testbench for very low input power (-50 dBm)

Needful things

Linearize exp functions

$$f(x) = \begin{cases} \exp(x) & x \le x_0 \\ mx + b & x > x_0 \end{cases}$$
Function must be continuous at x_0

$$f_1(x_0) = f_2(x_0) \qquad \frac{df_1}{dx} = \frac{df_2}{dx} = f(x_0)$$

$$\Rightarrow \qquad \exp(x_0) = mx_0 + b$$

$$m = \exp(x_0)$$

$$\Rightarrow \qquad b = \exp(x_0)(1 - x_0) \Rightarrow \qquad f_2(x) = \exp(x_0)(x + 1 - x_0)$$

MS

Noise sources

Thermal noise

$$\left\langle i_{th}^{2} \right\rangle = \frac{4kT_{0}}{R} \Delta f$$

Popcorn (burst)noise

$$\left\langle i_{burst}^{2} \right\rangle = KB \frac{I_{D}^{CF}}{1 + \left(\frac{f}{f_{CF}}\right)^{2}} \Delta f$$

Shot-
noise
$$\langle i_{shot}^2 \rangle = 2qI_D \Delta f$$

Channel noise

1/f (flicker)noise $\left\langle i_{1/f}^2 \right\rangle = KF \frac{I_D^{AF}}{f^{FFE}} \Delta f$

$$\left\langle i_{c}^{2}\right\rangle = \frac{8kTg_{m}}{3}\Delta f$$

Noise equivalent ciruit

I M S

Ţ

Noisy 2-ports

Transformation matrix

Noise matrix

Correlation matrix, calculation of noise power

$$\left[\underline{C}\right]^{(a)} = \frac{1}{4kT\Delta f} \left(\begin{bmatrix} \underline{v}_i \\ \underline{i}_i \end{bmatrix} \begin{bmatrix} \underline{v}_i & \underline{i}_i^* \end{bmatrix} \right)$$

Separation of noise sources

Calculation of transformation fucntion

Network N Y-Matrix Adjoint network transposed Y-Matrix

Current transforming function

Tellegen Thoerem

Tellegen Theorem for noisy n-ports

Adjoined network for calculation of transformation function

 $i_{Q_1} = v_q \cdot \underline{y}_{T,2 \times 2_{1,1}}$ and $i_{Q_2} = v_q \cdot \underline{y}_{T,2 \times 2_{2,2}}$

Tellegen Theorem

Solving the equation system for the voltagesusing the Gaussian algorithm

Voltage transformation factor

Correlation matrix

Realized LNA

Minimum noise figure, simulation versus measurement.

Ţ

I M S

Deviations 6x20 μm HEMT $4x50\,\mu\text{m} \stackrel{\bigtriangledown}{\sim} 8x75\,\mu\text{m}$ $V_{GS} = 0 \text{ V}, \text{ } V_{DS} = 2 \text{ V}$

 $4x50 \,\mu m \, 2x40 \,\mu m$ $V_{GS} = 0 \, V, \, V_{DS} = 0 \, V$

 $4x50 \ \mu m \stackrel{>}{\sim} 2x40 \ \mu m$ $V_{GS} = -0.8 \ V, \ V_{DS} = 2 \ V$

Comp 1x600 2.1 GHz , 26 V, 2.1 mA

M S

PAE, 600um LDM OS device, class B bias, matched, f = 2.0 GHz

IMD 6x100 1.8 GHz, 2 MHz offset, 26 V, 2.1 mA

Times 5 multiplier

5. Meas.

5. TOPAS

5. Curtice

10

12

14

8

Oscillations

250

Oscillations

=

"Cgsintr.dat"

I M S

"FETplot.dc"

Oscillations

"Riintr.dat"

I M S

Oscillations

Ţ

"Riintr.dat"

I M S

Switching problems

 $\overline{=}$

M ST

Burn-in effects

 $\overline{=}$

I M S

Scaling of extrinsic elements

$$S_E(N) = a_{EN} \cdot N + b_{EN}$$

$$S_E(N,W_t) = S_E(N) \cdot S_E(W_t)$$

$$S_E(W_t) = a_{EW} \cdot W_t + b_{EW}$$

$S_E(N)$	$S_E(W)$	a _{EN}	b _{EN}	a _{EW}	$\mathbf{b}_{\mathbf{EW}}$
GG	GG	0.18	0.17	0.0	0.98
GD	GD	0.25	0.0	0.019	0.076
GS	GS	0.27	-0.04	0.024	-0.11
1/LG	LG	0.0	0.993	0.004	0.713
1/LD	LD	0.0	0.895	0.005	0.67
LS	1/LS	0.31	-0.46	0.006	0.68

Scaling of intrinsic elements

$$c_{old} = \frac{8x75\,\mu m}{4x50\,\mu m} = 3$$

$$c = \frac{\sum_{V_{gs}, V_{ds}} \frac{G_x(V_{GS}, V_{DS})}{G_{ref}(V_{GS}, V_{DS})}}{n_{V_{GS}, V_{DS}}}$$

c_{GS} 8x75 -

Scaling of intrinsic elements

Scaling of intrinsic elements

$$S_{I}(N) = a_{IN} \cdot N + b_{IN}$$
$$S_{I}(W) = a_{IWt} \cdot W + b_{IWt}$$

$$S_I(N,W) = S_I(N) \cdot S_I(W)$$

$S_{I}(N)$	S _I (W)	a _{IN}	b _{IN}	a _{IW}	b _{IW}	
Cgs	Cgs	0.22	0.116	0.018	0.129	$c_{new} = S_I (N = 4 \rightarrow N = 8)$
Cgd	Cgd	0.28	-0.08	0.019	0.077	$\cdot S_t (W_t = 50 \rightarrow W_t = 75)$
Cds	Cds	0.12	0.459	0.011	0.371	1.93.149 = 2.88
Gi	Gi	0.02	0.52	-0.06	3.878	1.75 1.17 - 2.00
G	G	0.31	-0.14	0.025	-0.15	
Id	Id	0.25	0.0	0.02	0.01	

Thermal model

M

4D spline interpolation

Accurate description of I_D(V_{GS}, V_{DS}, Tjunc)

$$f(\vec{x}) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{ijk} x_1^i x_2^j x_3^k$$

• 64 unknown values, 8 points at same time

$$f, \frac{\partial f}{\partial x_i}, \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{i \neq j}, \frac{\partial^3 f}{\partial x_1 \partial x_2 \partial x_3}$$

DC verification (LDMOS example)

Transient analysis

M

Rth/Cth extraction

→Compare pulsed and CW currents at different temperatures

$$R_{TH} = \frac{T - T_{amb}}{V_{DS} I_{DS}}$$

\rightarrow Cth: Monitor current versus time

Thank you for you attention

 \rightarrow Any questions?

Model implementation into ADS

I M S T

Rüdiger Follmann

Contents

- \rightarrow PN-diode, equivalent circuit and equations
- →Linear part
- →Non-linear part
- \rightarrow Linearized part
- →Noise
- →Interface
- \rightarrow Consistent implementation

Implementation of a pn-diode model into Agilents ADS

How to start?

A non-linear model consists of the parts

- \rightarrow Equivalent circuit and associated equations
- \rightarrow Linear part containing linear elements
- \rightarrow Same with non-linear part
- →Bias point dependent linearized part (Jacobian matrix)
- \rightarrow Bias dependent noise part

ADS specific things

→All nodes are numbered →Outer nodes get smallest numbers

5

Equivalent circuit and equations

6

$$I_{D}(V_{D}) = I_{S}\left(e^{\frac{V_{D}}{V_{te}}} - 1\right) + 10^{-12} \frac{A}{V}V_{I}$$
$$\frac{dI_{D}}{dV_{D}} = \frac{I_{S}e^{\frac{V_{D}}{V_{te}}}}{V_{te}} + 10^{-12} \frac{A}{V}$$

$$C_D(V_D) = TT \frac{dI_D}{dV_D} + CJ0 \left(1 - \frac{V_D}{VJ}\right)^{-M}$$

$$Q_D(V_D) = \int_0^{V_D} C_D(\widetilde{V}_D) d\widetilde{V}_D = TT \cdot I_D + \frac{VJ \cdot CJ0}{1 - M} \left(1 - \left(1 - \frac{V_D}{VJ}\right)^{1 - M} \right)$$

Non-linear part

- →Number all nodes in order to get the voltages
- \rightarrow Start with outer nodes
- →Use code calculates charges at each node and non-linear currents out of each node

 $I_{\rm D}$ and $C_{\rm D}$ are non-linear elements between nodes 1-2

Linearized part

- →Calculation of partial derivatives for non-linear elements with respect to the nodes to get capacitances and conductances for Jacobian matrix
- →The linearized part does not influence the final harmonic balance solution
- →The linearized part influences the convergence speed

Noise

→ Noise part contains the bias dependent correlation parameters - normalized to 4KT₀

 \rightarrow This part is only needed for noise analysis

Possible noise sources:

Thermal noise
$$\left\langle i_{th}^2 \right\rangle = \frac{4kT_0}{R}\Delta f$$
 Bur

Burst or popcorn noise

Shot noise

1/f noise

$$\left\langle i_{shot}^2 \right\rangle = 2 q I_D \Delta f$$

 $\left\langle i_{1/f}^{2} \right\rangle = KF \frac{I_{D}^{AF}}{f^{FFE}} \Delta f$

 $\left\langle i_{burst}^{2} \right\rangle = KB \frac{I_{D}^{CF}}{1 + \left(\frac{f}{f_{CF}}\right)^{2}} \Delta f$

Non-linear part

Calculation of node currents and charges

Jacobian matrix

Noise

```
COMPLEX thermal, dNoise;
thermal.imag = dNoise.imag = 0.0;
                                                      Thermal noise
thermal.real = 1.0/Rs*DEV TEMP/NOISE REF TEMP;
                                                         Shot noise
dNoise.real = 2 * CHARGE * id;
dNoise.real = kf * pow(id, AF)*pow(omega/TWOPI, -FFE); 1/f noise
dNoise.real /= FOUR K T0;
              add_n_branch(userInst, 0, 2, thermal) &&
status =
              add n_branch(userInst, 1, 2, dNoise);
      Attention: All noise currents are normalized to 4KT<sub>0</sub>
```


nonlin_ele.h

// name numPars params compute_y post_analysis senior Info
// numExtNodes pre_analysis compute_n devDef tranDef

{"PNDIODE", 0, size(PNDIODE), PNDIODE, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }

nonlin_def.h

14 Model implementation Feb-09 © IMST GmbH - All rights reserved

};

Interface

nonlin_typ.h

PNDIODE[] =
{ /* P-N junction diode */
 {"AREA", REAL_data},
 {"IS", REAL_data},
 {"RS", REAL_data},
 {"N", REAL_data},
 {"TT", REAL_data},
 ...
}

nonlin_fun.h

* NON-LINEAR PN-DIODE MODEL */

EXTERN_FUNCTION(extern boolean pndiode_lin, (UserInstDef *userInst, double omega)); EXTERN_FUNCTION(extern boolean pndiode_nl, (UserInstDef *userInst, double *vPin)); EXTERN_FUNCTION(extern boolean pndiode_ac, (UserInstDef *userInst, double *vPin, double omega)); EXTERN_FUNCTION(extern boolean pndiode_ac_n,(UserInstDef *userInst, double *vPin, double omega));

Interface

→AEL programming language is the GUI for the simulator

- →Different parts of a non-linear model
- \rightarrow Nonlinear equations and their derivatives
- →Implementation into circuit simulation software
- →Noise sources
- →Jacobian matrix

DC tests

All tests are shown for a transistor device. The are valid for diode devices

Help

Perform a DC analysis first!

DC tests

- →IV output curves OK?
- →IV input curves OK?
- →Curves typical for element?
- →Show measurements similar behaviour?

DC tests

T4x50µm HEMT, simulation vs. measurements

Show simulation and measurements similar behaviour?

RF Tests

Are measured and simulated S-parameters similar ?

Transistor: Gain, pinch-off S-parameters OK?

Graph

li mar_tarLik

1 5[1,1] Edit

5[1,2]

5[2,1]

1209

libra.bin_6694@imst204 Hybrid2

)||murikastiti ⊽lisesisetiti ∆lisesisetiti ♦tootimeiti ¥tootimeiti ×tootimeiti +tootimeiti Bi Bi Bi Bi

1 5[1,1]

|\$21| <u>20.0.0.08</u> |\$12|

15.0 D.08

5[1,2]

5[2,1]

Help

1031_m3 5[2.2]

Draw View Options Macros

1mm 11 6[2,2]

HB tests Comp 1x600 2.1 GHz , 26 V, 2.1 mA

 Z_n

Calcualtion of s-parameters using voltage and current definition

Waves in und out of port n

$$a_n = \frac{V_n^{in}}{\sqrt{Z_{Ln}}} = I_n^{in} \sqrt{Z_{Ln}}$$

 $s_{11} =$

$$b_n = \frac{V_n^{out}}{\sqrt{Z_{Ln}}} = I_n^{out} \sqrt{Z_{Ln}}$$

Currents and voltages

$$u_n = \frac{V_n}{\sqrt{Z_{Ln}}} = \frac{V_n^{in} + V_n^{out}}{\sqrt{Z_{Ln}}} = a_n + b_n$$

$$i_n = I_n \sqrt{Z_{Ln}} = (I_n^{in} - I_n^{out}) \sqrt{Z_{Ln}} = a_n - b_n$$

Example

$$\Rightarrow \frac{a_n = \frac{1}{2}(u_n + i_n)}{b_n = \frac{1}{2}(u_n - i_n)}$$

Port n

$$\left| \frac{s_{1}}{u_{1}} \right|_{a_{2=0}} \left| s_{11,dB} = 20 \cdot \log \frac{u_{1} - i_{1}}{u_{1} + i_{1}} \right|$$

24 Model implementation Feb-09 © IMST GmbH - All rights reserved

out

 V^{in}

n

T 70Ut

 b_n

Calculation of small signal S-parameters using a large signal test bench

Calculation of small signal s-parameters using a large signal testbench

· <u> </u>							
оправити и стали и ста	· · · · ·	FC !		VFC · · ·	IFC	VFC · · · ·	1 F C
	- VF	FC1: 1 1	IFC1 1	VFC21 1	IFC2 1	VFC31 1 1	IFC3
.5047128N	TH C	P1ID=TP1	ELEM=R1	TP1ID=TP2	ELEM=R21	TP1ID=TP3	ELEM=R31
LOUTEON	· T· F	P2ID≕gnid i	P+N±1· ·	TP21D=gnd	PIN=1	TP21D=gnd	PEN=1 · · ·
a11=VFC1/7.07+IFC1*7.07*1e-3	H'	1=1	H1=1	H1=1	H1=1	H1=1	$H 1 = 1 \qquad \cdots \qquad$
022=VFC4/7.07+1FC4*7.07*1e-3) ·	2≑U 7=0	H2=U	H2≑U UZ=0	HZ=0	H2=0	H2=0
[611≟VFC1/7.07+1FC1*7 07*1e-3)	5≑0	HQ=V	H3=0	на=0	₩3≑0	HQ=V
1522≐VFC4/7007+1FC4*7 07*1e+3) · · · · · · · · · · · · · · · · · · ·	· · · · ·					
1621=VFC2/7:07-1FC2*7 07*1e-3	i i i i i i i i i i i i i i i i i i i		· · ·				
-b12=VEC3/7/07-4EC3*7.07*1e-2							
s11=20*log(b11/a11)		FU	IEC4				
s11_apa=b11/a11	T F	P1ID=TP4	FLEM=R4				
s22=20*log(b22/a22)	T	P2ID=and	PIN=1				
s22 apa=b22/a22	́н́	1=1	H1=1				
s21=20*Log(b21/a11)	i Ha	2=0	H2=0				
s21_apa=b21/a11	- H3	3≐0' ' ' '	H3=0 ```				
[s2]_00g=021/011 [s12+20#[s]s(s]27s222)					P . III		
1612 + 20 $10000 + 270227$					։ ևսիրիրություն		
	· <u>NH · · ·</u> · · · · ·		Prout_RF	Pro 1	PSPEC PSPEC1		
	. V.ALUE=5		TP11D=TP2	TP1ID≜TP1	TP1ID=TP2		
			ELEM=R2	• ELEM=R1••••	ELEM=R2		
			H1=1 · · · ·	· · · · · · · · · · · · · · · · · · ·			
			H3=0	. H3=0			
Small signal!	FPLAN						
Sinan Signar.	<pre>>volue=SWEEP10:10</pre>	40 1 1 1 1					
$50 \mathrm{dPm}$							
-JU UDIII				•••••••	<u> </u>	•	
	· POWER · · · · · ·		BLAS1	· · · · · · · · <u>L</u>			
	PPLAN		B1PLAN	B2P	LANGER	•	
	. v.al.ue=STEP,50		value=STEP	. Q val.	ue=STEP.2 .		100

Mag(s_{11}), simulated using Small signal and large signal testbench for very low input power (-50 dBm) Phase(s_{11}), simulated using Small signal and large signal testbench for very low input power (-50 dBm)

Needful things

Linearize exp() function for better conversion and avoid errors such as numerical overflows

$$f(x) = \begin{cases} \exp(x) & x \le x_0 \\ mx + b & x > x_0 \end{cases} \qquad f(x) \qquad mx + b \\ mx + b & x > x_0 \end{cases}$$
Function must be continuous at x_0

$$f_1(x_0) = f_2(x_0) \qquad \frac{df_1}{dx} = \frac{df_2}{dx} = f(x_0)$$

$$\Rightarrow \qquad \exp(x_0) = mx_0 + b \\ m = \exp(x_0)$$

$$\Rightarrow \qquad b = \exp(x_0)(1 - x_0) \Rightarrow \qquad f_2(x) = \exp(x_0)(x + 1 - x_0)$$

М

Summary

- →Perform different tests (DC, RF, harmonic balance)
- \rightarrow Typical results for a FET
- →Calcualtion of small signal s-parameters using a large signal testbench
- \rightarrow Linearization of functions
Foundries, MMICs, systems Rüdiger Follmann

Content

- \rightarrow MMIC foundries
- \rightarrow Designs and trends
- \rightarrow Examples

3

MOSIS

Circuits Multi-Projets / Multi-Project Circuits

GaAs in principal

- \rightarrow 3,4 and 6 inch production
- → Target markets: High power and linearity, low noise, broad band
- → Specials available (e.g. E/D mode or HBT and pHEMT on same wafer)
- \rightarrow Frequencies up to 100 GHz
- → Radiation hard

GaAs foundries → OMMIC, France

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

5

GaAs foundries

\rightarrow UMS, France (+ USA)

6

GaN

- \rightarrow 4 inch to 6 inch wafers
- → Several foundries (TriQuint, UMS, Cree, Sandia and others)
- \rightarrow Very high power possible
- \rightarrow Defense market, radar, telecommunication
- → Single transistor devices available, very first MMICs launched (IMS 2008, Cree)
- \rightarrow "Reliability" problems
- \rightarrow Frequencies up to 20 GHz and higher (100 GHz)

State-of-the-art

\rightarrow HRL examples

GaN HFET MMIC Power Amplifiers

GaN POWER AMPLIFIERS								
Part Number	Function	Frequency (GHz)	Gain (dB)	P1dB (dBm)	Psat (dBm)	Application Note		
PA3C-76	High Power Amplifier	71-76	15	24	26	X		
PA3C-86	High Power Amplifier	81-86	13	24	26	X		
PA3C-96	High Power Amplifier	91-96	12	23.5	25.5	X		

http://www.hrl.com/media/gan/gan.html

http://kiss.caltech.edu/mmic2008/presentations/micovic.pdf

Si(Ge)

- \rightarrow 8 inch production
- → Combination of CMOS logic, ECL and BiCMOS
- \rightarrow Frequencies up to 100 GHz
- → Complete transceiver chips possible (e.g. 60 GHz)
- \rightarrow Well known foundries e.g. IBM (8HP)
- \rightarrow Si LDMOS for high power

SiGe → IBM roadmap

M

Trade-offs → Noise figure

Noise Figure Comparison of SiGe, Si & GaAs Technologies

Trade-offs

\rightarrow 1/f noise

Low Frequency Phase Noise of SiGe, Si & GaAs Technologies

́М S

Trade-offs

\rightarrow Costs

Item	GaAs		S	Units	
	FET	HBT	HBT	BiCMOS	
Feature Size	0.5	2.0	0.5	0.5	μm
Starting Material	200	600	200	200	\$
Mask steps	12	14	28	32	
Photo cost	1200	1400	2800	3200	\$
Raw cost	1400	2000	3000	3400	\$
Wafer Diameter	100	100	200	200	mm
Yield	80	70	95	95	%
Cost/mm ²	0.22	0.36	0.10	0.11	mm^2

lechnology Pric	ce/Watt	Power Density	Supply Voltage	Linearity	Frequency	PAE
Si BJT La	ow Cost	Medium	26 V	Poor	<2 GHz	Low
SiGe BJT La	ow Cost	Medium	<20 V	Good	>2 GHz	High
Si LDMOS La	ow Cost	Low	26 V	Very Good	<3 GHz	Medium
GaAs MESFET Con	npetitive	Medium	12 V	Good	>2 GHz	Medium
GaAs pHEMT M	Iedium	Medium	8 V to 12 V	Very Good	>2 GHz	High
GaAs HBT Con	npetitive	High	8 V to 26 V	Good	>2 GHz	High
SiC MESFET Con	npetitive	Very High	48 V	Good	>4 GHz	Medium
GaN HEMT	N/A	Very High	48 V	Promising	>12 GHz	High

I M S

GaN devices → Non-linear model and measurement

M

GaN devices

\rightarrow Model verification

M

GaN mmwave power

HRL W-band GaN Roadmap

GaN mmwave PA

500 mW 70 GHz GaN MMIC PA

70 GHz MMIC Chip Layout Size 3.4 mm x 1.3 mm

Operating Voltage = 15 V

Measured Gain > 15 dB

Measured small signal gain of 70 GHz 500 mW GaN MMIC PA.

Performance meets design goal.

© 2008 HRL Laboratories, LLC. All Rights Reserved

GaN mmwave PA

Integrated coplanar 24 GHz sensor

World's 1st 24 GHz coplanar sensor designed at IMST

DaimlerChryslerAerospace

Many pieces – one solution M5-Service.

Microwave / MilliMeterwave Module Engineering and Manufacturing.

Rosemount 24 GHz level sensor

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

21

Integrated GaAs circuits – 24 GHz sensor

GaAs circuits – 10 GHz LNA

23

Core Chip Design : 2NLNA4PS2

Specifications:

- → Ku-band core chip including the 2-stage LNA and the 4-bit phase shifter
- → Technology: OMMIC ED02AH
- → LNA bias supply: $V_{G1,2}$ = -0.2 V, $V_{D1,2}$ = 2.0 V, I_{D1} = 28.2 mA, I_{D2} = 29.0 mA
- → PS control voltages: $V_c = 0 V / -2 V$
- → f = 10.7 ... 12.7 GHz
- → $S_{11} \leq -13.3$ dB (all states)
- → $S_{22} \leq -11.6$ dB (all states)
- → $S_{21} = 13.2 \dots 14.4 \text{ dB}$ (all states)
- \rightarrow RMS amplitude error = 0.4 dB
- \rightarrow RMS phase error = 2.6 °
- → $A = 2.17 \times 2.05 \text{ mm}^2 = 4.45 \text{ mm}^2$
 - $\Rightarrow\,$ including half dicing street
 - \Rightarrow including DC pads (#8) for the PS control (not necessary if using the DC control circuit)
 - \Rightarrow excluding DC control circuit (serial to parallel converter + buffers)
- 24 Foundries and MMICs Feb-09 © IMST GmbH All rights reserved

Core Chip Design : 2NLNA4PS2

Layout:

Momentum simulation

\rightarrow Higher integration possible

Size reduction

Including logic

I M S

System example synthesizer

→ small and integrated chip

- \rightarrow Large size (LO)
- → Heavy
- → Single frequency

http://www.saabgroup.com/en/ProductsServices/BusinessUnit/saab_ericsson_space.htm http://products.saabgroup.com/PDBWebNew/GetFile.aspx?PathType=ProductFiles&FileType=Files&Id=6071

Phase noise

Simplified Leeson equation

$$L(f_m) = \frac{FkTG}{8Q_LP} \left(\frac{f_r}{f_m}\right)^2$$

$$\left|S_{21}\right| = \frac{1}{G} = 1 - \frac{Q_L}{Q_0}$$

G: Gain of active part

f_r:

- F: Noise figure of active part
- Q_L: Loaded Q of resonator
 - Resonance frequency
- f_m: Offset frequency from carrier
- P: Output power of active part
- S₂₁: Transmission coefficient of resonator at resonance

VCO requirement

- \rightarrow High quality factor of the resonator
- →Large voltage swing (high output power)
- →High breakdown voltage for active part transistor technology
- \rightarrow Use a transistor with low 1/f noise

́М S

PLLs

- →Close to the carrier phase noise is determined by the reference crystal
- →Inside PLL loop the phase noise of a synthesizer is determined by the PLL (phase detector). VCO noise is attenuated.
- →Output PLL loop the phase noise of a synthesizer is determined by the VCO phase noise

Integer-N PLL with reference divider

How to generate arbitrary frequencies?

→ Build a programmable 1/N-divider

Continuos division (example x=8)

 \rightarrow Divide S times by x+1 and P-S times by x

N=(x+1)*S+x*(P-S)=8*P+S, P>S

P=6,S=0..6: N=8*6+0..8*6+7=48..54, 55 not possible

P=7,S=0..7: N=8*7+0..8*7+7=56..63 P=8,S=0..7: N=8*8+0..8*8+7=64..71

Simplified fractional-N PLL example

Ratio: 10.1: Divide 9 times by 10 and one time by 11 (next page)

Accumulator

This division schema generates large spurs.

Sigma Delta Modulator (SDM)

Modulator input: Only fractional part x_f SDM generates series of integer numbers n_i $n_i \in M$, 2^{μ} values are available for M

$$x_f = \overline{n}_i = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N n_i$$

Time average value at SDM output

Example: 2, -4, -2, 3, 0, 3 - 1, -3, 2, 1, ... for $x_f = 0.1$

Synthesizer architecture (1)

Synthesizer architecture (2)

Synthesizer architecture (3)

SiGe Design

- \rightarrow World best 1-chip synthesizer
- \rightarrow 250 MHz-24 GHz PLL
- → Integrated 17...20 GHz or 8...12 GHz VCO
- \rightarrow Fractional-N

Measurement results

Foundries and MMICs Feb-09 © IMST GmbH - All rights reserved

44

Synthesizer application test board

→PC interface

→Many test ports

Packages

 \rightarrow BGA simulation

 \rightarrow Equivalent circuits

→ Magnetic field

World smallest phase shifter (ka)

Size 960 x 360 μm^2 , Core 620 x 210 μm^2

 $V_D = 3 V$, $V_{C (B0-B4)} = 0 V / 3 V$ (active / not active)

Phase diagram

I M S

Any questions?

I M S