Introduction to Graphical User Interface (GUI) MATLAB 6.5

adl

"4.;-,,&“‘,@\“‘
UAE UNIVERSITY
COLLEGE OF ENGINEERING
ELECTRICAL ENGINEERING DEPARTMENT
IEEE UAEU STUDENT BRANCH

i\ &)

< J The MathWorks

Introduction to Graphical User Interface (GUI)

MATLAB 6.5
Presented By:
Refaat Yousef Al Ashi 199901469
Ahmed Al Ameri 199900378
Coordinated By:

Prof. Abdulla Ismail Abdulla

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
nch

¢ a
Aoy gruae®

Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can
make programs easier to use by providing them with a consistent appearance and with
intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. The GUI
should behave in an understandable and predictable manner, so that a user knows what to
expect when he or she performs an action. For example, when a mouse click occurs on a
pushbutton, the GUI should initiate the action described on the label of the button. This
chapter introduces the basic elements of the MATLAB GUIs. The chapter does not
contain a complete description of components or GUI features, but it does provide the
basics required to create functional GUIs for your programs.

1.1 How a Graphical User Interface Works

A graphical user interface provides the user with a familiar environment in which to
work. This environment contains pushbuttons, toggle buttons, lists, menus, text boxes,
and so forth, all of which are already familiar to the user, so that he or she can
concentrate on using the application rather than on the mechanics involved in doing
things. However, GUIs are harder for the programmer because a GUI-based program
must be prepared for mouse clicks (or possibly keyboard input) for any GUI element at
any time. Such inputs are known as events, and a program that responds to events is said
to be event driven. The three principal elements required to create a MATLAB Graphical
User Interface are

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit boxes, etc.) is a
graphical component. The types of components include graphical controls (pushbuttons,
edit boxes, lists, sliders, etc.), static elements (frames and text strings), menus, and axes.
Graphical controls and static elements are created by the function uicontrol, and menus
are created by the functions uimenu and uicontextmenu. Axes, which are used to display
graphical data, are created by the function axes.

2. Figures. The components of a GUI must be arranged within a figure, which is a
window on the computer screen. In the past, figures have been created automatically
whenever we have plotted data. However, empty figures can be created with the function
figure and can be used to hold any combination of components.

3. Callbacks. Finally, there must be some way to perform an action if a user clicks a
mouse on a button or types information on a keyboard. A mouse click or a key press is an
event, and the MATLAB program must respond to each event if the program is to
perform its function. For example, if a user clicks on a button, that event must cause the
MATLAB code that implements the function of the button to be executed. The code
executed in response to an event is known as a call back. There must be a callback to
implement the function of each graphical component on the GUI. The basic GUI
elements are summarized in Table 1.1, and sample elements are shown in Figure 1.1. We
will be studying examples of these elements and then build working GUIs from them.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

adl
fich

¢ a
Aoy gruae®

1.2 Creating and Displaying a Graphical User Interface

MATLAB GUIs are created using a tool called guide, the GUI Development
Environment. This foo/ allows a programmer to layout the GUI, selecting and aligning
the GUI components to be placed in it. Once the components are in place, the
programmer can edit their properties: name, color, size, font, text to display, and so forth.
When guide saves the GUI, it creates working program including skeleton functions that
the programmer can modify to implement the behavior of the GUI. When guide is
executed, it creates the Layout Editor, shown in Figure 1.2. The large white area with
grid lines is the layout area, where a programmer can layout the GUI. The Layout Editor
window has a palate of GUI components along the left side of the layout area. A user can
create any number of GUI components by first clicking on the desired component, and
then dragging its outline in the layout area. The top of the window has a toolbar with a
series of useful fools that allow the user to distribute and align GUI components, modify
the properties of GUI components, add menus to GUIs, and so on. The basic steps
required to create a MATLAB GUI are:

1. Decide what elements are required for the GUI and what the function of each element
will be. Make a rough layout of the components by hand on a piece of paper.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

2 W, sm‘ﬁc
Table 10.1 Some Basic GUI Components
Element Created By Description
Graphical Controls
Pushbutton uicontrol A graphical component that implements a pushbutton. It triggers a
callback when clicked with a mouse.
Toggle button uicontrol A graphical component that implements a toggle button. A toggle

button is either “on” or “off,” and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

Radio button uicontrol A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on.” Groups of radio
buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

Check box uicontrol A check box is a type of toggle button that appears as a small
square with a check mark in it when it is “on.” Each mouse click
on a check box triggers a callback.

Edit box uicontrol An edit box displays a text string and allows the user to modify
the information displayed. A callback is triggered when the user
presses the Enter key.

List box uicontrol A list box is a graphical control that displays a series of text
strings. A user can select one of the text strings by single- or
double-clicking on it. A callback is triggered when the user selects
a string.

Popup menus uicontrol A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

Slider uicontrol A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Static Elements

Frame uicontrol Creates a frame, which is a rectangular box within a figure. Frames
are used to group sets of controls together. Frames never trigger
callbacks.

Text field uicontrol Creates a label, which is a text string located at a point on the

figure. Text fields never trigger callbacks.
Menus and Axes

Menu items uimenu Creates a menu item. Menu items trigger a callback when a mouse
button is released over them.

Context menus uicontextmenu Creates a context menu, which is a menu that appears over a graph-
ical object when a user right-clicks the mouse on that object.

Axes axes Creates a new set of axes to display data on. Axes never trigger
callbacks.

Table 1.1 Some Basic GUI Components

Introduction to Graphical User Interface (GUI) MATLAB 6.5 Q
v &

Figure 1.1 A Figure Window showing examples of MA TLAB GUI elements. From top
to bottom and left to right, the elements are: (1) a pushbutton; (2) a toggle button in the
'on' state; (3) two radio buttons surrounded by a frame; (4) a check box; (5) a text field
and an edit box; (6) a slider; (7) a set of axes; and (8) a list box.

2. Use a MATLAB tool called guide (GUI Development Environment) to layout the
Components on a figure. The size of the figure and the alignment and spacing of
components on the figure can be adjusted using the tools built into guide.

3. Use a MATLAB tool called the Property Inspector (built into guide) to give each
component a name (a "tag") and to set the characteristics of each component, such as its
color, the text it displays, and so on.

4. Save the figure to a file. When the figure is saved, two files will be created on disk
with the same name but different extents. The fig file contains the actual GUI that you
have created, and the M-file contains the code to load the figure and skeleton call backs
for each GUI element.

5. Write code to implement the behavior associated with each callback function.

&
o
=g

Introduction to Graphical User Interface (GUI) MATLAB 6.5 ¢

.3'5'.'1[

“'E(,rsmw‘*é.
As an example of these steps, let's consider a simple GUI that contains a single
pushbutton and a single text string. Each time that the pushbutton is clicked, the text
string will be updated to show the total number of clicks since the GUI started.

Align Menu Property
~Objects | |~ Bditor | | Inspector -

GUI
Components

Design

Drag to

Resize

Design
Area

Figure 1.2 The guide tool window

Total Clicks: 0 ==

/ | Pushbutton

Text Field Sl - Pushbutton

Figure 1.3 Rough layout for a GUI containing a single pushbutton and a single label field.

Step 1: The design of this Gm is very simple. It contains a single pushbutton and a single
text field. The callback from the pushbutton will cause the number displayed in the text
field to increase by one each time that the button is pressed. A rough sketch of the GUI is
shown in Figure 1.3.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail

r
&
[&
ey St\ﬂ“&

Step 2: To layout the components on the GUI, run the MATLAB function guide. When
guide is executed, it creates the window shown in Figure 1.2.

} untitled.fig & : I

£

= =y

 Push Button -

Figure 1.4 The completed GUI layout within the guide window

First, we must set the size of the layout area, which will become the size the final GUI.
We do this by dragging the small square on the lower right corner of the layout area until
it has the desired size and shape. Then, click on the "pushbutton" button in the list of GUI
components, and create the shape of the pushbutton in the layout area. Finally, click on
the "text" button in the list GUI components, and create the shape of the text field in the
layout area. The resulting figure after these steps is shown in Figure 1.4. We could now
adjust the alignment of these two elements using the Alignment Tool, if desired.

Step 3: To set the properties of the pushbutton, click on the button in the layout area and
then select "Property Inspector” from the toolbar. Alternatively, right-click on the button
and select "Inspect Properties" from the popup menu. The Property Inspector window
shown in Figure 1.5 will appear. Note this window lists every property available for the
pushbutton and allows us set each value using a GUI interface. The Property Inspector
performs the same function as the get and set functions, but in a much more convenient
form.

Introduction to Graphical User Interface (GUI) MATLAB 6.5 ¢

[8.1671.31217 1.812]
on
7 [potod] F‘
~ E|clickHere :

=] <None>
i¥] characters
] nul
o0

L Visible =]on]

Figure 1.5 The Property Inspector showing the properties of the pushbutton. Note that the
String is set to 'Click Here', and the Tag is set to 'MyFirstButton'.

For the pushbutton, we may set many properties such as color, size, font, text alignment,
and so on. However, we must set two properties: the String property, which contains the
text to be displayed, and the Tag property, which is the name of the pushbutton. In this
case, the String property will be set to 'click Here', and the Tag property will be set to
MyFirstButton. For the text field, we must set two properties: the String property, which
contains the text to be displayed, and the Tag property, which is the name of the text
field. This name will be needed by the callback function to locate and update the text
field. In this case, the String property will be set to 'Total clicks: 0', and the Tag property
defaulted to 'MyFirstText'. The layout area after these steps is shown in Figure 1.6. It is
possible to set the properties of the figure itself by clicking on a clear spot in the Layout
Editor, and then using the Property Inspector to examine and set the figure's properties.
Although not required, it is a good idea to set the figure's Name property. The string in
the Name property will be displayed in the title bar of the resulting GUI when it is
executed.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

e R P e T A R I T it L T e S SRR

Figure 1.6 The design area after the properties of the pushbutton and the text field have
been modified.

Step 4: We will now save the layout area under the name MyFirstGUI. Select the
"File/SaveAs" menu item, type the name MyFirstGUI as the file name, and click "Save".
This action will automatically create two files, MyFirstGUI.fig and MyFirstGUIL.m. The
figure file contains the actual GUI that we have created. The M-file contains code that
loads the figure file and creates the GUI, plus a skeleton callback function for each active
GUI component.

At this point, we have a complete Gm, but one that does not yet do the job it was
designed to do. You can start this Gm by typing MyFirstGUI in the Command Window,
as shown in Figure 1.7. If the button is clicked on this GUI, the following message will
appear in the Command Window: MyFirstButton Callback not implemented yet. A
portion of the M-file automatically created by guide is shown in Figure 1.8. This file
contains function MyFirstGUI, plus dummy sub functions implementing the callbacks for
each active GUI component. If function MyFirstGUI is called without arguments, then
the function displays the Gm contained in file

Introduction to Graphical User Interface (GUI) MATLAB 6.5

b/

L2} &
“'é‘[_r Smﬂt“\

To get sterted, select "MATLAB Help™ from the Help menu,

>> cd d:\book\matlab\le\revl\chaplD
>> guide

>> guide

>> MyPiratGUI
> |

=
v
| i RN T T W IRt s S ;]rl 5

—_— - =

Figure 1.7 Typing MyFirstGUI in the Command Window starts the GUI.

MyFirstGUL.fig. If function MyFirstGUI is called with arguments, then the function
assumes that the first arguments the name of a sub function, and it calls that function
using feval, passing the other arguments on to that function. Each callback function
handles events from a single GUI component. If a mouse click (or keyboard input for
Edit Fields) occurs on the GUI component, then the component's callback function will
be automatically called by MATLAB. The name of the callback function will be the
value in the Tag property of the GUI component plus the characters " Callback". Thus,
the callback function for MyFirstButton will be named MyFirstButton Callback. M-files
created by guide contain callbacks for each active GUI component, but these callbacks
simply display a message saying that the function of the callback has not been
implemented yet.

Step 5: Now, we need to implement the callback sub function for the pushbutton. This
function will include a persistent variable that can be used to count the number of clicks
that have occurred. When a click occurs on the pushbutton, MATLAB will call the
function MyFirstGUI with MyFirstButton_callback as the first argument. Then function
MyFirstGUI will call sub function MyFirstButton callback, as shownin Figure 1.9. This
function should increase the count of clicks by one, create a new text string containing
the count, and store the new string in the String property of the text field MyFirstText.

10

Introduction to Graphical User Interface (GUI) MATLAB 6.5

revl’ chapl0\MyFirstd

| - *h

! L Yoz RS 3 b) Eif

function warargout = MyFirstGUI{varargin) =
£l % MYFIRSTGUI Application M-file for MyFirstGUI.fig Al

b ! ot FIG = MYFIRSTGUI launch MyFirstGUI GUI.

| | % MYFIRSTGUI('callback name', ...) invoke the named callback.

% Last Modified by GUIDE w2.0 22-Jun-2001 21:14:46 Bl

[
if nargin == 0 % LAUNCH GUI : |
I e If called without an ;
iz fig = openfig(mfilename, 'reuse']:*—"_f argument, open the GUI. |
; |
i % Use system color scheme for figure: _

sat(fig, "Color’,get (0, "defaultUicontrolBackgroundColor')); '

i % Generate a structure of handles to pass to callbacks, and store it.
6| handles = guihandles{fig):
| = guidata(fig, handles) ;|

if margout > 0
I = varargout{1l} = fig;
=| end

|
I
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CARLLBACK !
try ‘

|

[varargout (1l:nargout}] = feval(varargin{:}): % FEVAL switchyard

G catch .
BSog disp(lasterr) ; : &
E e If called with an argument, B
I)|

execute the argument as a o

[=| ena Callbacks are subfunctions. finction. ol

function varargout = MyFirstButton Callback(h, eventdata, handles, varargin)
| % Stub for Callback of the uicontrol handles.MyFirstButten.
© 38|-| disp('MyFirstButton Callback not implemented yet.')

hikibotd SEEIE 1 ’ AL o M ‘1"[" AR il TR

Figure 1.8 The M-file forMyFirstGUI, automatically created by guide.

A function to perform this step is shown below:

function varargout = MyFirstButton Callback(h, eventdata, ...
handles, varargin)

% Declare and initialize variable to store the count
persistent count
if isempty (count)
count = 0;
end

11

Introduction to Graphical User Interface (GUI) MATLAB 6.5

% Update count
count = count + 1;

% Create new string

ail
4,
Y

L2
ey Sm&"&

str = sprintf('Total Clicks: $d',count) ;

% Update the text field
get (handles.MyFirstText,' string',str):;

Total clicks: 0

Original event:
mouse click on button

Button calls MyFirstGUI with
argument MyFirstGUI_Callback

MyFirstGUI

MyFirstButton_Callback

MyFirstGUI calls subfunction
MyFirstGUI_Callback

. * in
Fund.;lon updates string i 1“)1:3‘ clicks: 1
MyFirstText

Figure 1.9 Event handling in program MyFirstGUI. When a user clicks on the button with
the mouse, the function MyFirstGUI is called automatically with the argument

MyFirstButton_callback.

Function MyFirstGUI in

turn calls sub function

12

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
“aney

L5 i
Aoy gruae®

MyFirstButton _Callback. This function increments count, and then saves the new count
in the text field on the GUL

Figure 1.10 The resulting program after three button pushes.

Note that this function declares a persistent variable count and initializes it to zero. Each
time that the function is called, it increments count by 1 and creates a new string
containing the count. Then, the function updates the string displayed in the text field
MyFirstText. The resulting program is executed by typing MyFirstGUI in the Command
Window. When the user clicks on the button, MATLAB automatically calls function
MyFirstGUI with MYFirstButton Callback as the first argument, and function
MyFirstGUI calls sub function MyFirstButton Callback. This function increments
variable count by one and updates the value displayed in the text field. The resulting GUI
after three button pushes is shown in Figure 1.10.

Good Programming Practice

Use guide to layout a new GUI, and use the Property Inspector to set the initial properties
of each component such as the text displayed on the component, the color of the
component, and the name of the callback function, if required. After creating a GUI with
guide, manually edit the resulting function to add comments describing its purpose and
components and to implement the function of callbacks.

1.2.1 A Look Under the Hood

Figure 1.8 shows the M-file that was automatically generated by guide for MyFirstGUI.
We will now examine this M-file more closely to understand how it works.

First, let's look at the function declaration itself. Note that this function uses varargin to
represent its input arguments and varargout to represent its output results. Function
varargin can represent an arbitrary number of input arguments, and function varargout
can represent a varying number of output arguments. Therefore, a user can call function
MyFirstGUI with any number of arguments.

Calling the M-File without Arguments
If the user calls MyFirstGUI without arguments, the value returned by margin will be

zero. In this case, the program loads the Gm from the figure file MyFirstGUI.fig using
the openfig function. The form of this function is

13

Introduction to Graphical User Interface (GUI) MATLAB 6.5

A Al
“aney

“ <
by Stuﬂ"“\

fig = openfig(mfilename, ‘reuse’);

where mfilename is the name of the figure file to load. The second argument in the
function specifies whether there can be only one copy of the figure running at a given
time, or whether multiple copies can be run. If the argument is 'reuse’, then only one copy
of the figure can be run. If openfig is called with the 'reuse' option and the specified
figure already exists, the preexisting figure will be brought to the top of the screen and
reused. In contrast, if the argument is 'new', multiple copies of the figure can be run. If
openfig is called with the' new' option, a new copy of the figure will be created each time.
By default, a GUI created by guide has the' reuse' option, so only one copy of the figure
can exist at any time. If you want to have multiple copies of the GUI, you must manually
edit this function call. After the figure is loaded, the function executes the statement

= | Edig, "Coloct geb |0, 'deEanitlicontral BackgronmdDalart 11 ; ‘

This function sets the background color of the figure to match the default background
color used by the computer on which MATLAB is executing. This function makes the
color of the GUI match the color of native windows on the computer. Therefore, a GUI
can be written on a Windows-based PC and used on a UNIX-based computer, and vice
versa. It will look natural in either environment. The next two statements create a
structure containing the handles of all the objects in the current figure and store that
structure as application data in the figure.

handles = guihandles{Eig)

ouldataitig, handles|;

Function guihandles creates a structure containing handles to all of the objects within the
specified figure. The element names in the structure correspond to the Tag properties of
each GUI component, and the values are the handles of each component. For example,
the handle structure returned in MyFirstGUIL.m is

>> handles = gulhandles(fig)
handles =
figurel: 99.0005

MyFirstText: 3.0021
MyFirstButton: 100.0007

There are three GUI components in this figure the figure itself, plus a text field and a
pushbutton. Function guidata saves the handles structure as application data in the figure,
using the setappdata function. The final set of statements here returns the figure handle to
the caller if an output argument was specified in the call to MyFirstGUI.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

adl
fich

¢ a
Aoy gruae®

it nargout = 0
varargout(l} = Fig

Calling the M-File with Arguments

If the user calls MyFirstGUI with arguments, the value returned by nargin will be greater
than zero. In this case, the program treats the first calling argument as a callback function
name and executes the function using feval. This function executes the function named in
varagin{l} and passes all of the remaining arguments (varargin{2}, varargin{3}, etc.) to
the function. This mechanism allows callback functions to be sub functions that cannot be
accidentally called from some other part of the program.

1.2.2 The Structure of a Call back Sub function

Every callback sub function has the standard form

I'ag_Callbackil 2oEdaca -

handl as AT

where ComponentTag is the name of the component generating the callback (the string in
its Tag property). The arguments of this sub function are
e h- The handle of the parent figure
e cventdata- A currently unused (in MATLABVersion6) array.
e handles- The handles structure contains the handles of all GUI components on the
figure.
e varargin- A supplemental argument passing any additional calling arguments to
the callback function. A programmer can use this feature to provide additional
information to the callback function if needed.

Note that each callback function has full access to the handles structure, so each callback
function can modify any GUI component in the figure. We took advantage of this
structure in the callback function for the pushbutton in MyFirstGUI, where the callback
function for the pushbutton modified the text displayed in the text field.

% Update the text field
Set (handles.MyFirstTeuxt, 'String',str);

1.2.3 Adding Application Data to a Figure

It is possible to store application-specific information needed by a GUI program in the
handles structure instead of using global or persistent memory for that data. The resulting
GUI design is more robust because other MATLAB programs cannot accidentally modify
the global GUI data and because multiple copies of the same GUI cannot interfere with
each other.

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
&
“aney

L5
Aoy gruae®

To add local data to the handles structure, we must manually modify the Mfile after it is
created by guide. A programmer adds the application data to the handles structure after
the call to guihandles and before the call to guidata. For example, to add the number of
mouse clicks count to the handles structure, we would modify the program as follows:

% Ganerate a structure of handles to paepe to callbacks
handies = gulhandles (£ig);

% Add count to the sTtruocture.
handles.oount = 0F

% Store the struckure
puideats|fig, handles}

This application data will now be passed with the handles structure to every callback
function, where it can be used. A version of the pushbutton callback function that uses
the count value in the handles data structure is shown below. Note that we must save the
handles structure with a call to guidata if any of the information in it has been modified.

rargoukt = MyFirstButton_Callback{h;, eventdata,

harnc] ea

% Update count
handles.count = handles.codnt + 1;

% Save the updated handles stcucturs
guidataih, handlesm}))

% Croate maw string
gtr = gprintf{*Total Clicks: %4',handlas.coont]r

Good Programming Practice

Store GUI application data in the handles structure, so that it will automatically be
available to any callback function.

If you modify any of the GUI application data in the handles structure, be sure to save the
structure with a call to guidata before exiting the function where the modifications
occurred.

1.2.4 A Few Useful Functions

Three special functions are used occasionally in the design of callback functions: gcbo,
gcbf, and findobj. Although these functions are less needed with MATLAB 6.5 GUIs
than with earlier versions, they are still very useful, and a programmer is sure to
encounter them.

Function gcbo (get callbackobject) returns the handle of the object that generated the
callback, and function gebf (get callbackfigure) returns the handle of the figure
containing that object. These functions can be used by the callback function to determine
the object and figure producing the callback, so that it can modify objects on that figure.

16

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail

4,
“aney

¢
Aoy gruae®

Function findobj searches through all of the child objects within a parent object, looking
for ones that have a specific value of a specified property. It returns a handle to any
objects with the matching characteristics. The most common form of findobj is

Hodl =

Tindehy (parent, 'Pr operty ' Value) ¢

where parent is the handle of a parent object such as a figure, 'Property’ is the property to
examine, and 'Value' is the value to look for. For example, suppose that a programmer
would like to change the text on a pushbutton with the tag' Buttonl ' when a callback
function executes. The programmer could find the pushbutton and replace the text with
the following statements

Hodl = Findobii gebf, 'Tagt, "Buttonl
SREing', "New cext' i,

set[Hndl,

1.3 Object Properties

Every GUI object includes an extensive list of properties that can be used to customize
the object. These properties are slightly different for each type of object (figures,
axes,uicontrols,etc.).All of the properties for all types of objects are documented on the
online Help Browser, but a few of the more important properties for figure and uicontrol
objects are summarized in Tables 1.2 and 1.3.

Object properties may be modified using either the Property Inspector or the get and set
functions. Although the Property Inspector is a convenient way to adjust properties
during GUI design, we must use get and set to adjust them dynamically from within a
program, such as in a callback function.

Property I:rﬂ.f_rlp-tlm

Color Epecifies the color af the fipre. The value is eitler & predefined color such as 'c, o o
‘%!, of else @ I—element wector specifying the red, green, and blwe camponents of the
color om a kI seale. Far example, the color magenta would be specified by [1 31

ManuBazr Specifies whether ar oot the defoult set of menus appears on the figure, Possible valees
e "Tigure' to display the defal menus or ‘none' o delete them

Hame A snng eosinining the name that appears in the title bar of 2 fgurs

NumberTiclie Specified whether ar pol tae figure number appears in the dibe bar. Possile values are

'on’' ar'of £,

Position Spevifies the position of a figure on the seeen, in the units specified by the unics'
praperty. This value scoepts a 4-element vector in which the first two elements are the
und ¥ posittons of the lower befi-hasd comer of the fipure, and the next two elements are
the widih and herght of the figure.

SZelectionType Spcl:ll-:ur. the type of s=lectian for the Inst mease click on this Agure. A single click

remurns fype ‘normal’, A dowble chick retums type 'open’. There re sdditional options:
see the MATL AR an-line dlecumen tation

Tag The ‘name’ of the figune, which can be used 1o bocate it
Unics The units used 10 deseribe e position of e figure, Possible choices are *inches!,
‘entimeters’, normalized, ‘poinks’, "pixala, or 'characters” The defanh

uniis ar ‘pinals’

Vislible Specalics whether or not this figure = visible, Possible valus ae 'on® oe'of £
WindowStyle Specifies whether this figure is normal or modal (see discussion of Dialog Baxes)
Poscible volwes pre 'narmal' o modalt

Table 1.2 Important figure Properties

17

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
nch

¢ a
Aoy gruae®

1.4 Graphical User Interface Components

This section summarizes the basic characteristics of common graphical user interface
components. It describes how to create and use each component, as well as the types of
events each component can generate. The components discussed in this section are

Text Fields
Edit Boxes
Frames
Pushbuttons
Toggle Buttons
Checkboxes
Radio Buttons
Popup Menus
List Boxes
Slide

Introduction to Graphical User Interface (GUI) MATLAB 6.5

® g
w]
- &
&, &
4€[J’5m&“‘\
Proparty Description
BackgroundColor Specifies the hackground color of the chject, The valis: is gither a predefimed
color such & "', |_4'_ of "B, or elee a J-element veciorn snn:il':.-lnp' e red, HIEENL

and blise compoeents of the color on o 0-1 seale. For example, the color
magenta wimkl be specified by (1 0 1)

Callback Specifies the niame axl pumameters of the fanction o be called when the shject
15 activaled by a keyboand or texi input

Enahlo Spacifies whether or mat this ohject iz selectable. 1 it o nod emabled, i will oot
respond to mouse or keyboard input. Possible values o ‘oo or 'of £

Fonbhngle A sinmg contasmng the font angle for fext deplayed oo e object. Poashle
valuas are “nocmal’, "italic!, ped "obl i qua’

Fonthame A string contaming the font name for fext deplayed on the obpect.

Fontsize A number specifying the font size for et displayed oo the obpect. By defoult,
thwe font siee i specificd in poinis.

FontWeight A siring contairing the font weight for text displeyed oo the object. Possible
valuee s '1iakt!, mormal’, ‘dami’, and 'bald’
ForegroundColor Specifies the foreground color of the object

Horizontalilignment Specifics the bocmontal .1||,;nmur|.| of neext string within the object. Possible
values are 'left!, 'center’ and 'right'.

Hax The maximium size of the valus propeny for this chject

Mim I'he minimum slze af the value propesty for this objac

Farent The landle of the fgure contammy this objecl

Pagition Spevalics e position of the object an the screen. in the onits specified by the

‘und tE' propery. This valee sccepts o 4-glemenl wecior (o WEich 1 (g iwo
elements are thie 1 and ¥ pasition e |oweer lefi-band comer of the ohject
relmifee do dhe faore contareiegg 8, ond the pexl o elements oo the wqdth 2anid

lnglght of 1he ohject
Tag The “mamie” of the ohgect, which can be used 1 locaie il
Tool tipStcing Specifies the help text 0 be displayved when o user places the mouse poinier

axer an nhject

Bnits The units ased o describe the postion of the Tpure, Possable choices ane
nches!, ‘centinatars’, mormal izad', 'polnts’, ‘plxels’, or
'characters. The defalt mits ane 'pixels’

Value The current value of the wicontrel. For toggle buitons, check boxes, ond
raliny builons, the volee 152 max when the buston s on and min when the bugion
15 off. Other controls have different meanings for this teom.

Vieihies Specifies whiether or oot this object is visshke. Possthle wiloes are on® or oE £

1.4.1 Text Fields

A text-field is a graphical object that displays a text string. You can specify how the text
is aligned in the display area by setting the horizontal alignment property. By default, text
fields are horizontally centered. A text field is created by creating a uicontrol whose style
property is 'edit'. A text field may be added to a GUI by using the text tool in the Layout
Editor. Text fields do not create callbacks, but the value displayed in the text field can be
updated in a callback function by changing the text field's String property, as shown in
Section 1.2.

1.4.2 Edit Boxes

An edit box is a graphical object that allows a user to enter a text string. The edit box
generates a callback when the user presses the Enter key after typing a string into the box.
An edit box is created by creating a uicontrol whose style property is 'edit'. An edit box
may be added to a GUI by using the edit box tool in the Layout Editor.

Figure 1.11a shows a simple GUI containing an edit box named, ‘Edit Box’ and a text
field named 'TextBox' .When a user types a string into the edit box, it automatically calls
the function EditBox_Callback, which is shown in Figure 1.11b. This function locates the
edit box using the handles structure and recovers the string typed by the user. Then, it

19

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail

-
" 4
¢ <

by groae™

locates the text field and displays the string in the text field. Figure 1.12 shows this GUI
just after it has started and after the user has typed the word "Hello" in the edit box.

1.4.3 Frames

A frame is a graphical object that displays a rectangle on the GUI. You can use frames to
draw boxes around groups of logically related objects. For example, a frame is used to
group the radio buttons together on Figure 1.1. A frame is created by creating a uicontrol
whose style property is 'frame'. A frame maybe added to a GUI by using the frame tool in
the LayoutEditor. Frames do not generate callbacks.

1.4.4 Pushbuttons

A pushbutton is a component that a user can click on to trigger a specific action. The
pushbutton generates a callback when the user clicks the mouse on it. A pushbutton is
created by creating a uicontrol whose style property is '‘pushbutton’. A pushbutton may be
added to a GUI by using the pushbutton tool in the Layout Editor. Function MyFirstGUI
in Figure 1.10 illustrated the use of pushbuttons.

TypaTe :rLH Ll]

|
¥

fin)

Eunctian varargout = EdirBax Callback(h, eventdata, ...
handles, warargin]

¥ Find the valus cyped into the edit box
str = get l(handlas.BditBox, 'String’ }b:

% Flace the wvalue into the text field
et (handles.TextBax, 'Btring’, str)

Figure 1.11 (a) Layout of a simple GUI with an edit box and a text field. (b) The callback
functions for this GUI.

20

Introduction to Graphical User Interface (GUI) MATLAB 6.5

adl
fich

<
ey g
Dresteatan TR e caoo]
EchaTestiHere Hallo

fa) B

Figure 1.12 (a) The GUI produced by program test edit. () The GUI after a user types
Hello into the edit box and presses Enter.

1.4.5 Toggle Buttons

A toggle button is a type of button that has two states: on (depressed) and off (not
depressed). A toggle button switches between these two states whenever the mouse clicks
on it, and it generates a callback each time. The 'Value' property of the toggle button is
set to max (usually 1) when the button is on, and min (usually 0) when the button is off.
A toggle button is created by creating a uicontrol whose style property is toggle button. A
toggle button may be added to a GUI by using the toggle button tool in the Layout Editor.
Figure 1.13a shows a simple GUI containing a toggle button named 'ToggleButton' and a
text field named' TextBox'. When a user clicks on the toggle button, it automatically calls
the function ToggleButton Callback, which is shown in Figure 1.13b. This function
locates the toggle button using the handles structure and recovers its state from the'
Value' property. Then, the function locates the text field and displays the state in the text
field. Figure 1.14 shows this GUI just after it has started, and after the user has clicked on
the toggle button for the first time.

1.4.6 Checkboxes and Radio Buttons

Checkboxes and radio buttons are essentially identical to toggle buttons except that they
have different shapes. Like toggle buttons, checkboxes and radio buttons have two states:
on and off. They switch between these two states whenever the mouse clicks on them,
generating a callback each time. The 'Value' property of the checkbox or radio button is
set to max (usually 1) when they are on, and min (usually 0) when they are off. Both
checkboxes and radio buttons are illustrated in Figure 1.1.

A checkbox is created by creating a uicontrol whose style property is 'checkbox', and a
radio button is created by creating a uicontrol whose style property is 'radiobutton'. A
checkbox may be added to a GUI by using the checkbox tool in the Layout Editor, and a
radio button may be added to a GUI by using the radio button tool in the Layout Editor.
Checkboxes are traditionally used to display on/off options, and groups of radio buttons
are traditionally used to select among mutually exclusive options. Figure 1.15a shows an
example of how to create a group of mutually exclusive options with radio buttons. The
GUI in this figure creates three radio buttons, labeled "Option 1," "Option 2," and
"Option 3." Each radio button uses the same callback function, but with a separate
parameter. The corresponding callback functions are shown in Figure 1.ISb. When the
user clicks on a radio button, the corresponding callback function is executed. That

21

Treh

=2
*mwe“f
function sets the text box to display the current option, turns on that radio button, and
turns off all other radio buttons. Note that the GUI uses a frame to group the radio buttons
together, making it obvious that they are a set. Figure 1.16 shows this GUI after Option 2

has been selected.

Introduction to Graphical User Interface (GUI) MATLAB 6.5 Q
[

Function varargout = ToggleButton Callbackih, eventdata, ...
handles, vararginl

¥ Flnd the scace of the toggle bubton
state = qnt[handlnn.Tugqlenuttnn.-valuu-];

% Place the value inte the text field
il Brate == 0
_ 8et (handles. TextBoo, 'Strlng!, *Off) ;
elas
set [handles. TextBox, ‘Gcring', 'on"|:
20

i

Figure 1.13 (a) Layout of a simple GUI with a toggle button and a text field. (b) The call
back function for this GUIL

b

Figure 1.14 (a) The GUI produced by program test togglebutton when the toggle button
is off. (b) The GUI when the toggle button is on.

22

B

&
o
=g

Introduction to Graphical User Interface (GUI) MATLAB 6.5 Q
&,

&
Uy graae®

Eunctiom varargout = radichbuttonl Callback{h, eventdata, handles, varargin)

set (handles.Labell, "String®, 'Optioo 1');
melt (handles radicbubtonl, 'Valoe® 1] ;
sat (handles.radichuktton, '%falua’ 4]
sk (handles. radicbuttond, 'Value' 0] ;

function varargout = radisbuttond_Callback[h. eventdats, handles. varargini

et (handles.Labell, 'Scring’, 'Opcien 27)1
gat (handles , radiobuttonl, *Walus', 017
ot {handles radicbuttond, "Walue' 1};
get {handles radlobuttond, “walue', 0

Tupstlan varaegout - radiobuttond Callback (h. eventdats, handles, wvararginl

gt |handles Labell. *String', "Option 3°);
get [handles.radlobuttenl, '"Valde® D);
set |handles.radiobukbond, "Walue®, Di;
gak [(handles, radiobuttond, "Walue® 1);

il

Figure 1.15 (a) Layout of a simple GUI with three radio buttons in a frame, plus a text
field to display the current selection. (b) The callback functions for this GUI.

Fiur 1.16 The GUI produced by program test radiobutton

1.4.7 Popup Menus

Popup menus are graphical objects that allow a user to select one of a mutually exclusive
list of options. The list of options that the user can select among is specified by a cell
array of strings, and the 'Value' property indicates which of the strings is currently
selected. A popup menu may be added to a GUI by using the popup menu tool in the
Layout Editor.

Figure 1.17a shows an example of a popup menu. The GUI in this figure creates a popup
menu with five options, labeled "Option I," "Option 2," and so forth. The corresponding
callback function is shown in Figure 1.17b. The call back function recovers the selected
option by checking the' Value' parameter of the popup menu, and creates and displays a

23

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail

g

£

) g
£ grade™

string containing that value in the text field. Figure 1.18 shows this Gm after Option 4 has
been selected.

1.4.8 List Boxes

List boxes are graphical objects that display many lines of text and allow a user to select
one or more of those lines. If there are more lines of text than can fit in the list box, a
scroll bar will be created to allow the user to scroll up and down within the list box. The
lines of text that the user can select among are specified by a cell array of strings, and the'
Value' property indicates which of the strings are currently selected. A list box is created
by creating a uicontrol whose style property is 'listbox'. A list box may be added to a GUI
by using the listbox tool in the Layout Editor.

List boxes can be used to select a single item from a selection of possible choices. In
normal GUI usage, a single mouse click on a list item selects that item but does not cause
an action to occur. Instead, the action waits on some external trigger, such as a
pushbutton. However, a mouse double-click causes an action to happen immediately.
Single-click and double-click events can be distinguished using the SelectionType
property of the figure in which the clicks occurred. A single mouse click will place the
string 'normal' in the SelectionType property, and a double mouse click will place the
string' open' in the SelectionType property.

fal

[unctlon warargout = radicbuttonl Callback|h; eventdsta, handies, varargin|

& find the wvalus of the popup menu
valus = get[handles. fopupl, "Valus'l;

% Place the walue Intoe the text Field
BLr = ["Opficm ' mum2acr (value)]|:
s=t [handle=.Labe=ll, ‘String® ;str)

(il

Figure 1.17 (a) Layout of a simple GUI with a popup menu and a text field to display the
current selection. (b) The callback functions for this GUI.

) tetpopup s SNIGTEY]

Optice 4

Opticn 4 - o

Figure 1.18 The GUI produced by program test popup.

24

Introduction to Graphical User Interface (GUI) MATLAB 6.5 ¢

&
o
=g

.3'5'.'1[

A A4
It is also possible for a list box to allow multiple selections from the list. If the difference
between the max and min properties of the list box is greater than one, then multiple
selections is allowed. Otherwise, only one item may be selected from the list.

Figure 1.19a shows an example of a single-selection list box. The GUI in this figure
creates a list box with eight options, labeled "Option 1", "Option 2," and so forth.In
addition,the Gm creates a pushbutton to perform selection and a text field to display the
selected choice. Both the listbox and the pushbutton generate callbacks.

The corresponding callback functions are shown in Figure 19b. If a selection is made in
the listbox, then function Listbox1 Callback will be executed.

l

e
4]

-
=

{=nction vararpegr = Bortosl Cellibackibh, sveoolats
aived | arargin
% Find the valus of the popup medn
value = gwe fhandles Llsthox], "VYaluse*
% Godate tact label
pir = [*Option * mlstrivalu=]]
get Jhandles, Labsli, 'gtripa’. =tel ¢
o oo im T wi=s
andl e 1
VIF thit wis a double click, update chs label
sslectiontype = gL {gobl s oot | onTys
{ seleeiontyom il
¥ Fird the value of the pogup heou
valu= = gecihandles. Ligthawl '‘Valius'|:
i pdats taxi labe]
=T = ["Optien et et (VRIS
et (Fua as . Label 1
wnd

Figure 1.19(a) Layout of a simple Gm with a listbox, a pushbutton, and a text field. (b)
The callback functions for this GUI Note that selection can occur either by clicking the
button or double-clicking on an item in the listbox.

25

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail
“rnch

L2} &
“'é‘[_r Smﬂt“\

Figure 1.20 The GUI produced by program test listbox.

This function will check the figure producing the callback (using function gebf) to see if
the selecting action was a single-click or a double-click. If it was a single-click, the
function does nothing. If it was a double-click, then the function gets the selected value
from the listbox, and writes an appropriate string into the text field.

If the pushbutton is selected, then functionButtonl Callbackwill be executed. This
function gets the selected value from the listbox, and writes an appropriate string into the
text field. The GUI produced by program test listbox is shown in Figure 1.20.

In an end of chapter exercise, you will be asked to modify this example to allow multiple
selections in the list box.

1.4.9 Sliders

Sliders are graphical objects that allow a user to select values from a continuous range
between a specified minimum value and a specified maximum value by moving a bar
with a mouse. The 'Value' property of the slider is set to a value between min and max
depending on the position of the slider.

A slider is created by creating a uicontrol whose style property is 'slider'. A slider may be
added to a GUI by using the slider tool in the Layout Editor.

Figure 1.21a shows the layout for a simple GUI containing a slider and a text field. The
'Min' property for this slider is set to zero, and the 'Max' property is set to ten. When a
user drags the slider, it automatically calls the function Slider1 Callback, which is shown
in Figure 1.21b. This function gets the value of the slider from the 'Value' property and
displays the value in the text field. Figure 1.22 shows this Gm with the slider at some
intermediate position in its range.

26

Introduction to Graphical User Interface (GUI) MATLAB 6.5

.3'3'.'1[
fich

¢ &
by groae™

STAIgs L Eea i e ==
Lanel e arar]
% Find che valoe af the s&lides
value s get (hardles Elidec] “PaTues
b Fleou th= valoe 10 the cext [i=ld
abr = spEicef ("%, 2F' walue)
st (handles. labell, "String’,.stc)

Figure 1.21(a) Layout of a simple GUr with a slider and a text field. (b) The callback
function for this GUL

Figure 1.22 The GUI produced by program test_slider.

1.5 Dialog Boxes

A dialog box is a special type of figure that is used to display information or to get input
from a user. Dialog boxes are used to display errors, provide warnings, ask questions, or
get user input. They are also used to select files or printer properties. Dialog boxes may
be modal or non-modal. A modal dialog box does not allow any other window in the
application to be accessed until it is dismissed, whereas a non-modal dialog box does not
block access to other windows. Modal dialog boxes are typically used for warning and
error messages that need urgent attention and cannot be ignored. By default, most dialog
boxes are non-modal. MATLAB includes many types of dialog boxes, the most important
of which are summarized in Table 1.4. We will examine only a few of the types of dialog
boxes here, but you can consult the MATLAB online documentation for the details of the
others.

27

Introduction to Graphical User Interface (GUI) MATLAB 6.5

& I}
[=g
® &
¢, &
41?“5;“&‘&
Property Drescriprion
dialog Creatss a penevic dinlog box.
errorilg [rsplays an ermr messape ina dialag box, The user mest click the 03 buton o costmue
helpdlyg Dspinys i belp message in & dmlog box, The wer must click the OF bution o continue.
inpuicdlg Displays a request foe inpat dats and aceepis the wser's input values
ligtdlyg Allowis & Eer i ke Gne or more selections fom a lid
prinrdlg Digplays a printer selecrion dialog hox
guestdlg Ak question. This dialog box can contnin either fwo or (hree ottone, which by delult are

Inbeled Y=, Bo, and Cancal

uigetfile Diisplays o file open dialeg box. This box allows a user to select a file to open hur dees mot ac
tdiy open die file

wiputfilm Displays a file sove dialog box. This box allows a user to select @ file o save, hut does wof ar-
ity save the flie.

ulsetcolor Displays & color selection dialog box
wisetfont Displays o font selection dinlog box

warndlg Displmys n waming message in a dialog box, The user must click the 0K button to continue.

Table 1.4 Selected Dialog Boxes

Figure 1.25 An error dialog box

1.5.1 Error and Warning Dialog Boxes
Error and warning dialog boxes have similar calling parameters and behavior. In fact, the
only difference between them is the icon displayed in the dialog box. The most common
calling sequence for these dialog boxes is

errordlg(error_string,box _title,create mode);
warndlg(warning_string,box title,create_mode);

The error_string or warning_string is the message to display to the user, and the box _title
is the title of the dialog box. Finally, create mode is a string that can be 'modal’ or 'non-
modal', depending on the type of dialog box you want to create.

For example, the following statement creates a modal error message that cannot be
ignored by the user. The dialog box produced by this statement is shown in Figure 1.25.

errordlg('Invalid input values!', 'Error Dialog Box', 'modal’);

1.5.2 Input Dialog Boxes
Input dialog boxes prompt a user to enter one or more values that may be used by a
program. Input dialog boxes may be created with one of the following calling sequences.

answer = inputdlg(prompt)

answer = inputdlg(prompt,title)

answer = inputdlg(prompt,title,line no)

answer = inputdlg(promPt.title,line_no,default answer)

28

"
%

&
o
=g

Introduction to Graphical User Interface (GUI) MATLAB 6.5 ¢

“W N
Uy graae®

Here, prompt is a cell array of strings, with each element of the array corresponding to
one value that the user will be asked to enter. The parameter title specifies the title of the
dialog box, and line no specifies the number of lines to be allowed for each answer.
Finally, default_answer is a cell array containing the default answers that will be used if
the user fails to enter data for a particular item. Note that there must be as many default
answers as there are prompts.

Figure 1.26 An input dialog box

When the user clicks the OK button on the dialog box, his or her answers will be returned
as a cell array of strings in variable answer. As an example of an input dialog box,
suppose that we wanted to allow a user to specify the position of a figure using an input
dialog. The code to perform this function would be

prompt{l} = 'Starting x position:';

prompt{2} = 'Starting y position: ';

prompt(3} = "Width:';

prompt{4} = 'Height: ';

title = 'Set Figure Position';

default _ans = {'50','50','180",'"100'};

answer = inputdlg(promPt.title,l,default ans};

The resulting dialog box is shown in Figure 1.26.

1.5.3 The uigetfile and uisetfile Dialog Boxes

The uigetfile and uisetfile dialog boxes are designed to allow a user to interactively pick
files to open or save. These dialog boxes return the name and the path of the file but do
not actually read or save it. The programmer is responsible for writing additional code for
that purpose. The form of these two dialog boxes is

[filename, pathname] = uigetfile(filter spec,title};
[filename, pathname] = uisetfile(filter_spec,title);

29

Introduction to Graphical User Interface (GUI) MATLAB 6.5

ail

-
" 4
¢ <
by groae™

Parameter filter spec is a string specifying the type of files to display in the dialog box,
such as '"*.m', "* .mat', and so on. Parameter title is a string specifyingthe title of the dialog

Figure 1.27 A file open dialog box created by uigetfile on a Windows 2000 Professional
system.

After the dialog box executes, filename contains the name of the selected file and
pathname contains the path of the file. If the user cancels the dialog box, filename is set
to zero. The following script file illustrates the use of these dialog boxes. It prompts the
user to enter the name of a mat-file, then reads the contents of that file. The dialog box
created by this code on a Windows 2000 system is shown in Figure 1.27. (The style of
the box varies for different operating systems. It will appear slightly different on a
Windows NT 4.0 or UNIX system).

[filename, pathname] = uigetfile('*.mat', 'Load MAT File'};
if filename ~= 0

load([pathname filename])

end

Good Programming Practice

Use dialog boxes to provide information or request input in GUI-based programs. If the
information is urgent and should not be ignored, make the dialog boxes modal.

1.6 Menus

Menus can also be added to MATLAB GUIs. A menu allows a user to select actions
without additional components appearing on the GUI display.

30

Introduction to Graphical User Interface (GUI) MATLAB 6.5

VAl
Ko
%
q*-'i'nch

PFroporty Boscription

Accelerator Asingle charseter specifying the keyboard equivnlent for the mena iteme The keybornd eom-
bination CTRL+key allows a user to activale the menu flem from the keyboard.

Callback Specifies the name and parameters of the function v be called when the memu item i scti-
wated, T the menu Hem has a submseni, the callback executes bafiire the sshmery iy digplayed.
I the menu item does not heve sabmesus, then the callbeck execuics whes the mouse button
i8 refemead,

Checked When this property Is 'on', a checkmark s plsced to the lefi of the menu item This prop-
erty can be wsed o indicae the stans of menu Heis that toggle betwoen two stales, Possible
values are 'on ' o ‘ofl’,

Enable Specifies whether or not tlis menu ibem i3 seloctable, IF it is not eosbled, te mens Bem will
mot respond o mousa elicks or sceelerator keys, Possible valees are 'on’ or 'ofE' .
Label Specifies the texr w be dsplayed on the menu, The ampersand character (&) can be used 1o

apeeify a keyboand meemonic for this mena em; # will not appear on the label. For exam-
ple, the siring '&File’ will creste 8 meno iem disploying the wex *File® and responid-

ing 1o the F key.

Parent The handle of the parent object for this menw item. The parent abject cosld be & figure or an-
ather men item.

Posibion Specifies the prartian of 0 men item on the menu baror withie & menu Position | is the left-
mast menw position for 8 top-level menu, and the highest position within 2 sshmeno.

Separator When this properfy is 'on ', o separsting e is doswis above this mena nem. Possible val-
uesan: “on' of ‘aff’,

Tag The *nume” of the menu (em, which con be used w locate o

Visible Specifies whether or sot this menu e &5 vsible, Possible values are oo of 'GEE,

Table 1.5 Important uimenu Properties

Menus are useful for selecting less commonly used options without cluttering up the GUI
with a lot of extra buttons. There are two types of menus in MATLAB: standard menus,
which are pulled down from the menu bar at the top of a figure, and context menus,
which pop up over the figure when a user right-clicks the mouse over a graphical object.
We will learn how to create and use both types of menus in this section. Standard menus
are created with uimenu objects. Each item in a menu is a separate uimenu object,
including items in submenus. These uimenu objects are similar to uicontrol objects, and
they have many of the same properties such as Parent, Callback, Enable, and so forth. A
list of the more important uimenu properties is given in Table 1.5.

Each menu item is attached to a parent object, which is a figure for the top level menus,
or another menu item for submenus. All of the uimenus connected to the same parent
appear on the same menu, and the cascade of items forms a tree

[

31

Introduction to Graphical User Interface (GUI) MATLAB 6.5 ¢

.3'5'3[
fich

&
Uy graae®

w3 LITHSTILL
(Mbenaa 1)

L mEnks WA mEfiii
{lem 1) {hiem 1)
+ IFRELL U]
e i et e Ty
sihy

Figure 1.28(a) A typical menu structure. (b) The relationships among the uimenu items
creating the menu.

whmarn
(inesm 1)

Figure 1.28 Continued. (c) The Menu Editor structure that generated these menus.

of submenus. Figure 1.28a shows a typical MATLAB menu in operation, while Figure
1.28b shows the relationship among the objects making up the menu. MATLAB menus
are created using the Menu Editor. Figure 1.28c shows the Menu Editor with the menu
items that generate this menu structure. The additional properties in Table 1.5 that are not
shown in the Menu Editor can be set with the Property Editor (propedit). Top-level
context menus are created by uicontextmenu objects, and the lower level items within
context menus are created by uimenu objects. Context menus are basically the same as
standard menus, except that they can be associated with any GUI object (axes, lines, text,
figures, etc.). A list of the more important uicontextmenu properties is given in Table 1.6.

32

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
“aney

L5 i
by Stuﬂ"“\

1.6.1 Suppressing the Default Menu

Every MATLAB figure comes with a default set of standard menus. If you want to delete
these menus from a figure and create your own menus, you must first turn the default
menus off. The display of default menus is controlled by the figure's MenuBar property.
The possible values of this property are' figure' and 'none'.

Froperty Dascription

Callback Specifics the name and prameters of the functon 1o be calied when the context miéng i
sctivated. The callback executes befiore the cantext menu is digplayed

Farent The handle of the parent shject for this confext men

rag The “name" of the context menm, which can be used to locaie it

Visiblo Specifies whether or not this consext menu is visshle, This property is e somatically and
should aurmally not be medified,

Table 1.6 Important uicontextmenu Properties

If the property is set to 'figure', then the default menus are displayed. If the property is set
to 'none', then the default menus are suppressed. You can use the Property Inspector to set
the MenuBar property for your GUIs when you create them.

1.6.2 Creating Your Own Menus
Creating your own standard menus for a Gm is basically a three-step process.

1. First, create a new menu structure with the Menu Editor. Use the Menu Editor to
define the structure, giving each menu item a Label to display and a unique Tag value.
Also, you must manually create the callback string for menu items. This statement is true
for MATLAB 6.5. However, MATLAB 6.5 was modified to automatically generate
menu callback strings. This manual step is not necessary in MATLAB 6.5 and later. This
can be tricky-the best way to create a menu callback is to examine the callback
automatically created for a uicontrol, and use it as an example. The proper form of a
uimenu callback string is

MyGui('MenultemTag_Callback' ,gcbo, [J ,guidata(gcbo))

where you should substitute the name of your GUI for MyGUI, and the tag value of the
menu item for MenultemTag.

2. Second, edit the properties of each menu item using the Property Editor (propedit), if
necessary. The most important properties to set are the Callback, Label, and Tag, which
can be set from the Menu Editor, so the Property Editor is usually not needed. However,
if you need to set any of the other properties listed in Table 1.5, you will need to use the
Property Editor. The list of properties that can be set from the Menu Editor has been
expanded in MATLAB 6.5, so it is now unnecessary to use the Property Editor. All
properties can now be set directly in the Menu Editor in MATLAB 6.5 and later.

3. Third, implement a callback function to perform the actions required by your menu

items. You must manually create the callback function for menu items. The process of
building menus will be illustrated in an example at the end of this section.

33

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
“aney

L5 i
by Stuﬂ"“\

Good Programming Practice

Unlike GUI objects, MATLAB does not automatically create callback strings and stub
functions for menu items. You must perform this function manually. Only the Label, Tag,
Callback, Checked, and Separator properties of a menu item can be set from the Menu
Editor. If you need to set any of the other properties, you will have to use the Property
Editor (propedit) on the figure, and select the appropriate menu item to edit.

1.6.3 Accelerator Keys and Keyboard Mnemonics

MATLAB menus support accelerator keys and keyboard mnemonics. Accelerator keys
are "CTRL+key" combinations that cause a menu item to be executed without opening
the menu first. For example, the accelerator key "0" might be assigned to the File/Open
menu item. In that case, the keyboard combination CTRL+o will cause the File/Open
callback function to be executed.

A few CRTL+key combinations are reserved for the use of the host operating system.
These combinations differ between PC and UNIX systems; consult the MATLAB online
documentation to determine which combinations are legal for your type of computer.
Accelerator keys are defined by setting the Accelerator property in a uimenu object.
Keyboard mnemonics are single letters that can be pressed to cause a menu item to
execute once the menu is open. The keyboard mnemonic letter for a given menu item is
underlined. For top-level menus, the keyboard mnemonic is executed by pressing ALT
plus the mnemonic key at the same time. Once the top-level menu is open, simply
pressing the mnemonic key will cause a menu item to execute. Figure 1.29 illustrates the
use of keyboard mnemonics. The File menu is opened with the keys ALT+f, and once it
is opened, the Exit menu item can be executed by simply typing "x".

Keyboard mnemonics are defined by placing the ampersand character (&) before the
desired mnemonic letter in the Label property. The ampersand will not be displayed, but
the following letter will be underlined, and it will act as a mnemonic key. For example,
the Label property of the Exit menu item in Figure 1.29 is 'E&xit'.

1.6.4 Creating Context Menus
Context menus are created in the same fashion as ordinary menus, except that the top-
level menu item is a uicontextmenu. The parent of a uicontextmenu

o x|
BeEE . . ,

Figure 1.29 The menu shown was opened by typing the keys ALT+f, and the Exit option
could be executed by simply typing "x".

34

Introduction to Graphical User Interface (GUI) MATLAB 6.5

Al
nch

¢ a
Aoy gruae®

must be a figure, but the context menu can be associated with and respond to right mouse
clicks on any graphical object. Context menus are created using the "Context Menu"
selection on the Menu Editor. Once the context menu is created, any number of menu
items can be created under it. To associate a context menu with a specific object, you
must set the object's UIContextMenu property to the handle of the uicontextmenu. This is
normally done using the Property Inspector, but it can be done with the set command as
shown below. If Hecm is the handle to a context menu, the following statements will
associate the context menu with a line created by a plot command.

Hl=plot (x,y);
set (H1,'UIcontextMenU',Hcm);

Reference

Chapman, Stephen J., MATLAB Programming for Engineers, Brooks Cole, 2001.

35

