Recent developments in bulk waveguide devices fabricated at Macquarie University using ultrafast laser direct-write techniques

Dr Martin Ams (Macquarie University)

Talk abstract: In 1996, it was demonstrated that focussed infrared femtosecond laser pulses can induce a local internal increase in the refractive index of bulk transparent glasses. This discovery offered unique opportunities for the fabrication of arbitrary 3D photonic waveguide devices inside a wide range of materials simply by translating a sample through the focal point of a focussed femtosecond laser beam. Not only can this direct-write technique be carried out rapidly, it is readily compatible with existing fibre systems, it does not require a lithographic mask and it can be conducted in a regular laboratory environment with the minimum of sample preparation. This presentation explores the contributions, carried out at the CUDOS at Macquarie University, to the field of femtosecond laser direct-written waveguide devices and an outlook into future investigations. In particular, studies into writing polarisation, directional couplers, waveguide Bragg gratings, waveguide amplifiers and waveguide laser oscillators will be presented.

Speaker biography: Dr Martin Ams received the B.Sc. degree in physics and the Ph.D. degree in optical laser physics from Macquarie University, Sydney, NSW, Australia, in 2001 and 2008, respectively. He is currently a Research Associate at the MQ Photonics Research Centre and the Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Macquarie University. His current research interests include femtosecond laser direct-writing of photonic waveguide devices for use in telecommunication, quantum information and biophotonic applications. He has over six years of photonics experience and is the author or co-author of more than 30 journal and conference papers.