Imaging and Sensing with Terahertz Radiation

Daniel Mittleman

Electrical & Computer Engineering Rice University

What is terahertz radiation?

The challenge (part 1)

Blackbody spectrum rolls off very rapidly in the THz spectral range

The challenge (part 2)

Long distance atmospheric transmission is very challenging (but not too bad for D < 100 m...)

"Traditional" electronic sources

Mixing of optical sources

S. Duffy & K. McIntosh, MIT Lincoln Labs

Tunability and power

Generation of free-space THz pulses

Detection via photoconductive sampling

Typical THz wave forms

- Single cycle of the electromagnetic field
- Bandwidth of 2.5 5 THz
- Coherent detection of electric field

THz time-domain spectrometer

THz free-space electro-optic sensing

X.-C. Zhang, Rensselaer Polytechnic Institute

THz image of a semiconductor integrated circuit

- Imaging metal leads through plastic packaging
- ~ 0.25 millimeter spatial resolution
- Useful for fault detection, delamination

THz image of an automobile dashboard

Rear View

Water content in a living leaf

Proof of principle experiment:

- Plant is allowed to dry somewhat, and then watered
- As the leaf rehydrates, THz transmission decreases
- Changes smaller than 1% are detectable

THz imaging for tumor detection

Optical image of a liver sample containing tumors

THz image: 0.2 - 0.5 THz

M. Koch, TU Braunschweig

THz imaging of tooth decay

Attainable resolution

Near-field imaging

THz imaging in a reflection geometry

Time-of-flight imaging for 3D information

Stand-off imaging and sensing

Distance: 15 meters

THz time-of-flight imaging

- Internal dielectric interfaces can be distinguished
- Depth resolution ~ $1/\Delta\omega$ (approx. 100 μ m)

D. Mittleman, et al., Opt. Lett., 22, 904 (1997).

Improving the depth resolution

Phase shift acquired by a focusing optical beam
Approximately equal to π

A.B. Ruffin, et. al., Phys. Rev. Lett., 83(17), p3410-3413.

Destructive interference

Gouy phase shift leads to destructive interference between sample and reference

Johnson, et al., IEEE J. Sel. Top. Quant. Elec., 7, 592 (2001)

Interferometric effects

Subtle features more readily observable!

A test sample

- Air gaps of calibrated depths
- Line scan across the sample

Johnson, et al., Appl. Phys. Lett., 78, 835 (2001)

Towards tomography

Tomographic imaging: multiple views of the target

THz holography

Backwards propagation (Huygens-Fresnel diffraction):

$$u(P_{1},t) = -\frac{1}{4\pi c} \iint_{\Sigma} \frac{\left(1 + \cos\left(\hat{n},\vec{r}_{01}\right)\right)}{r_{01}} \frac{\partial}{\partial t} u\left(P_{0},t - \frac{r_{01}}{c}\right) ds$$

T. B. Norris, Univ. of Michigan

Two-dimensional planar target - reconstruction

simulation

10 x 10 mm

experimental results

THz computed tomography (CT)

THz reflection (seismic) tomography

Reflectors generate hyperbolae

THz testbed for seismic tomography

Inversion by Kirchhoff migration

Resolution: the Fresnel zone

Detection limit: returned signal > noise

Resolution limit: returned signal exhibits destructive interference between center and edge of target

Minimum target radius = size of first Fresnel zone

$$R_F\approx \sqrt{\frac{z\lambda}{2}}$$

But what if the radiation is broadband?

Transmission vs. reflection

These two situations are equivalent by Babinet's Principle

Detected field

Result for cw illumination

Result for pulsed illumination

of Fresnel zones depends on the coherence length!

Fresnel zone for a THz pulse

Waveforms

Pearce, et al., Phys. Rev. E, 66, 056602 (2002).

Pearce, et al., Phys. Rev. E, 66, 056602 (2002).

Cylindrical targets

Dorney, et al., J. Opt. Soc. Am. A, 19, 1432 (2002).

> THz imaging and sensing – many applications!

Unique possibilities with single-cycle optical pulses

Acknowledgements:

Jon Johnson Tim Dorney Jeremy Pearce

US National Science Foundation US Environmental Protection Agency US Army Research Office Picometrix, Inc. IEEE/LEOS Distinguished Lecturer program

Available soon!

www.springer.de