Power Management in the New Millennium

Prof. PA Mawby University of Wales Swansea

Talk Overview

- Introduction
- Silicon Power Devices
- Packaging
- Application Areas
- New Materials SiC & Diamond
- Conclusion

Power Electronics is

"Efficient processing of electrical energy through means of electronic switching devices"

Increasing Importance of Power Electronics in Energy Management

Converter Technology is Driven by Devices

Power Management Market

- Total semiconductor market in 2000 \$204b
 - 5% Power discretes \$10b; CAGR 28%
 - Thyristors 8%; \$0.8b
 - Diodes 23%; \$2.3b
 - Power Transistors 69%; \$6.9b
 - 3% Power Management ICs \$6b; CAGR 61%;
 20% of total analogue IC market

Market Share

Application areas

Two Main Areas of Growth

 – IT, communications, computers – DC/DC

– Motion control - DC/AC

 Both are driven by improvements in devices and device technology

2. Basics of Power Devices

The ideal power device:

- 1. When on zero resistance
- 2. When off support infinite voltage
- 3. Switch between on and off (and *vice-versa*) in zero time
- 4. Zero Power dissipation
- 5. Small, light and cheap!

Blocking capability

NOTE: Maximum VBR for silicon is approximately 10kV

Junction Termination

- In real structures the *pn*-junction will need terminate at some point
 - Thyristor/GTO Edge of Wafer
 - MOSFET/IGBT Edge of Chip or device

Ideal 1-D Breakdown

- Tight radius of curvature gives largest fields
- Without proper termination may get < 50% of abrupt junction breakdown voltage
- Termination is used to add extra charge on the surface to spread out the field lines
- Usual techniques
 - Floating rings
 - Field Plates
 - Junction Termination Extension (JTE)
 - SIPOS, DLC Very high voltage devices

Floating Rings

On-state and Switching losses

Bipolar Devices

- A bipolar device is defined as one in which both electrons and holes take part in the current conduction process.
- Bipolar operation is essential in all high voltage devices (>800V)
- Bipolar operation is much slower than Unipolar, hence devices based on this tend to be used at lower frequencies.

Bipolar switching Devices

Recovery Definitions

Diode Structures

Merged Pin Schottky

Thyristor Structures

Terminal Characteristics

Gate Turn-off Thyristors (GTO)

DMOS

Drain

Cross sectional view of HEXFET

Comparison of Structures DMOS Structure Trench Structure

Trend in low voltage MOSFET technology

Trench Road-map (30V)

On-State Resistance

Charge Compensation (COOLMOS)

Drain

Charge Compensation (COOLMOS)

Compensation balancing act

Trend in 400 – 600V FET technology

CoolMOS performance

Note: Patent filed by Professor XB Chen!

Comparison of the power losses of a 600 V high speed IGBT versus CoolMOS[™] in a 70 W flyback converter.

IGBT

The IGBT equivalent circuit

PT & NPT IGBT structures

Trench IGBT Layout- Stripe or Hex?

 n^+

Stripe IGBT

The Hexagonal Trench

Trench IGBT Showing Active Trench

The Injection Enhanced Gate Transistor (IEGT)

Power Electronics Systems

Power Electronic Circuits

The power electronic circuits can be classified into the following types:

- AC-DC converters (controlled and uncontrolled rectifiers)
- DC-DC converters (dc choppers)
- DC-AC converters (inverters)
- AC-AC converters (ac voltage regulators)

DC-DC Converter Topologies

Automotive

Advanced SynQor Quarter-Brick

- •Ultra high efficiency, up to 91% at 3.3Vout
- •High current output, up to 40 amps
- $\bullet Industry \ standard \ size \ (1.45 \ x \ 2.3) \ and \ pin \ out$
- •Low profile, only 0.4" (10.2mm) high
- •Low weight, 1.2 oz. (34g)
- •No heatsink, baseplate or potting materials required
- •Available in 48Vin and 24Vin

Synchronous Rectification

CPU Supply Specs

TABLE 1-INTEL VRM9.0 CPU-VOLTAGE AND -CURRENT SPECIFICATIONS							
Symbol	Parameter	Minimum	Maximum	Units			
VOUTVRM	VRM output voltage at VRM connector	1.53	1.600 (=V _{ID})	V			
VOUTVRM	V _{CC} core voltage at processor socket	1.475	1.600 (=V _{ID})	V			
VMAX	Maximum nonoperating voltage		2.1	V			
IOUT.MAX	Maximal static current		60	Α			
dlout/dtmax	Output-current slew rate		50	A/µsec			

Synchronous Buck Circuit

DC-AC Conversion (Inversion)

LTT Application in HVDC System

- Over 50% of electricity is consumed by motors

- Domestic (Washing machine, Refrigerators, air conditioning..)
 < 2kW
- Factory Automation 100kw MW
- Simple on/off wastes up to 50%

Application	Units/yr	Ave power consumption	% Savings	Power Savings
Fridge/Freezer	77.8M	700kWHr	60%	32.7B kWHr
Air Conditioning	31.5M	750kWHr	60%	14.2B kWHr
Washing Machine	55.6M	930kWHr	64%	33.1B kWHr

IPM

Simplified diagram showing the pulse width modulated output from an inverter drive.

Functional blocks in inverter

Devices and Isolations for PICs

Devices and Isolations for PICs

A High Current PIC Process with Dense CMOS and Power Switch

Cross-Section of a High Current PIC Process Incorporating Trench DMOS as the Power Switch

A Variable Frequency Electronic Drive for a 250 - 1kW Rated Electric Motor

Power Integrated Circuit for Motor Control Marketed by Hitachi (only Available in Japan)

Features: 250V, 1A

Packaging

What are the key functions of an electronic package?
 2. Protect

power electronic package

Plastic encapsulated package
 Encapsulant

Packages defined

Examples of IC packaging technology

Strong focus on high I/O count, space saving and low inductance packaging

Chip to Footprint ratio for SMD and through

hole packages

RED = Though hole device Blue = Surface mount device

12. Construction of Power Semiconductors

- •Low losses with smaller snubber circuit
- •Low gate power based on voltage driven MOS (Metal Oxide Semiconductor) gate
- Fast switching speed

Silicon Carbide Power Devices

SiC Applications

un Jumm Jummunum

Annual Summanian Summanian

and and the

A3XX-100

TA N

On-state limit for Switching Devices

Trend for power density in power converters

Power Systems in the Future

What is Silicon Carbide ?

• Silicon Carbide (SiC) exists in several hundred forms known as polytypes.

SiC Polytypes

- Crystal structure dictates the polytype or form of SiC.
- Difference between polytypes is the stacking order between double layers of carbon and silicon atoms.

Fig. 5. The stacking sequence of double layers of the three most common SiC polytypes.

Alternatives to Silicon Technology

- Wide Band Gap Semiconductors
 - Stronger Atomic Bonds
 - Larger Breakdown voltage
 - Lower intrinsic carrier concentration
- **GaN** poor thermal conductivity, no native oxide, high frequency?
- C (diamond) No established technology at present
 - Other WBG materials like Diamond and III/V nitrides suffer from the lack of suitable substrates for epitaxial growth.
- SiC Relatively mature technology, native oxide, blue light

STM images

• STM studies on treated surfaces

 $5\mu m \times 5\mu m$ UHV cleaned SiC surface that had been WOS

Surface Studies - AFM

SiC Surface After Removal of Wet Thermal SiO₂

RMS Surface Roughness 23.4Å

Surface Studies - AFM

SiC Surface After Removal of SSO Thermal SiO₂

RMS Surface Roughness 11.1Å

SiC Applications – Devices

Current -Voltage Capacity of trial fabricated SiC-power devices

ESCAPEE Diodes

- 3 Different sized diodes
- 2x2mm largest
- 12%, 74% and 86% yield
- 1.2kV rated
- Diced ready for mounting

ESCAPEE Diode Die on Foil

ESCAPEE Diodes - fabricated

Large area 1.6x1.6 mm2

State of the art SiC Devices Schottky Diode Switching

tics Lack of reverse recovery.

- Minimized switching losses make high pulse frequencies possible
- Higher efficiency, smaller equipment size
- 1200V 2mmx2mm SiC Schottky diode switching characteristics.1200V 8A Silicon ultrafast diode waveform shown for reference.

10kV PiN Diode with low stacking Fault density – Cree EPE2003

10kV PiN diode characteristics

State of the Art SiC Devices Schottky Barrier Diodes

Commercial diodes

- 600V and 20A , 1.2kV and 10A ratings
- SiCED has realized blocking voltages up to 1700 V. Expected to extend this to 3300 V
- Expected to dominate market for blocking voltages below 3000V
- Capable of replacing Si junction rectifiers in medium power motor drive electronics module.

Trench MOSFET

Oxide growth rate slower on trench bottom

Maximum Oxide field 2MV/cm limits field in SiC to 0.8MV/cm ie 0.2 of critical value

Can implant P+ layer at bottom of trench to reduce field

MOSFET test structure

N-MOSFET on 4H-SiC

Gate oxide thickness: 38 nm Effective channel mobility 2 cm2/Vs Not rectifying contact Reference device.

Science 297 (6 Sept. 2002) p1670

Not only polycrystalline diamond was possible but E6 had developed technology for producing free-standing single crystal CVD diamond with material properties which far exceeded even the most optimistic expectations.

Diamond - the only wide bandgap high mobility material

97

Diamond Properties

	Si	SiC-4H	GaN	Diamond
Band gap (eV)	1.1	3.2	3.44	5.5
Breakdown field (MV/cm)	0.3	3	5	10
Electron mobility (cm ² /Vs)	1450	900	440	4500
Hole mobility (cm ² /Vs)	480	120	200	3800
Thermal conductivity (W/cmk)	1.5	5	1.3	24
Johnson's Figure of Merit	1	410	280	8200
Keyes' Figure of Merit	1	5.1	1.8	32
Baligas Figure of Merit	1	290	910	17200

CVD Diamond MESFETs for Power applications

Conclusions

- Power Device Performance is doubling every 18 months
- Power Electronics is Critical for Efficient energy usage
- New Devices and Materials are needed to maintain this rapid change

Many Thanks to

 Dr Petar Igic, Dr Owen Guy, Dr Li Chen, Dr. Zhonfu Zhou, Dr. Salah Khanniche plus all other members of the Power Electronics Research Centre