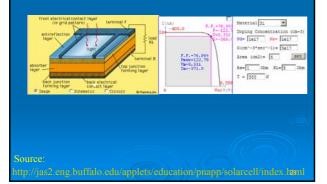
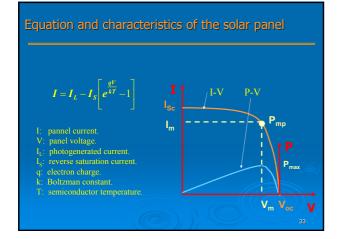

Global Solar Radiation


Evolution of Photovoltaic cells production

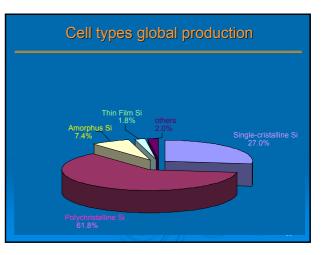
Solar Cell: Design Calculation

Silicon Cells

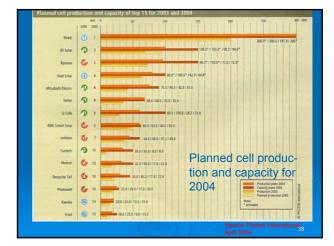

- > Single-Crystalline Silicon: presents a completely ordered structure, whose uniform behavior turns it optimal semiconductor, but of onerous manufacture. Easily reconocible by his dark and metallic bluish monochrome.
- Polycrystalline Silicon: presents ordered structures separated by regions. The irregular connections of the crystalline borders diminish the yield of the cell, limiting the photocurrent generation. Its aspect is a composition of different crystal of metallic bluish and gray color.

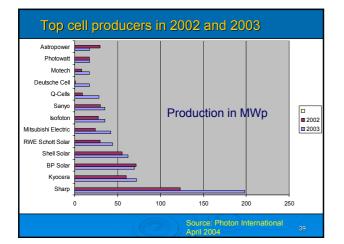
Amorphous Silicon Cells

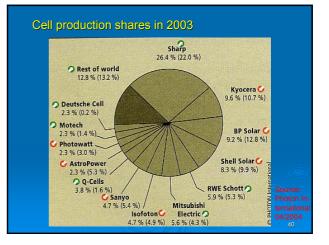
- They differ from the other crystalline structures presenting a high degree of disorder in the structure of the atoms. They contain a great number of structural defects and connections.
- Presenting a spectral response with displacement to the blue, are very efficient under artificial illumination (mainly under fluorescent lamps).
- The efficiency in this case is superior to the crystalline silicon. Amorphous silicon cells have a simpler manufacturing process than crystalline cells and, therefore, a lower cost.

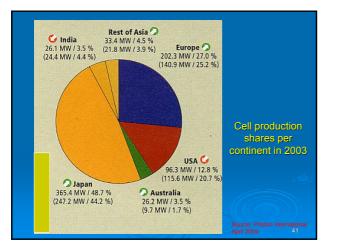

Thin film photovoltaic cells

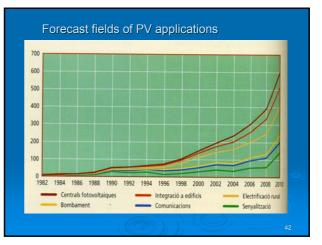
- > Thin film cells use Copper Indium Diselenide, Cadmium Telluride (CdTe), and Gallium Arsenide as thin film materials, typically a few μm or less in thickness, directly deposited on glass, stainless steel, ceramic or other compatible substrate materials.
- > Thin film technology uses less material per square area of the cell, hence, is less expensive per watt of power generated.

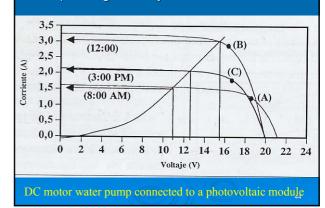


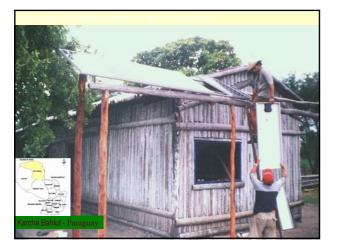

Efficiency of Photovoltaic Cells Silicon cells FF % Test Area Descrip cm² Center Fact Si (crystalline) 24.7 ±0- 4.00 0.706 Sandi UNSW (da) PERL7 а (3/99) Si (multicrystalline) 19-8±0-5 I.09(ap) 0.654 38-1 79.5 Sandi UNSW/ Eurosolare а (2/98) 16-6 ±0.4 0.645 Si (thin film transfer) 32.8 78.2 FhG-University of Stuttgart (ap) ISE(7 |^m thick)8 Source: Martin A. Green e.a.-Progress in Photovolti ch and Application ns 2003-11 Resea

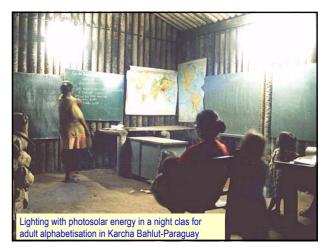

III-V cells							
GaAs (crystalline)	25.1 ±0.8	3.91 (t)	1.022	28. 2	87.1	NREL (3/90)	Kopin, AlGaAs window
GaAs (thin film)	23.3 ±0.7	4.00 (ap)	1.011	27. 6	83.8	NREL (4/90)	Kopin, 5 mm CLEFT9
GaAs (multicrysta Iline)	18.2 ±0.5	4.011 (t)	0.994	23. 0	79.7	NREL (11/95)	RTI, Ge substrate 10
InP (crystalline)	21.9±0.7	4.02 (t)	0.878	29. 3	85.4	NREL (4/90)	Spire, epitaxial'
Polycrystalline thin film							
CIGS (cell)	18.4±0.5' '	1.04 (ap)	0.669	35. 7	77.0	NREL (2/01)	NREL, CIGS or glass12
CIGS (submodule	16.6 ±0.4	16.0 (ap)	2.643	8.3 5	75.1	FhG-ISE (3/00) and Applicat	University o Uppsala,

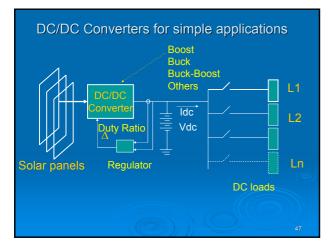











DC/DC Converters for simple applications

Simple charges directly connected

