
12 IEEE Canadian Review - Summer / Été 2002

The Software Engineering Body of Knowledge for Professional
Engineering in Canada

Dans le but de définir les exigences académiques nécessaires à
l'attribution des permis d'ingénieur professionnel au Canada, le
Bureau canadien d'accréditation des programmes d'ingénierie a
formé un comité dont le mandat était de définir les connaissances
de base et complémentaires en génie logiciel. Certains des points
soulevés lors des délibérations du comité et les conclusions
obtenues par ce même comité sont présentés dans cet article. Après
avoir examiné un certain nombre d'éléments, notamment les pro-
grammes de formation canadiens accrédités en génie logiciel, les
sujets suivants ont été établis comme étant des sujets de base:
mathématiques discrètes, structures de données et algorithmes,
développement de logiciel (incluant processus de génie logiciel,
exigences, conception, construction, tests, maintenance et gestion
de configuration), fiabilité et sécurité de systèmes, systèmes
numériques, architecture d'ordinateur, systèmes d'exploitation,
fichiers et bases de données, et systèmes et commandes. En
général, ces sujets s'accordent bien avec les programmes d'exa-
mens et les curriculums existants. Les domaines supplémentaires
ne sont pas aussi bien définis et inclus des approfondissements sur
les sujets de base, détaillent des domaines spécialisés, et traitent de
différents domaines d'applications.

In response to the need to define the academic requirements for
licensing professional engineers in Canada, the Canadian Engi-
neering Qualifications Board formed a committee whose mandate
was to define the core and supplemental bodies of knowledge for
Software Engineering Some of the issues and the outcome of the
software engineering committee's deliberations are presented in
this paper. After examining a number of inputs including national
and provincial examination syllabi and curricula of accredited soft-
ware engineering programs in Canada, a number of core topic
areas were defined. These are: Discrete Mathematics, Data Struc-
tures and Algorithms, Software Development (includes Software
Engineering Process, Requirements, Design, Construction, Test-
ing, Maintenance, and Configuration Management), System
Reliability and Safety, Digital Systems, Computer Architecture,
Operating Systems, File and Database, and Systems and Control.
These topics generally match well with the existing examination
syllabi and curricula. The supplemental areas are less well-defined
and include depth in core subjects, depth in areas of specialization,
and breadth in application domains.

Sommaire

Abstract

by R.D. Dony - University of Guelph, Guelph, ON

P. Botman - True North Systems Consulting, Vanc., BC

W.E. Briggs - Univ. of New Brunswick, Fredricton, NB
R. Haggart - Olorin Enterptise Inc., Ottawa, ON

P.A. Taylor - McMaster University, Hamilton, ON

Computers / Ordinateurs

1.0 Introduction
rovincial and territorial associations of professional engi-
neers are responsible for the regulation of the practice of
engineering in Canada. Each association has been estab-
lished under an Act of its provincial or territorial legislature
and serves as the licensing authority for engineers practicing

within its jurisdiction. The Canadian Council of Professional Engineers
(CCPE) is the national federation of these associations and provides a
coordinating function among them. One of the means of providing this
coordination is the generation of guidelines. Such guidelines are an
expression of general guiding principles which have a broad basis of
consensus, while recognizing and supporting the autonomy of each con-
stituent association to administer its engineering act.

Two of the four working boards of the CCPE are the Canadian Engi-
neering Qualifications Board (CEQB) and the Canadian Engineering
Accreditation Board (CEAB)). The CEAB was established to accredit
undergraduate engineering programs which provide engineers with the
academic requirements necessary for registration as a professional engi-
neer in Canada. The CEQB's primary role is to develop national
guidelines on professional engineering qualifications, standards of prac-
tice, and ethical professional conduct. It is also responsible for the
CCPE Examination Syllabus that describes an examination program to
assess the academic qualifications of individuals who have not gradu-
ated from an engineering program that has been accredited by the
CEAB.

In September 2000, the CEQB and the CEAB, discussed the idea of
developing a body of knowledge for each engineering discipline. The
body of knowledge for each discipline would consist of a Core Body of
Knowledge (CBOK), a Supplementary Body of Knowledge (SBOK),
and other basic science, mathematics and complementary knowledge
specified by the CEAB and CEQB for all engineering disciplines. The
CBOK for a discipline comprises all the material and areas that must be
studied by each person in that discipline. Additional specialization
within a discipline which is not part of the CBOK is the SBOK. A com-
mittee, whose members are the authors of the draft report [1] which this
paper summarizes, was formed in February 2001 with the mandate to
define the CBOK and SBOK for Software Engineering. At the same
time, a parallel committee was formed to define the Chemical Engineer-
ing BOK. Some of the issues and the outcome of the software
engineering committee's deliberations are presented here.

1.1 Definition of Software Engineering

The following definition of software engineering is adapted from the
definition of professional engineering in the CCPE Guideline on the
Professional Engineering Practice in Canada [2].

Professional software engineering involves any act of planning, design-
ing, composing, evaluating, advising, reporting, directing or
supervising, or managing software-intensive products or processes that
requires the application of engineering principles, and that concerns the
safeguarding of life, health, property, economic interests, the public
welfare or the environment.

Software engineers are concerned with the analysis, design, program-
ming, testing, system integration, commissioning, support and
retirement of software systems, particularly those systems which are
critical to public health, safety, and the environment. Software engi-
neers apply engineering methods and discipline to produce reliable
systems which are of known quality, and fit for intended use.

1.2 Scope

The report does deal with knowledge areas common to other engineer-
ing disciplines. Such topics would be analogous to the “Basic Studies”
in the CEQB Syllabi, including such topics as differential equations,
statics and dynamics, basic electromagnetism and even thermodynam-

P

Acknowledgement

This article is copyright of 2002 IEEE. Reprinted, with permis-
sion, from the IEEE Canadian Conference on Computer and
Electrical Engineering, CCECE 2002, Winnipeg, May, 2002.

Editor’s Note: Due to the importance of this article on our indus-
try, this article is reprinted in full. Your feedback is welcome.

IEEE Canadian Review - Summer / Été 2002 13

ics or fluid mechanics for example. Such foundations in a broad range of
basic sciences, both applied and engineering, allows a practitioner from
any one discipline in engineering to be, at the very minimum, at least
conversant with colleagues in other disciplines. As it is expected that
many software engineers would apply their profession in the context of
other engineering fields, this foundation is of particular importance. Of
course, many of foundation areas will be common to one or two other
disciplines, for example computer or electrical engineering.

The report is primarily concerned with the academic knowledge mas-
tered by a software engineer. In pragmatic terms, this report enumerates
those subjects which might be used as a basis for the evaluation of the
background of a candidate seeking admission to the profession.

It is emphasized that a software engineer, in addition to such academic
knowledge, is expected to have practical knowledge and experience in
the various sub-disciplines of software engineering. This document does
not attempt to address the nature and significance of these forms of soft-
ware engineering knowledge. However the enumeration of topics within
this document might facilitate future discussions of practical and experi-
ential knowledge in specific sub-disciplines.

1.3 Use of Report

As a subcommittee of the CEQB, the focus of this work is directed at
assisting the admissions process for professional engineering. In Can-
ada, there are three criteria for admissions: minimum academic
background, suitable work experience, and passing a professional prac-
tice examination. The committee's work focused mainly on the
academic requirements for licensure by defining the minimum knowl-
edge areas that a software engineer should possess. To that end, two of
the more concrete applications of a body of knowledge for any engineer-
ing discipline are the CEQB syllabi,
and the CEAB curriculum.

The CEQB examinations can be con-
sidered a rather direct embodiment of
a BOK as there should be a straight-
forward mapping between knowledge
areas and examination topics. How-
ever, technically, the CEAB criteria
does not contain any reference to a
BOK for a discipline, just general cat-
egories of subject material. Implicit in
the process is the assumption that the
Program Visitor has an idea of what the BOK should be for a program
and judges the course offerings accordingly. If the BOK were to be
made explicit and codified, the mapping between knowledge areas and
course topics, again, should be straight-forward. Therefore it would be
helpful if the portions of a discipline's BOK that map nicely to examina-
tion curriculum topics were arranged to facilitate this mapping.

2.0 Previous Work
Before the committee's work, a number of organizations had began
work in this area. The CEQB Syllabus for Software Engineering, item
[3], was initially proposed as part of the 1998 syllabus. In response to
concerns about the quickly evolving nature of the discipline, some asso-
ciations/ordre developed modifications to the national syllabus [4,5].

During 1998-1999, a committee of Professional Engineers Ontario
(PEO), the Engineering Disciplines Task Group (EDTG), developed a
core body of knowledge guideline for use in evaluating CEAB gradu-
ates who have switched into the field of Software Engineering
subsequent to graduating [6]. To reconcile the differences between these
requirements and the original CEQB syllabus, PEO devised a new sylla-
bus [4]. William's paper [7] discusses the rationale.

The report by l'Ordre des ingénieurs du Québec (OIQ) [8] is a compre-
hensive document that reports on the findings of the ad hoc group on
software engineering. It discusses the definitions and features of soft-
ware engineering, aspects of training, and presents a number of
recommendations for the ordre. For the purposes of this report Table 3
on pages 15-16, summarizing topics for an education in Software Engi-
neering and grouped into the CEAB academic units (AU) categories, is
of primary interest.

Also considered for this work were the curricula of the first “Software
Engineering” programs at Canadian universities that have been granted
accreditation by the CEAB in 2001 McMaster University [9], Univer-
sity of Ottawa [10], and University of Western Ontario[11]. All three

programs are offered through existing engi-
neering faculties that currently have existing
accredited engineering programs. As the first
graduating classes for these programs was in
2001, they were visited by CEAB teams in the
Fall of 2000 and were accredited by the
CEAB in June, 2001.

The IEEE SWEBOK document[12] is the lat-
est version of a project through the IEEE
Computer Society, and managed through the
Université du Québec à Montréal . The project has been sponsored
financially by a number of companies and organizations including the
CCPE. Its scope does not include the issue of the regulation of the prac-
tice of professional engineering. Its focus is on ten knowledge areas
specific to the software development and maintenance process: require-
ments, design, construction, testing, maintenance, configuration,
management, engineering process, tools, and quality. While the report
goes into some depth into each of these topics, it does not deal with the
larger issue of the supporting knowledge areas required for a regulated
profession. For this report, the SWEBOK document was a useful input
for the “Software Development” 3.3 area as developed below.

The final three items that were considered [6,13,14] are concerned with
the evaluation of engineering experience in the software engineering
field.

3.0 Core Body Of Knowledge (CBOK) For Software
Engineering

3.1 Discrete Mathematics

For any in-depth treatment of soft-
ware for both analysis and design, an
additional set of mathematical tools
are required in addition to the classi-
cal linear algebra and calculus topics.
This area is termed “discrete mathe-
matics” or “discrete structures.”
These topics are a common compo-
nent of many Computer Science
programs as they provide the mathe-
matical foundations for the areas of
data structures and algorithms.

Topic areas include: functions, relations, and sets, trees, graphs, logic,
Boolean algebra, combinational methods, state models, proof tech-
niques, basics of counting.

3.2 Data Structures and Algorithms

Both data structures and algorithms form the fundamentals of computer
science and software development. For software engineering, the
emphasis is on knowledge of the various basic structures and algo-
rithms and their characteristics. Again, these topics are a common
component of Computer Science programs. Knowledge of discrete
mathematics is required.

Topic areas include: Queues, stacks, lists, heaps, trees, graphs, data
abstraction, sorting, searching, parsing, pattern matching, divide and
conquer, greedy methods, algorithm complexity, selection criteria.

3.3 Software Development

This broadly defined area forms the “core” of the unique discipline of
Software Engineering. It is concerned with the application of the above
theoretical foundations to produce specification-correct software in a
real-world development environment. The area includes the software
lifecycle of requirements, design, construction, testing, and mainte-
nance. Also included is configuration management and software
engineering process. Both the more formal academic concepts as well as
the more practical, experience-oriented areas constitute knowledge in
the area.

3.3.1. Software Engineering Process:

The Software Engineering Process is a systematic approach that starts at
the conceptual phase (original idea) and concludes with an operation-
ally reliable and maintainable piece of software. It includes the
management functions of software development, quality, testing, and
configuration management. The Software Engineering Process supports

Software engineers are concerned with the
analysis, design, programming, testing, sys-
tem integration, commissioning, support and
retirement of software systems, particularly
those systems which are critical to public
health, safety, and the environment.

14 IEEE Canadian Review - Summer / Été 2002

a similar process at the Systems Engineering level and includes soft-
ware engineering methods and tools.

Topic areas include: software engineering process concepts, process
infrastructure, process measurement, process definition, qualitative pro-
cess analysis, process implementation and change.

3.3.2. Requirements:

This topic covers the activities associated with software requirements in
a manner that verifiably supports the subsequent phases: design, con-
struction, test, operation, maintenance, etc. It includes the analysis of
system level or other software architectures into which this design must
fit.

Topic areas include: elicitation, analysis, requirements and specifica-
tions, functional and nonfunctional requirements, prototyping, formal
specification techniques, validation.

3.3.3. Design:

This topic covers the activities associated with software design. Key
elements are designing for testability, maintainability and quality.

Topic areas include: software architecture and structure, object-ori-
ented analysis and design, component-level design, distributed models,
design for reuse, quality analysis and evaluation, notations, validation.

3.3.4. Construction:

Topics include: reduction in complexity, anticipation of diversity, lin-
guistic methods, formal methods, visual methods, validation, language
evaluation and selection.

3.3.5 Testing:

Topic areas include: concepts and definitions, levels (requirements,
design, construction, integration, operational), techniques, measures.

3.3.6 Maintenance:

This topic covers the activities associated with software maintenance.
Maintenance is required to ensure that the software continues to meet its
functional and quality requirements in a changing operational setting.

Topic areas include: documentation, requirements and specifications,
functional and nonfunctional requirements, prototyping, formal specifi-
cation techniques, structured design, object-oriented analysis and
design, component-level design, distributed models, design for reuse,
software maintenance, tools and environments.

3.3.7 Configuration Management:

Topic areas include: management of the software configuration pro-
cess, configuration identification, configuration control, status
accounting, auditing, software release management and delivery.

3.4 System Reliability and Safety

This area addresses the issue of reliability and safety from an entire sys-
tem perspective. While quality and reliability concerns are of
importance in all stages of the software development life cycle, it is
important to emphasize the reliability and safety of the entire system, be
it a physical realization or otherwise. For the professional engineer, this
topic directly impacts the obligation to ensure the safety and well-being
of the public through the design of verifiable, reliable software where
the effects of software failure on the system may have safety implica-
tions. While many of the issues here are covered above, it has been
enumerated separately to emphasize the obligation that the professional
engineer has to produce safe and reliable systems.

Topics areas include: Formal methods and specifications, pre and post
conditions and assertions, formal verification, uncertain and changing
requirements, verification and validation, test plan creation and test case
generation, black-box and white-box testing techniques, real-time and
resource constraints, redundancy and fault tolerance, failure modes,
probabilistic methods of analysis, quality measurements performance
modelling.

3.5 Digital Systems

Knowledge of digital systems for a software engineer is required to
ensure that computer is not merely a “black box” for running software.
This area is a required component of both electrical and computer engi-
neering (e.g. 98-Comp-A2). It builds on the introductory logic topics of
discrete mathematics.

Topic areas include: design of combinational and sequential circuits,
implementation using gates, logical system components, programmable
logic devices and gate arrays, high-level description languages, small
system design, data flow, signals, timing, basic microprocessor organi-
zation and interfacing.

3.6 Computer Architecture

This area further builds on the knowledge of digital systems as
described above and, again, is common with computer engineering (e.g.
CEQB syllabus examination 98-Comp-A3) but not at the same depth
(e.g., just to the logic abstraction level, not the device level). The treat-
ment of this topic from a computer science perspective typically does
not go into the depth in the hardware organization that a prerequisite
knowledge of digital systems allows.

Topic areas include: computer structure and processor architecture,
CPU and memory organization, buses, computer interfacing, parallel
and serial I/O, storage devices, instruction sets, addressing modes, reg-
isters, interrupts and I/O, special purpose processors, embedded
systems.

3.7 Operating Systems

As most software runs under the supervision and resource control of
operating systems, understanding the characteristics and limitations of
operating systems and their effects on the execution of programs is nec-
essary. The knowledge of these relationships is particularly important in
control and real-time systems. Some areas of this topic are common
with computer engineering (e.g. CEQB syllabus examination 98-Comp-
A5) as well as computer science. Typically the former deals with the
use and characteristics of operating systems while the latter may focus
more on their design. Some concepts from computer organization (e.g.
resources such as memory) are required.

Topic areas include: interprocess communication, synchronization,
scheduling, resource allocation, memory management, multi-tasking
and multi-processing, performance and measurement, real-time support
requirements, deadlock, features of modern operating systems.

3.8 File and Database

Most software systems have some reliance on file and database sys-
tems. Further, the processing of large volumes of data may be required
for safety critical systems. This area tends to be part of a core computer
science program.

Topic areas include: data models, entity-relationships, mass storage
devices, file structures, data base types (relational, hierarchical, net-
work), file organization (sequential, indexed, direct access, hashing),
query methods and languages, security and integrity, transaction
processing.

3.9 Systems and Control

This subject area includes the fundamentals of stability analysis of feed-
back control systems. Since the need for regulation comes directly from
the need to protect public safety, stability analysis is critical in the
design of any software control system that interfaces to the physical
world. This is a core subject in most electrical and computer engineer-
ing related disciplines.

Topic areas include: Models, transfer functions and system response,
Root locus analysis and design, feedback and stability, Bode diagrams,
Nyquist criterion, frequency domain design, state variable representa-
tion, PID control, digital control, Z transform, computer control
interfacing and algorithms.

4.0 Mapping To CEAB Curricula And Examination
Syllabi
Table 1 shows a set of general subject/knowledge areas common to
many or all of the syllabi and curricula. For the three examination syl-

IEEE Canadian Review - Summer / Été 2002 15

labi, labelled “CEQB” for the original CEAB 1998 syllabus, “PEO” for
the Ontario revision, and “BC” for the British Columbia revision, the
examination numbers are given that are concerned with the general
areas listed on the left. The course numbers of the curriculum of the
three accredited programs, McMaster University (MAC), University of
Ottawa (UoO), and University of Western Ontario (UWO) are likewise
categorized. The OIQ entries just specify whether or not the topic is
included in its Table 3. As the SWEBOK document deals with only a
subset of these topics in the software development area, albeit at a sig-
nificant level of detail, it was not included in the table. References are
made to specific examinations or courses that deal with the broad topic
area.

At the broadest level, there appears to be a significant agreement
between what the various sources consider as required knowledge areas
for software engineering. As the field is evolving, it is expected that
some differences do exist. The CEQB syllabus appears not to require
discrete mathematics and elements of software testing and reliability.
Both PEO and the McMaster curriculum require systems and control as
do other software engineering programs seeking accreditation such as
the University of Waterloo.

5.0 Supplementary Body Of Knowledge (SBOK) For
Software Engineering
In addition to the core knowledge, it is assumed that an engineer will
have additional knowledge. This additional knowledge makes up the
SBOK. All of the SBOK topic areas require mastery of the topics in the
CBOK. Areas may be deleted or added as technology and engineering
techniques change over time.

The body of knowledge is augmented by the SBOK in a number of
ways.

5.1 Depth in Core Subjects

Engineers may develop some of the knowledge areas in the CBOK to a
greater depth. This would be analogous to advanced upper-year courses
that further extend material established in earlier core courses.

5.2 Depth in Areas of Specialization

These areas are topics in software engineering that are in addition to the
CBOK. Here, the practitioner applies advanced knowledge and skills in
software engineering areas beyond the minimum core.

Examples include:

• Software Product Line Engineering,
• Software Process Assessment and Improvement,
• Software Estimation and Planning Tools,
• Concurrent Software Design,

• Real Time Systems Design,
• Human Computer Interface Design,
• Advanced Test System Design

5.3 Breadth in Application Domains

Software engineers may apply their skills in application domains out-
side of their specific discipline. In fact, this interface with other
engineering disciplines is of particular importance to the professional
software engineer and thus would require the software engineer to have
a good working knowledge of the application domain. Since such areas
would typically be related to other engineering disciplines, the practitio-
ner would require a broader range of knowledge of the specific
application areas.

Examples include:

• Industrial Process Control,
• Telecommunications (switching) Software,
• Avionics Software,
• Networking (protocol) and Distributed Systems software,
• Medical Components and Systems.

6.0 Summary And Conclusions
The recognition of Software Engineering as a distinct discipline within a
licensed, professional engineering framework is a relatively recent
development. However, the foundations of the discipline do have a
much longer history. As a result, there is a general consensus as to what
constitutes a core body of knowledge in the field. The topics include not
only those concerned with the immediate development of software, and
the software lifecycle, but topics such as digital systems, computer
architecture and control systems. This is reflects an engineering philoso-
phy, which requires that a software engineer be knowledgeable in all
related aspects of systems and environments in which the software oper-
ates. Coupled with the implied basic sciences and mathematics, this
breadth gives professional software engineers an academic foundation
which ensures that the software-based products and processes they
develop meet their professional obligations to uphold the public safety.

The various inputs to the committee's work all reflect general agreement
as to the most important and central topics. Even the IEEE SWEBOK
project, while not specifically addressing the issue of the requirements
for licensing professional engineers in Canada, helped in specifying the
software development topics. Of course, as the discipline evolves, the
core body of knowledge must adapt accordingly. As this body of knowl-
edge is maintained, the various inputs listed, and materials from their
respective organizations, should be monitored for changes as well.

The supplemental body of knowledge is, on the other hand, not cur-
rently well defined. In general, a software engineer should have
additional knowledge beyond the core topics - knowledge that includes

Table 1: Overview of Basic Topics in Software Engineering

General Area CEQB[3] PEO[4] BC[5] OIQ[8] MAC[9] UoO[10] UWO[11]

Discrete Mathematics - BS17 - Yes 2E03 MAT2343 SE251

Data Structures and
Algorithms

 A1, A4 A4 BS(A1) Yes 2C04 CSI2114,
CSI3105

CS027, CS210,
CS340

Software Develop-
ment

 A5 A4 A3 Yes 2A03, 2B04 SEG2100,
SEG2101,
SEG3100

SE351, SE452,
SE453

Testing, Reliability - A7 - Yes 2F03 SEG4111 SE453

Digital Systems A2 A2 BS(A2) Yes 2D04 ELG1100 ECE339

Computer Architec-
ture

 A2 A3 BS(A2) Yes 3G03, 3F03 ELG2181,
CEG3391

ECE375

Operating Systems A3 A5 A1 Yes 3B04 CSI 3310 SE201, CS305

File and Database A6 - A4 Yes 3H03 CSI 3317 -

Systems and Control - A1 - - 3L03, 4A03 - -

16 IEEE Canadian Review - Summer / Été 2002

additional depth in one or more core topics, depth in one or more special-
ization areas, and/or breadth in application domains. There are already
many software engineers with special expertise, or who are practicing in
certain application domains. However this was not addressed at this time.
This area will need to be developed in subsequent drafts, and input is
sought from all readers of this initial draft. As with the core topics, the
supplemental topics will also evolve as the discipline evolves, so review
and maintenance of the document will apply here as well.

The management of software development including the entire lifecycle
has not been explicitly included in this report. It is understood that
project management techniques common across all engineering disci-
plines can be applied in software engineering. It is also understood that
there may be situations unique to software engineering that requires alter-
native approaches.

7.0 Acknowledgments
The authors wish to thank the staff of the Canadian Council of Profes-
sional Engineers for their invaluable support in the committee's work, in
particular David Lapp, Marie Carter and Begonia Lojk. We would also
like to thank the Chair of the Body of Knowledge Pilot Project, Phil Sun-
derland, for his support and patience with the work.

8.0 References
[1]. “Core and Supplementary Bodies of Knowledge for Software Engi-

neering.” Canadian Council of Professional Engineers, Ottawa, ON,
February 2002.

[2]. “Guideline on the Professional Engineering Practice in Canada.”
Canadian Council of Professional Engineers, Ottawa, ON, 2001.

[3]. “CCPE 1998 Software Engineering Syllabus.” Canadian Council of
Professional Engineers, Ottawa, ON, 1998.

[4]. “PEO Revised Software Engineering Syllabus.” Professional Engi-
neers Ontario, Toronto, ON, 1999.

[5]. “APEGBC Revised Software Engineering Syllabus.” Association of
Professional Engineers and Geoscientists of British Columbia,
Burnaby BC, 1999.

[6]. “PEO EDTG Experience Requirements for Cross-Discipline Appli-
cants Practicing in the Software Engineering Field.” Professional
Engineers Ontario, Toronto, ON, March 25 1999.

[7]. N. Williams, “Professional Engineers Ontario's Approach to Licens-
ing Software Engineering Practitioners,” in Proc. 14th Conference
on Software Engineering Education and Training, (Charlotte NC),
pp. 77-78, February 2001.

[8]. “Software Engineering Definitive Report.” l'Ordre des ingénieurs du
Québec, Montréal, QC, November 17 2000.

[9]. “McMaster University Software Engineering Curriculum.” Depart-
ment of Computing and Software, McMaster University, Hamilton
ON, (CEAB Accredited 2001).

[10]. “University of Ottawa Software Engineering Curriculum.” School
of Information Technology and Engineering, University of Ottawa,
Ottawa ON, (CEAB Accredited 2001).

[11]. “University of Western Ontario Software Engineering Curriculum.”
Department of Electrical and Computer Engineering, University of
Western Ontario, London ON, (CEAB Accredited 2001).

[12]. “IEEE SWEBOK Stone Man Version (0.7).” IEEE, April 2000.

[13]. “CEQB Interview and Assessment Guide for the Evaluation of Soft-
ware Engineering Experience.” Canadian Council of Professional
Engineers, Ottawa, ON, March 12 2001.

[14]. “CEQB Guide for the Presentation and Evaluation of Software
Engineering Experience.” Canadian Council of Professional Engi-
neers, Ottawa, ON, June 13 2001.

Bob Dony received his B.A.Sc. and M.A.Sc. in
Systems Design Engineering, University of Water-
loo in 1986 and 1988 respectively, and his Ph.D.
in Electrical and Computer Engineering, McMas-
ter University in 1995. He has been with the
School of Engineering, University of Guelph, as
an Assistant Professor in the Engineering Systems
and Computing program since 1997. He is a mem-
ber of the Canadian Engineering Qualifications
Board (CEQB), and Chair of the Software Engineering subcommit-
tee of the CEQB Body of Knowledge Pilot Project. He is a
registered Professional Engineer in Ontario and is a member of the
Academic Requirements Committee, Evolution of Engineering
Admissions Task Force, and Emerging Disciplines Task Group of
Professional Engineers Ontario (PEO). He also served as the Tech-
nical Committee Co-chair for the 2001 IEEE Canadian Conference
on Electrical and Computer Engineering and is a member of the
Canadian Conference on Computer and Software Engineering Edu-
cation steering committee.

Pieter Botman is a Professional Engineer regis-
tered in the Province of British Columbia. With
over 20 years of software engineering and manage-
ment experience, he assists software organizations
in software process assessment/improvement, soft-
ware project management, software quality
management, and product management. Mr. Bot-
man is a member of the IEEE Computer Society,
the ACM, and ASQ's Software Quality division.
He can be reached at p.botman@ieee.org

Bill Briggs took his B.Sc. (Hon. Chem.) and Engi-
neering Certificate from Mt.Allison University,
went on to the M.Sc.E. program (Electrical) at the
University of New Brunswick. He then worked for
NB Power, first in the Nuclear Operations Group,
and then in Distribution. He spent five years work-
ing as an R&D scientist at Fiberglas Canada Inc.
For the last decade he has been a self-employed
consultant working in a variety of hi-tech areas.
He recently returned to the academic world as a Senior Instructor
in the Department of Electrical and Computer Engineering at the
University of New Brunswick.

Ross Haggart graduated from Carleton Univer-
sity in 1980 with a Bachelor's Degree in Electrical
Engineering specializing in Computer Systems. He
spent the first half of his career designing, devel-
oping and deploying computer systems for military
and industrial applications. Subsequently, he
worked in the Business Systems consulting indus-
try primarily in Program and Project Management
activities. Mr. Haggart is currently the Vice-President of Engineer-
ing for Cerkits Corporation, a Canadian Corporation that develops
Security Robots for Military and Civilian environments. He is a
member of the Professional Engineers of Ontario and serves on
the Experience Requirements Committee (ERC) for the PEO and
the Engineering Entrance Admissions Task Force.

Paul Taylor obtained his B.Sc. and Ph.D. from
the University of Wales.

He is presently the Chair and Professor in the
Department of Computing and Software, at
McMaster University, Hamilton.

His research is directed towards the application of
computer control to chemical processes. It covers
three areas of expertise: control theory, process
dynamics and modelling and real-time computer
applications.

About the authors

