Dallas Chapter, IEEE Circuits and Systems

Digital Radio Processor (DRP) Alternative to Conventional RF

Robert Bogdan Staszewski

Texas Instruments
Outline

• Motivation
• Digitally-Controlled Oscillator (DCO)
• Sigma-Delta dithering of DCO varactors
• Time-to-digital converter
• Digital loop filter
• All-Digital PLL (ADPLL) architecture
• Transmitter
• Development timeline
• Testchips and results
• Conclusion
Motivation

• Frequency synthesizers in commercial wireless applications traditionally use charge-pump PLL’s
 – Used as a LO for frequency translation in TX and RX

• Design flow and circuit techniques are analog intensive

• Technology incompatible with modern digital baseband and application processor
 – Low-voltage deep-submicron CMOS
Charge-pump PLL

- Found in all commercial RF synthesizers for mobile applications
- Frequency difference estimated by means of the phase difference, hence fundamentally slow acquisition
- Phase difference estimated in PFD by measuring time difference between f_{ref} and f_{div} closest edges
- PFD produces current pulse with proportional duty cycle

- Loop filter converts the current into a VCO tuning voltage
- The integrating capacitor and introduces a pole at dc

Bogdan Staszewski, 19 Oct 2004
Motivation (Cont.)

- Charge-pump PLL does not truly operate in the phase domain: only approximation under lock
 - [F. Gardner, 1980] describes: “converting the timed logic levels into analog quantities”
 - Generates reference spurs that require filter

```
Charge pump current                   Ideal corrections
```

- Aggressive cost and power reductions of mass-produced mobile wireless terminals require the highest level (i.e., single chip) of integration
 - Digitally-intensive approach to conventional RF and analog functions

Bogdan Staszewski, 19 Oct 2004
Commercial GSM RX/TX Architecture

- Analog intensive
- Partitioned into several IC’s
- Large number of external components
Digitally-Controlled Oscillator (DCO)

ΣΔ Dithering of DCO

Time-to-Digital Converter (TDC)

Digital Loop Filter (LF)

All-Digital PLL (ADPLL)

*RFIC’03 and T-MTT’03
MOS Varactor

- Only simplest varactors in the digital CMOS
- Perceived poor quality of varactors in a deep-submicron CMOS for conventional VCO’s

- Conventional CMOS varactors
 - Large linear range for precise and wide frequency control
- Deep-submicron CMOS varactor
 - Linear range is compressed with high noise sensitivity

Bogdan Staszewski, 19 Oct 2004
New Paradigm

In a deep-submicron CMOS process, time-domain resolution of a digital signal edge transition is superior to voltage resolution of an analog signal.
Varactor in Deep-Submicron CMOS

- Actual extracted and de-embedded C-V curve
- Two distinct and flat operational regions

- Extremely fine switchable capacitance
 - 40 attoFarad

Ppoly/Nwell inversion-type varactor
Digitally-Controlled Oscillator (DCO)

- First DCO for wireless: no analog tuning controls

- Vtune_high and Vtune_low set to two flat operating points of the C-V curve
DCO Varactor Functional Banks

- Process/voltage/temperature (PVT) calibration mode
- Acquisition mode (during channel select)
- Tracking mode (during the actual TX and RX)

\[\bar{d}_k \rightarrow C_0 \]
\[\Delta C \]

\[
\begin{align*}
PVT & : 2316 \text{ kHz} \\
\text{Acquisition} & : 461 \text{ kHz} \\
\text{Tracking Integer} & : 23 \text{ kHz} \\
\text{Tracking Fract} & : 23 \text{ kHz}
\end{align*}
\]
DCO Modes Transversal Example

- PVT mode calibrated to the middle of the Bluetooth band (code 111)
- Acquisition starts at 128
- Desired channel 2 MHz lower quickly reached
- Dither between codes 123 and 124

- Switchover from acquisition to tracking at 123
- Tracking starts at 31
- Desired channel is 230 kHz higher (10 tracking steps)
DCO ASIC Cell

- Truly digital I/O’s even at 2.4 GHz output – $t_r<50$ ps
- DCO built as a digital ASIC cell despite analog underlying internals
- DCO analog nature does not propagate
- Circuitry around it can be digital
Oscillator Interface

- MEM_DCO_P could be the last frequency estimate from the controller’s lookup table
- REG_DCO_P is the frequency offset reported back to the controller

- Identical circuit for both PVT and acquisition modes
Normalized DCO (nDCO)

- K_{DCO} is dependent upon PVT
- K_{DCO} is tracked and normalized
- Decouples the phase and frequency info from process, voltage and temperature

\[
K_{nDCO}(f) = f_R \frac{K_{DCO}}{\hat{K}_{DCO}} = f_R \cdot r
\]
Synchronously-Optimal Sampling

• DCO is a time-variant system
• Digital input controls the oscillating frequency by modifying the total capacitance

• Oscillator input word changes only at precise DCO state where it causes least amount of perturbations
Digitally-Controlled Oscillator (DCO)

ΣΔ Dithering of DCO

Time-to-Digital Converter (TDC)

Digital Loop Filter (LF)

All-Digital PLL (ADPLL)
Sigma-Delta DCO Dither

- Improves time-averaged DCO frequency resolution over the basic 23 kHz/LSB to 23 kHz/32
Varactor Dithering

- Frequency resolution enhanced by high-speed dithering of an LSB capacitors
- Produces spurious tone at the oscillator output with power inversely proportional to the dithering speed
 - Spur power = \(-20 \log(\beta/2) \text{ [dBc]}\), where \(\beta\) is a dimensionless ratio of the peak frequency deviation to the modulating frequency
Sigma-Delta Modulator

- **3rd order MASH structure**
 - [Miller & Conley 1991]

- Critical path retimed

\[\text{Sigma-Delta output into tracking bank varactors}\]
Dynamic Element Matching

- Unit-weighted capacitors of the tracking bank have slightly different capacitative values
- As capacitors are turned on and off, non-linearities will be evident in the output
- Dynamic element matching (DEM) to improve digital-to-frequency conversion linearity
 - Cyclic shift of unit-weight varactors

Example: cyclic shift of three “next-row” varactors
Second Order MESH $\Sigma \Delta$ Modulator

- Fixed-point (with 5 sub-LSB bits) DCO tuning word operating at 13 MHz FREF
- Integer DCO input word operating at 600 MHz CKVD
 - Black line is the running average
Digitally-Controlled Oscillator (DCO)
ΣΔ Dithering of DCO
Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)
Fractional Phase Error Estimation

- Quantized phase detector with resolution of <40 ps

\[\Delta t_r \]

\[\Delta t_f \]

Time-to-digital Converter

Period normalization multiplier

\[-\varepsilon \]

\[FREF \]

\[DCO \]

\[\phi_E > 0 \]

\[\varepsilon = 1 - \Delta t_r / T_V \]
Time-to-digital Converter (TDC)

- Quantized phase detector with resolution of 30 ps
- DCO clock passes through the inverter chain
- Delayed outputs are sampled by FREF

Diagram:
- CKV
- D*(1) to D(24)
- FREF
- Q(1) to Q(24)
- P-Thermometer-Code Edge Detector
- TDC_RISE

Timing:
- CKV
- D(1) to D(8)
- FREF
- Q(1:10) 0011110000
- TDC_RISE
- 6
Period Normalization

- Expected output between 0.0 – 1.0 UI

\[\varepsilon = \frac{2^W_F}{T_V / \Delta t_{\text{inv}}} \]

- Accurate calibration of the inverter delay

\[T_V = \frac{1}{N_{\text{avg}}} \sum_{k=1}^{N_{\text{avg}}} T_V[k] \]

\[
\begin{align*}
\Delta t_f &< \Delta t_r \\
\Delta t_r &< 5 \Delta t_f
\end{align*}
\]

Pseudo-Thermometer-Code Edge Detector

Period Averager

Inverse

Period normalization multiplier

T_V / \Delta t_{\text{inv}}

\[2^W_F \]

\[-\varepsilon \]

Bogdan Staszewski, 19 Oct 2004
Phase Noise Due to TDC

• In-band phase noise at RF output

\[L = \frac{(2\pi)^2}{12} \left(\frac{\Delta t_{inv}}{T_V} \right)^2 \cdot \frac{1}{f_R} \]

 – E.g., \(\Delta t_{inv}=40\text{ps}, f_v=2.4\text{GHz}, f_R=13\text{MHz}, L = -86.3\text{dBc/Hz} \)

• 1-Hz normalized phase noise floor [5]

\[BFM = \frac{(2\pi)^2}{12} \cdot \Delta t_{inv}^2 \]

 – E.g., \(\Delta t_{inv}=40\text{ps}, BFM = -203\text{dB} \)
 – Good enough for GSM
Digitally-Controlled Oscillator (DCO)
ΣΔ Dithering of DCO
Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)
Type-II Loop Filter

- No correlative detection spurs
 - No filtering needed for Bluetooth
- Software programmed PLL loop:
 - Gentle transition of type-I to type-II
- Two “knobs” α, ρ

\[
\phi_E(k) \quad \text{(phase error)}
\]

$$\log_2\left(\frac{1}{\rho}\right)$$

Integral accumulator

Proportional loop gain

$$\log_2\left(\frac{1}{\alpha}\right)$$

Loop Filter output

- Integral loop gain
- Type-II
- CKR
- $\delta\delta$
- RPRP

Bogdan Staszewski, 19 Oct 2004

Charge pump current

Phase-domain corrections
Digitally-Controlled Oscillator (DCO)
ΣΔ Dithering of DCO
Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)
All-Digital PLL (ADPLL)

- Phase domain operation
- Digitally synchronous fixed-point arithmetic
- Phase signals cannot be corrupted by noise
Phase Domain Operation

e.g., \(N = 2.25 \)

<table>
<thead>
<tr>
<th>Variable phase (t_v = i \cdot T_v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference phase (t_R = k \cdot T_R + t_0)</td>
<td>0</td>
<td>2(\frac{1}{4})</td>
<td>4(\frac{1}{2})</td>
<td>6(\frac{3}{4})</td>
<td>9</td>
<td>11(\frac{1}{4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retimed reference phase (t_R = k \cdot T_R + t_0)</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fractional error correction

| [clock cycle units] \(\varepsilon(1) \) \(\varepsilon(2) \) \(\varepsilon(3) \) \(\varepsilon(4) \) \(\varepsilon(5) \) | \(\frac{3}{4} \) \(\frac{1}{2} \) \(\frac{1}{4} \) 0 \(\frac{3}{4} \) |

Bogdan Staszewski, 19 Oct 2004
Reference Phase Retiming

- DCO clock and FREF domains are not entirely synchronous despite being in phase lock
- Variable and reference phases cannot be compared in hardware: metastability!
- Solution: Oversampling FREF by CKV and using the resulting CKR
Modulo Arithmetic

- Theoretically, reference and variable phases are linear and grow without bound with the development of time
- R_R and R_V implemented in modulo arithmetic in order to practically limit wordlength
 - $W_I = 8$, $W_F = 15$
- Introduces aliasing: 0 indistinguishable from 2^{W_I}

![Diagram showing modulo arithmetic](image)
Variable Phase Accumulator

- Implements DCO clock count incrementing
- Deep-submicron process capable of 8-bit incrementing at 2.4 GHz
- Extra timing margin required to guarantee robust operation
- Separated calculation between lower and higher order bits

Function:

Using pipelining:
Variable Phase Accumulator: Actual Implementation

- High-speed implementation:
- Additional retiming of the carry out signals
Frequency Response

- Type-II second-order PLL loop
- “knobs” α, ρ

$$H_{ol}(s) = \left(\alpha + \frac{\rho f_R}{s}\right) \frac{f_R}{s}$$
Closed-Loop Frequency Response

• Closed-loop transfer function

\[H_{cl}(s) = N \frac{\alpha f_R s + \rho f_R^2}{s^2 + \alpha f_R s + \rho f_R^2} \]

• Canonical two-pole control system

\[H_{cl}(s) = N \frac{2\xi \omega_n s + \omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2} \]

Natural frequency \(\omega_n = \sqrt{\rho f_R} \)

Damping factor \(\xi = \frac{1}{2} \frac{\alpha}{\sqrt{\rho}} \)
Noise and Error Sources

- Only three noise sources
 - Frequency reference (external to ADPLL) – low pass
 - TDC quantization – low pass
 - DCO oscillator – high pass

\[H_{cl,R}(s) = N \frac{H_{ol}}{1 + H_{ol}} \]
\[H_{cl,TDC}(s) = \frac{H_{ol}}{1 + H_{ol}} \]
\[H_{cl,V}(s) = \frac{1}{1 + H_{ol}} \]
FREF / TDC Transfer Function

- Type-II 2nd order
- Weak filtering

![Graph showing Type-I PLL loop; Reference phase; N=1 with different values of ζ: ζ=0.1, peaking, ζ=5, close to type-I, ζ=1, ζ=1/2]
DCO Transfer Function

- 20 dB/dec
 - Type-I
- 40 dB/dec
 - Type-II
- 1/f noise attenuation

![Graph showing DCO phase transfer function]

- $\zeta = 0.1$, peaking
- $\zeta = 1$, close to type-I
- $\zeta = 5$, close to type-I

$\zeta = 0.2$
$\zeta = 0.5$
$\zeta = 1$
$\zeta = 2$
$\zeta = 5$

Type-II loop; DCO phase transfer function

Magnitude response [dB]

ω / ω_n
Digitally-Controlled Oscillator (DCO)
ΣΔ Dithering of DCO
Time-to-Digital Converter (TDC)
Digital Loop Filter (LF)
All-Digital PLL (ADPLL)
All-Digital Transmitter
ADPLL-Based Transmitter

- ADPLL provides a wideband modulation
- Class-E power amplifier

![Diagram of ADPLL-Based Transmitter]

Bogdan Staszewski, 19 Oct 2004
Predictive/Close Loop PLL

- Two-point modulation
 - Direct feedforward path – $y[k]$ directly drives the DCO
 - Compensating path – $y[k]$ added to the channel FCW

![Diagram of Predictive/Close Loop PLL](image)
Error in DCO Gain Estimation

\[H(z) = f_R \cdot r \frac{z - (1 - \alpha)}{z - (1 - r\alpha)} \]

\[H(z) \approx f_R \left[r + r \frac{\alpha r}{2} (r - 1) \right] \]

- Transfer function somewhat high-pass or low-pass

\[(r-1)(1+\alpha r/2) \]

\[r=1 \quad (\text{correct } K_{\text{DCO}} \text{ estimate}) \]

\[r<1 \quad (K_{\text{DCO}} \text{ overestimated}) \]

\[r>1 \quad (K_{\text{DCO}} \text{ underestimated}) \]
Just-in-time DCO Gain Estimation

\[\hat{K}_{DCO} = \frac{\Delta f}{\Delta OTW} \]

- Forces \(\Delta f \) through the PLL
 - \(\Delta f \) is accurate since it is represented in digital manner
- Measures steady-state \(\Delta OTW \)
 - Measured digitally

Bogdan Staszewski, 19 Oct 2004
Hardware Realization

- Synchronous register reset
- N1 samples summed up by Accumulator 1
- N2 samples summed up by Accumulator 2
- N1 and N2 are power-of-two integers
- Division operation is a trivial right-bit-shift
RF Power Amplifier

- Binary weighted MOS switches: 3.5 bits
- Matching network
- Near class-E
Summary of ADPLL Architecture

- All-digital PLL (ADPLL) frequency synthesizer for wireless applications
 - Digitally-controlled oscillator (DCO)
 - Time-to-digital converter (TDC)
 - Digital PLL loop filter

- Uses digital techniques from the ground up
 - Digital design, simulation, verification, layout and testing

- Only two internal phase noise sources
 - Potentially better phase noise performance

- All-digital TX
 - Wideband frequency modulation capability of ADPLL
 - Class-E PA
Timeline

• **1999:** DRP idea conceived
• 2000: X1734 testchip: Digitally-controlled oscillator (DCO)
• 2001: X1743 testchip: Full Bluetooth transmitter
• 2002: Single-chip commercial Bluetooth radio
• 2003: Single-chip GSM transceiver
• 2004: Single-chip commercial GSM radio
PRML Read Channel

Read Channel Front-end

Magnetic Storage Continuous Time Analog Signal Processing

Preamp AGC CTF

Sampled Data Digital Signal Processing

Viterbi Detector 1bit

Signal Response

PR4 Targets (1-D^2)

A

Required Signal Boost

F_s/2 freq

Adapt Coefficients

Timing Recovery

Bogdan Staszewski, 19 Oct 2004
Timeline

- 1999: DRP idea conceived
- **2000**: X1734 testchip: Digitally-controlled oscillator (DCO)
- 2001: X1743 testchip: Full Bluetooth transmitter
- 2002: Single-chip commercial Bluetooth radio
- 2003: Single-chip GSM transceiver
- 2004: Single-chip commercial GSM radio
X1734 Testchip Layout

- Digitally-controlled oscillator (DCO)
- DCO digital interface logic
Timeline

- 1997: Beginning of a journey: CMOS hard-disk drive read channel
- 1999: DRP idea conceived
- 2000: X1734 testchip: Digitally-controlled oscillator (DCO)
- **2001: X1743 testchip: Full Bluetooth transmitter & DSP**
- 2002: Single-chip commercial Bluetooth radio
- 2003: Single-chip GSM transceiver
- 2004: Single-chip commercial GSM radio
SoC: DSP and Digital RF Transmitter

- C54X DSP tightly integrated with a digital RF transmitter
- TX registers mapped into the DSP space
- Digital Radio Processor (DRP)
- The clocks are retimed to the DRP oscillator
- DRP provides all the DSP clocks
- **First ever IC to integrate RF into a processor core**
X1743 Transmitter Implementation

- Top-level “tx_core” schematics viewed in Synopsys Design Analyzer
- Automatically generated from VHDL code (RTL)
Implementation

- Digital deep-submicron 0.13µm CMOS process with no analog extensions
- RF and analog integrated with digital

<table>
<thead>
<tr>
<th>Interconnect material</th>
<th>copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum metal pitch</td>
<td>0.35 um</td>
</tr>
<tr>
<td>Transistor nom. voltage</td>
<td>1.5 V</td>
</tr>
<tr>
<td>L drawn</td>
<td>0.11 um</td>
</tr>
<tr>
<td>L effective</td>
<td>0.08 um</td>
</tr>
<tr>
<td>Gate oxide</td>
<td>29 A</td>
</tr>
</tbody>
</table>
X1743 Chip Micrograph

- C54X DSP used in 2.5G cellular phones
- DSP occupies 2.43 mm x 2.47 mm
- I/O pads: 160 um
- 150 Kgates / mm²
RF transmitter area: 0.54 mm²
X1743 Evaluation Board

6-layer printed circuit board (PCB) of standard FR4 material

X1743 test chip: 5x5 mm MicroStar Junior ball-grid array (BGA) package

To: PC interface board
Eye Diagram

- Pseudo-random modulated data
- Measured with Rohde&Schwarz RFIQ-7 signal analyzer
 - Downconversion and FM demodulation
- X-axis: time evolution in 1 \(\mu\)s symbols

Compare with best-in-class:
CSR Bluecore2 (www.csr.com)

Bogdan Staszewski, 19 Oct 2004
Switching Transients

- DSP program written to step ADPLL through the three operational modes
- RF output measured by Rohde&Schwarz FSIQ-7 signal analyzer
- Y-axis: 300 kHz per grid
- X-axis: time progression of 1 μs symbols; 20 μs per grid
- Forced frequency step of 2 MHz
 - PVT: 5 μs
 - Acquisition: 25 μs
 - Fast tracking: 18 μs
- Settling time: 65 μs
DSP-driven Modulation

- Demonstrates tight integration between DSP and RF
- DSP C-program to perform GSM modulation of the transmitter instead of Bluetooth modulation in a dedicated hardware
- Precalculated data resides in RAM: fetched every 6 FREF cycles and added to FCW

- GSM data rate: 270.833 kHz
- FREF = 13 MHz
- OSR = 48
X1743 Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase noise</td>
<td><114 dBc/Hz @ 500 kHz</td>
</tr>
<tr>
<td>Spurious noise</td>
<td>< 62.5 dBm (with antenna filter)</td>
</tr>
<tr>
<td>DCO frequency pushing</td>
<td>600 kHz/V</td>
</tr>
<tr>
<td>PA output power</td>
<td>4 mW @ 50 ohm load</td>
</tr>
<tr>
<td>RMS phase error</td>
<td>2.06 deg</td>
</tr>
<tr>
<td>ADPLL settling time</td>
<td>< 50 us</td>
</tr>
</tbody>
</table>
Outline

• Introduction: Conventional RF
• Why digital RF / Digital Radio Processor (DRP)?
• 1997: Beginning of a journey: CMOS hard-disk drive read channel
• 1999: DRP idea conceived
• 2000: X1734 testchip: Digitally-controlled oscillator (DCO)
• 2001: X1743 testchip: Full Bluetooth transmitter
• **2002: Single-chip commercial Bluetooth radio**
• 2003: Single-chip GSM transceiver
• 2004: Single-chip commercial GSM radio
• Conclusions
“Island” Chip Micrograph

- Commercial single-chip Bluetooth radio
- 0.13um CMOS
- TX path
 - DCO
 - ADPLL
 - TX Modulator
 - Digital PA
- Low TX current
 - 25 mA @ 1.5 V (continuous mode)
 - 2.5 dBm PA power

Bogdan Staszewski, 19 Oct 2004
Close-In Phase Noise

- -86.2 dBc/Hz
 - 10 kHz offset
 - 2440 MHz carrier
 - 13 MHz FREF
- Adequate for GSM
 - 0.9 deg rms phase noise
 - Spec: 5 deg

Bogdan Staszewski, 19 Oct 2004
TX Modulation

- Wide modulation transfer function
 - 1 Mb/s
- Wide eye openings
- Narrow zero crossings
TX Output

- FM-demodulated TX signal at the 2.4 GHz RF port
- Bluetooth 1 Mbps pseudo-random data
- Fixed and correct DCO gain estimate
- 79 channels hopping
Performance Summary

- Passed the official Bluetooth qualification and is in production

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-in phase noise</td>
<td>-86 dBC/Hz @ 10 kHz</td>
</tr>
<tr>
<td>Far-out spur</td>
<td>< -80 dBC</td>
</tr>
<tr>
<td>Settling time</td>
<td>< 50 us</td>
</tr>
<tr>
<td>PA output power</td>
<td>2.5 dBm @ 50 ohm load</td>
</tr>
<tr>
<td>Current consumption</td>
<td>25 mA @ 1.5V</td>
</tr>
</tbody>
</table>

Bogdan Staszewski, 19 Oct 2004
Outline

- Introduction: Conventional RF
- Why digital RF / Digital Radio Processor (DRP)?
- 1997: Beginning of a journey: CMOS hard-disk drive read channel
- 1999: DRP idea conceived
- 2000: X1734 testchip: Digitally-controlled oscillator (DCO)
- 2001: X1743 testchip: Full Bluetooth transmitter
- 2002: Single-chip commercial Bluetooth radio
- **2003: Single-chip GSM transceiver**
- **2004: Single-chip commercial GSM radio**
- Conclusions
RF Transceivers Require Significant Board Area

Today, more than half of the total components on a board are analog RF components.
Single-chip GSM Transceiver

• First ever fully-integrated GSM transceiver in a deep submicron CMOS
 – C027 process (90 nm)
 – 150 Kgates / mm²

• Jan 2004: Successful cellular phone call over the GSM public network in Nice, France
First GSM Single-Chip Radio

- Production-ready single-chip GSM expected by the end of 2004
 - Tom Engibous', former CEO, commitment to TI shareholders in 2002

Texas Instruments sees phone-on-chip by year's end

Bogdan Staszewski, 19 Oct 2004
Summary & Conclusions

• Digital Radio Processor (DRP)
• Focus on a multi-GHz RF frequency synthesizer and transmitter
• Showed a 5-year journey from DRP concept to a single-chip GSM radio
• Traditional RF circuits are difficult to design, manufacture, characterize and test
 – Require a truly unique set of skills
• All-digital architecture in a deep-submicron CMOS can replace traditional RF circuits
• Demonstrated in commercial single-chip Bluetooth and GSM radios
Thank you!

Questions?

Bogdan Staszewski

b-staszewski@ti.com