A 700+ mW Class D Audio Amplifier with direct battery hookup in a 90 nm process

Brett Forejt, Vijay Rentala, Gangadhar Burra, and Jose Arteaga

Wireless Analog Technology Center
Texas Instruments Incorporated
A “battery connect” compatible class D (switching) amplifier which is fully integrated in a 90 nanometer digital CMOS process is presented. The integration of the amplifier requires no additional masks, processing, or cost. This presentation includes a brief description of the circuit techniques that enable direct battery (2.7 – 5.4V) connection and allow support > 6.7 VP2P (700 mW into 8 ohms) output swing from a 4.2 V supply using devices that operate solely with low gate voltages. The achieved SNR over an audio (20Hz to 20 kHz) bandwidth > 98dB (1W) and the total harmonic distortion (THD) is better than 0.03% at 500 mW. Efficiency is greater than 75% above 375 mW. The power supply rejection ratio (PSRR), which is a crucial parameter in modules connected directly to the battery, is measured at 70dB at 217 Hz. The area of the switching amplifier is < 0.44mm2, where the power devices occupy approximately 20% of the total.
Agenda

- Introduction
- Motivation
- PWM Modulation
- Architectures
- Deep Sub-Micron Technology Considerations
- Design Solution
- Testing Challenges
- Simulation & Measurement Results
- Conclusion
Introduction

Audio output demands continue to increase for mobile devices
- Poly-phonic Ringers
- Handset Speakers
- Stereo Outputs
- Multi-channel 3D Audio
- Speaker Phones

Power Efficiency in Mobile Electronics
- Heat Dissipation
- Battery Life
Audio Demands

- Specific challenges in battery supplied systems
 - PSRR
 - HEAT
 - Battery life
- Performance metrics
 - Output power
 - THD
 - SNR
 - Efficiency
Power Budget

– The future of mobile devices –

• Digital Processor Cores are even more power hungry
• More “Audio” power amplifiers for today’s typical mobile devices
 • Speaker phone
 • Polyphonic ringer
 • MP3 Stereo
 • Earphone
• Smaller area involves greater heat dissipation
• *Switching Amplifiers help alleviate thermal concerns*
Motivation: Class D...

- Has improved *Efficiency* across the range of power delivered with respect to Class A, AB, & B
- Can directly replace Class A, AB, or B in traditional systems
- Is advantageous for integration in 90nm technologies and beyond
Power Efficiency

\[
Eff = \frac{\int I_{load}(t) \cdot V_{load}(t) dt}{\int I_{battery}(t) \cdot V_{battery}(t) dt + \int I_{ldo}(t) \cdot V_{ldo}(t) dt}
\]

\[
Eff_{\text{MAX-ClassD}} = \frac{R_{load}}{R_{load} + R_{dsonNMOS} + R_{dsonPMOS} + R_{\text{parasitic}}}
\]
Efficiency Comparison

- Assuming a simple resistive load
- Class D output can be approximated as a square wave.
- Class D Efficiency is proportional to V_{max}
- Class B Efficiency is proportional to the half sin wave integral

\[
\eta_{\text{ClassB}} = \frac{\pi \cdot V_{\text{amp}}}{4} \Rightarrow \eta_{\text{ClassB}} = 0.7854 \cdot V_{\text{amp}}
\]

\[
\eta_{\text{ClassD}} = \frac{R_{\text{load}}}{R_{\text{load}} + R_{\text{dsat}}}
\]
Efficiency Comparison

Class D Measured: 75.5%

Class B Theoretical: 50.2%

“Energy not delivered to load is dissipated thermally”
Pulse Width Modulation

- Two basic types of modulation
 - Binary (or AD)
 - Ternary (or BD)
- Three ways to generate modulation
 - Leading edge
 - Trailing edge
 - Double edge
- Typical Schemes
 - Natural Sampling
 - Uniform Sampling
 - Hybrid Sampling \(\rightarrow\) Many possibilities
Pulse Width Modulation

The two Configurations

a) Two Levels

b) Three Levels

Modulation Levels

Graphics provided by Francisco Ledesma
Pulse Width Modulation

Modulation Edges

- Trailing
- Leading
- Double

Graphics provided by Francisco Ledesma
Pulse Width Modulation

- Natural Sampling
 - Infinitely precise edges
 - No distortion added
 - Comparator performance
 - Reference linearity

Graphics provided by Francisco Ledesma
Pulse Width Modulation

Comparison between a few modulation sampling schemes

- Natural – Theoretically ideal
- Hybrid – Approaches Natural
 - Information lost
 - Faster Carrier → Increased Performance but lower efficiency
- Uniform – Sample and Hold
 - Information lost
 - Interpolation method impacts performance
 - Faster Carrier → Increased Performance but lower efficiency

Graphics provided by Francisco Ledesma from Karston Neilson’s Thesis
Pulse Width Modulation

Natural Sampling Spectrums

↔ Natural Single Sided Binary Modulation

Natural Single Sided Ternary Modulation ➔

↔ Natural Double Sided Binary Modulation

Natural Double Sided Ternary Modulation ➔

*Graphics provided by Francisco Ledesma from Karsten Neilson's Thesis
Architectures

- **Open Loop Bridge**
 - More Efficient
 - Smaller Area
 - Possibly Bridge Only if PWM data is pre-existing
 - Approximately 0 PSRR
 - Output Amplitude is proportional to power supply voltage and loading conditions → **no gain control**
 - No error source correction method as with feedback system
 - THD may suffer
 - Noise may suffer
 - In practice on Cellular phone for low quality applications
 - Ringers
 - Buzzers

Digital Implementation Possible...
Architectures

- **Open Loop Bridge with Digital P.S. and Load correction methods**
 - Sample power supply with ADC and pre-condition the signal to correct for power supply changes
 - Start up calibration loop measures load and also pre-conditions the signal based upon the pre-existing load
 - Stability is major factor
 - Digital processing required
 - Mixer
 - Programmable Equalizer
 - Significant area and power increase
 - In practice for extreme performance high power applications
Architectures

- **Closed Loop System**
 - Provides mechanism with corrects for Power Supply noise and Errors
 - Fixed Gain
 - Load independent Gain
 - Area and Efficiency are acceptable for the application
 - Feedback system also corrects for other error sources in the system
 - Direct replacement for existing continuous time amplifiers
 - Competitive to AB in Performance & Area
 - No system changes required

![Diagram of Closed Loop System](image-url)
Architectures Summary

- **Open Loop Bridge**
 - More Efficient
 - Smaller Area (Bridge Only)
 - Approximately 0 PSRR
 - Output Amplitude is proportional to power supply voltage and loading conditions → **no gain control**
 - No error source correction method as with feedback system
 - THD may suffer
 - Noise may suffer
 - In practice on Cellular phone for low quality applications
 - Ringers
 - Buzzers

- **Open Loop Bridge with Digital P.S. and Load correction methods**
 - Sample power supply with ADC and pre-condition the signal to correct for power supply changes
 - Start up calibration loop measures load and also pre-conditions the signal based upon the pre-existing load
 - Stability is major factor
 - Digital processing required
 - Mixer
 - Programmable Equalizer
 - Significant area and power increase
 - In practice for extreme performance high power applications

- **Closed Loop System**
 - Provides mechanism with corrects for Power Supply noise and Errors
 - Fixed Gain
 - Load independent Gain
 - Area and Efficiency are acceptable for the application
 - Feedback system also corrects for other error sources in the system
 - Direct replacement for existing continuous time amplifiers
 - **Competitive to AB in Performance & Area**
 - **No system changes required**

 - **Chosen Architecture**
Audio Channel with Class D

- Voice/Audio Data
- Dig Filter
- ΣΔ
- DAC
- Analog Integrator
- Comparators
- Differential PWM
- Ramp
- Drivers + Differential Hbridge
- 8 Ohm Speaker
Stability Criteria

➔ At first glance the system is first order and should therefore be inherently stable

➔ However, there is a secondary stability criterion which must be met

• If the slew rate of the integrator exceeds that of the ramp from which the PWM carrier is derived then the system becomes unstable

• In a system where the average input and output common modes are equal, Equation (1) defines stability

• Where the input and output common modes are not equal equations (2) & (3) outline the stability criterion

\[
F_{INTPole} \leq \frac{F_{Ramp}}{\pi} \tag{1}
\]

\[
4 \times V_{A \text{ramp}} \times F_{\text{ramp}} \geq \frac{1}{C_i} \left(\frac{V_{CMA} \pm V_i}{R_{IN}} + \frac{V_{CMA} \pm V_O \mp V_{CMO}}{R_{FB}} \right) \tag{2}
\]

\[
V_{CMA} = V_{\text{CMINPUT}} + (V_{\text{CMOUT}} - V_{\text{CMIN}}) \times \left(\frac{R_{IN}}{R_{IN} + R_{FB}} \right) \tag{3}
\]
Typical Signals

Continued
Typical Signals
Integration Advantages in Deep Sub Micron CMOS

➔ Processing advantages
 • Higher I_{drive} per area
 • Faster devices & sub circuits
 • Reduced area & minimum feature size
 • Direct battery connection at no additional cost

➔ Embedded solutions
 • System partitioning
 • Flexibility
Design Challenges in Deep Sub Micron Technologies

- We need a direct battery connection: Reliability Issues
 - Maximum Drain to Source voltage
 - Gate Oxide Integrity
- Device leakage currents
 - Channel Leakage
 - Gate Leakage
 - Drain/Source to Body Leakage
Drain Extended Devices

- Make High Voltage Design Possible for no extra cost!!
 - Free from processing perspective (no extra masks or steps)
 - Using Core or thin gate oxides high voltage design is made possible
 - Drain is “extended” away from gate
 - Allows the Gate to Drain voltage to be much greater while other terminals still must meet core device reliability standards
 - Matching?
 - I_{DRIVE} is reduced
 - C_{GD} is much greater than core devices
 - FT is much less than core devices

Drain Extend PMOS cross section
Integrator

- Input Common Mode Range
- High DC Gain
- Good Common Mode Rejection
- High Linearity
- Low Noise
- Low Power
- Good PSRR
- Low Area
 - Amplifier
 - Passives
- Performance depends mainly upon Amplifier
- Passives must be linear
Integrator Amplifier

- Input Common Mode Range
- High Gain
- High Phase Margin
- High Gain Margin
- Band width at least 10X greater than Modulation frequency
- Low power
- Low area
- Good common mode feedback performance
 - Gain
 - Phase Margin
 - Gain Margin
- Linearity must be a significant margin above overall loop specification
- Noise must be a significant margin above overall loop specification
- Large output swing (compared to V_{LDO})

3/14/2005
Comparator

- High Gain
- High speed
 - Rise & Fall time
 - Propagation delay
- Low power
- Low area
- Low Noise
- Rail to rail input range – comparing a large scale ramp signal to the integrator output

3/14/2005
Ramp Generator

- Provides the triangular wave form required for “Natural Sampling”
- Must be linear for good Signal THD
- Must have large swing range for good stability versus area trade off of overall design
- Should have minimal frequency drift versus process, voltage, and temperature
 - PLL
 - Trim
 - Auto calibration
Half Bridge Circuits

- Timing Block
 - Shoot-through current
 - Output node glitches due to parasitic inductances
- Pre-drivers
 - Independent gate control
 - Reliability concerns
- Output Devices
 - Low leakage
 - Low R_{DSON}
 - Minimum Area
 - Reliability Concerns
Half Bridge: PMOS Driver

- Must Address reliability concerns and protect the gate of the Power PMOS device
- Minimal Propagation Delay
- Minimal Rise and Fall times
- Low Power
- Low Area
Class D System

- (A) – Loop Filter
- (B) – Comparator
- (C) – Ramp Generator
- (D) – POWER PMOS gate drive circuit
- (E) – Output MOSFET Devices

Die micrograph

3/14/2005
Block Specifications

⇒ **Integrator**
 - DC Gain (amplifier)
 - Bandwidth (amplifier)
 - Noise
 - CMRR
 - THD
 - Power & Area

⇒ **Comparator**
 - Input Range
 - Gain
 - Noise
 - Propagation Delay
 - Rise & Fall time
 - Power & Area

⇒ **Ramp Generator**
 - Linearity
 - Noise
 - Amplitude
 - Frequency
 - Power & Area

⇒ **Bridge**
 - R_{DSON}
 - Propagation Delay
 - Rise & Fall time
 - Power & Area
Typical Specifications for Mobile Audio

<table>
<thead>
<tr>
<th>Function</th>
<th>THD (dB)</th>
<th>SNR (dB)</th>
<th>Power (mW)</th>
<th>PSRR (dB) @217Hz</th>
<th>Load (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP3 Audio (stereo)</td>
<td>90</td>
<td>93</td>
<td>32</td>
<td>65</td>
<td>16 32</td>
</tr>
<tr>
<td>Polyphonic Ringer</td>
<td>60</td>
<td>76</td>
<td>500</td>
<td>65</td>
<td>8</td>
</tr>
<tr>
<td>Handset</td>
<td>60</td>
<td>76</td>
<td>500</td>
<td>65</td>
<td>8</td>
</tr>
<tr>
<td>Speaker Phone</td>
<td>60</td>
<td>76</td>
<td>500 1000</td>
<td>65</td>
<td>8 4!!!</td>
</tr>
</tbody>
</table>
More on Efficiency…

Non Ideal impacts on Class D Efficiency

- Quiescent power
- Power MOSFET $R_{DS\text{ON}}$
- Switching Current in the bridge
- Shoot Through current in the bridge
- Current in the MOSFET body diodes during switching due to package and load inductances
- Non-ideal supplies
 - Output Resistance of source
 - Board trace route resistance & inductance
- Trapezoidal wave form vs. Square wave
 - The rise and fall period will reduce the maximum Efficiency
 - Efficiency loss is proportional to $T_{\text{Rise/Fall}}/T_{\text{Period}}$
 - Exacerbated by small pulse widths at zero crossings
More on Efficiency (cont)

Effect of R_{DSON} on Power Efficiency

$V_{bat} = 4.2V$

$R_{LOAD} = 8$ ohms

3/14/2005
Delivered Power

Effect of R_{DSON} on Power Delivery capabilities

Vbat = 4.2V
$R_{LOAD} = 8$ ohms

3/14/2005
Testing Methodology

Audio Precision SYSTEM 2

- ANALOG GENERATOR
- ANALOG ANALYZER 1
- ANALOG ANALYZER 2

4th Order Low Pass Filter

CONTROL / TEST MODES

Class AB

Class D

VOICE ADC

VOICE DAC

Digital Sub System
Testing Challenges

• Highly non-linear PWM characteristics create undesired out of band energies
• Provide clean references for device operation within the system
• Measure PSRR with heavy demands on the supply from class D
• Ensuring the **Reliability** of the devices under lab testing conditions
 • Proper power supply sequencing
 • Special care during debug situations
• Board design with special consideration to the current and power levels required by Class D
• Extra filtering for accurate capture of data compared to continuous time power amplifiers
Measurements

- Greater than 700 mW is delivered to 8 ohms
- THD Performance is better than 75 dB
- SNR Performance measured above 98 dB (referred to 1W)
- 75% Efficiency has been measured
- PSRR @ 217Hz is greater than 70 dB
- Power Supply Intermod of 217 Hz around 1 kHz output tone < -83 dBc
- Area is ~0.44 mm²
- System functional with 2.4 V < V_{battery} < 6 V
Peak performance measured from 20 – 20kHz is >75 dB (< 0.02%) at ~300 mW using a 1kHz test tone
Full Power Spectrum

THD (20 – 20kHz) > 75 dB
330 mW output into an 8 ohm load using a 1 kHz test tone
Efficiency of 75.5% is measured at ~380 mW using a 1kHz test tone*

*Note – The efficiency may improve at higher power, the measurement is limited to a maximum for the specifications
The SNR is greater than 97 dB from 20-20kHz.

Measured SNR using a -66dB input tone swept from 20-20kHz and measured in the same band.
PSRR vs. Frequency

70 dB @ 217 Hz (GSM PA envelope)
PS Inter-modulation Test Spectrum

< -83 dB @ 783 Hz & 1217 Hz
PS Intermod Spectrum (No Disturbance)

THD (20 –20kHz) > 73 dB

330 mW output into an 8 ohm load using a 1 kHz test tone
Conclusion

- High Efficiency power amplifiers are essential to the future of Audio Enabled Mobile devices
- Integration of Audio Power Amplifiers provides cost efficient and flexible system partitioning options
- High efficiency & power Audio performance Class D amplifier has been demonstrated in 90 nm digital CMOS technology
 - 73 dB THD
 - 70 dB PSRR @ 217 Hz
 - 83 dB Power Supply Inter-modulation Rejection around Carrier
 - 93 dB SNR (referred to 330 mW)
 - 75% Efficiency
 - > 700 mW output
 - 0.44 mm²
Acknowledgements

I would like to acknowledge the help of all those at TI who have made this design and presentation possible

- Vijay Rentala – Design
- Jose Arteaga – Characterization & Test
- Srinath Ramaswamy – Design
- Francisco Ledesma – Design
- Jagadeesh Krishnan – Design
- Patti Menefee – Layout
- Abdelaziz Ketani – Layout
- Jimmy Tran – Layout
- Clif Jones – Consultation
- Paras Dagli – Consultation
- Wayne Chen – Consultation
- Lars Ribo – Consultation
- Gangadhar Burra – Management
- Baher Haroun – Management