

Compass Technology Co Ltd

Was a second

Founded: June, 1997 Will be listed in Singapore, in June 2004

• Paid-up Capital: US\$ 65M

• Area: HK-150,000ft² (13,935m²)

China-21,528ft² (2,000m²)

• No of Employee: HK: 440

China: 300

• Major Investors: GEMS

General Oriental Investments (HK) Ltd.

Temasek Holdings Ltd.

Value Partners

• Business: Flexible substrates (CSP/TBGA/EBGA/COF/camera

module, etc) in IC/RF/Optical packaging, LCD

display, Connectors

• Process: Reel-to-Reel Tape, 35mm, 48mm and 70mm

Rigid vs Flex

The Gap is becoming "Gray"

- Thin 50um core BT material is available
- Thin Cu with carrier in market
- Multi-layer substrate on flex is emerging
- Flexible substrate
 - Variable base material: Adhesive and adhesiveless (CCL, casting, sputtered)
 - Variable process: Panel, roll-to-roll/panel, reel-to-reel
 - Flexible, bendable, and able to rigid
- Tape is a flex made in TAB reel-to-reel process, which provides higher trace density with small area and constant etching speed.

Circuit Density Development

Trace Density

nal Technology Roadmap Semiconductor (ITRS)-20 Table 100 Flip Chip Substrate Top-side Fan-out Potential Solutions

Year of Production	2003	2004	2005	2006	2007	2008	2009	2012	2015	2018
Technology Node		hp90			hp65					
DRAM % Pitch (nm)	100	90	80	70	65	57	50	35	25	18
MPU/ASIC ½ Pitch (nm)	107	90	80	70	0.5	57	50	35	25	18
MPU Printed Gate Length (nm)	65	53	45	40	35	3.2	28	20	14	10
MPU Physical Gate Length (nm)	45	37	32	28	25	22	20	14	10	7
Flip chip pad pitch (µm)	150	150	130	130	120	110	100	90	80	70
Pad size (µm)*	75	75	65	65	60	55	50	45	40	35
Chip Size (mm/size)										
Cost-performance	12	12	12	12	12	12	12	12	12	12
High-performance	17	17	17	17	17	17	17	17	17	17
Array Size = # pads along chip edge										
Cost-performance (maximum)	79	79	91	91	99	108	119	132	149	170
High-performance (maximum)	112	112	129	129	140	153	169	187	211	241
Wiring Substrate (Three lines replacing one dep	opulated	pad acce	essing 2.0	rows per	fan-out l	ayer)				
Line width (µm)	32.1	32.1	27.8	27.8	25.7	23.5	21.4	19.2	17.1	15
Line spacing (µm)	32.1	32.1	27.9	27.9	25.7	23.6	21.4	19.3	17.1	15
Wiring Substrate (Five lines replacing one depo	pulated p	ad-acces	sing 3.0 r	ows per f	an-out la	ver)				
Line width (µm)	20.4	20.4	17.7	17.7	16.3	15	13.6	12.2	10.9	9.5
Line spacing (µm)	20.5	20.5	17.7	17.7	16.4	15	13.6	12.3	10.9	9.5
Wiring Substrate (Three lines between adjacent	pads acc	essing 4.0	O rows pe	r fan out	layer)					
Line width (µm)	10.7	10.7	9.2	9.2	8.5	7.8	7.1	6.4	5.7	- 5
Line spacing (µm)	10.7	10.7	9.2	9.3	8.6	7.9	7.1	6.4	5.7	- 5

^{*} The pad size is assumed as 50% of pad pitch. It is usually different at different fan-out layers, e.g. from 30% to 60%

• High trace density on substrate is demanding

Trace Density

-100		Tra	ice De	ensity		
10000	Year	199	9 20	00 200	5 20	10
	Dielectric Tg	160~180		180-200	200-220	(ල)
	Dielectric Constant	4.4~4.6		.0~3.5	< 3.0	(1MHz)
	Via Formation	150		aser ————————————————————————————————————	25	(pm)
	Fine Lines			50 30	20~10	(pm)
		Line Width	Line Pitch	Via Diameter	Pad Diameter	Ball Pitch
	Std. PWB	125	250	300	500	1.3 m m
	Adv. PWB	75	150	200	400	1.0 m m
	Std. Substrate	65	130	150	350	1.0 m m
	Adv. Substrate	45	80	50	100	0.8 m m
	Leading Substrate	25	50	30	55	0.4 m m
	Std. Tape	25	50	100	200	0.4 m m
	Adv. Tape	15	30	20	80	0.4 m m
	Next generation	10	20	30	Pad-less	0.4 m m

- Part of data are from "Substrate Packaging Trends", R. Huemoeller, Amkor Technology
 - Tape flexible substrate has a higher trace density than rigid substrate.

Embedded Passives

Embedded Etched Thin Film Resistor Ohmega-Ply RCM Ni-P resistor

MUMANIA

No of Sq (L x W) R _{desian} (Ω)	0.5 (100X200) 12.5	1 (200X200) 25.0	1.5 (300X200) 37.5	2 (400X200) 50.0	3 (600X200) 75.0	4 (800X200) 100
$R_{MAX}(\Omega)$	72.7	54.6	55.6	64.0	86.4	118.1
$R_{Min}(\Omega)$	16.6	27.3	37.3	48.2	73.5	95.6
Tolerance (%)	141%	56%	26%	19%	10%	13%
R _{Mean} (Ω) ₆ 1σ (%)	30.16 21.8%	35.1 ₆ 11.1%	44.16 6.6%	53.86 4.2%	78.4 ₆ 2.9%	104.66 3.2%
∆R/R _{design} (%)	+141%	+40.4%	+17.7%	+7.7%	+4.6%	+4.6%

• Etched tolerance will be significantly increased when the dimension of resistor is below 200um.

Embedded Plated Thin Film Resistor Shipley Ni-P plating solution 5.78-8.74 gm/L, 83C-89C y = 12.015x y = 7.0246x • Resistors with high ratio of L/W (>2) have lower resistance tolerance and better linearity.

Recommended Material Sets

Material set	1-ML TBGA	2-ML TBGA	CSP Tape			
PI Base [#]	Any type	Any type	Any type			
Tape adhesive	Tomegawa-X [#] Toray 8600 [#]		Tomegawa-X [#] Toray 8600 [#]			
Signal solder mask	AUS-5, AUS-11, AUS-21#					
Ground solder mask		AR-7100 [#] or Bare Cu	AUS-11, AUS-21#			
Heatsink adhesive	TSA-14 [#] , TSA-51 [#] , TSA-67 [#]	TSA-51 [#] , TSA-67 [#]				

Note #: Halogen-free material
All solder mask are over Cu.

Crystal Polymer (LCP) Base Material

Characteristics of LCP over PI

- Stable/low Dk at 2.9 and Df at 0.002 (1-10GHz) for high speed and high frequency
- Low moisture absorption at <0.4%

- Adhesiveless LCP TBGA has similar wire bondability and solderability performance to PI TBGA.
- Passed the reliability tests at substrate level for 1-ML and 2-ML LCP TBGA
 - » MST-level 3 at 238°C and 260°C.
 - » MST-level 3 at 238°C + PCT for 168 hrs

e Substrate for RF Wireless

- ± 10 μm manufacturing tolerance of trace spacing and width variations resulted in less than \pm 5 % variations on Q values.
- ± 25 μm manufacturing tolerance of trace spacing and width variations resulted in around \pm 15 ~ 20 % variations on Q values.

MOTOROLA V3688 DUAL-BAND GSM PHONE

Tessera, 2002

• Reel-to-reel tape process provides ± 5-7um tolerance in line width/space and 5% tolerance in thickness, good for RF.

Comparison in 2 :

Property	Unit	FR4	GETEK	LTCC	PI Flex	Leadframe
Electrical	Clift	1104	OLILK	Erec	TTTTCX	Leadiranic
Dielectric		3.0~4.5@	3.82~4.2@	5.6~10@	3.6@	
Constant, k		1GHz	1GHz	10MHz	2GHz	
Loss Tangent	%	0.017~0.025	0.0093	0.001~0.002	0.006	
		@1GHz	@1GHz	@10MHz	@2GHz	
Mechanical &						
Thermal						
Young's		3 ~3.5 mpsi	980 kpsi	150-300GPa	800 kpsi	
Modulus						
CTE	Ppm/°C	14 -17	12 -15	5.8 - 7	16	17
Tg	°C	135	180	-	>350	-
Thermal	W/mK	0.25	0.31	2 ~ 4.4	0.35	
conductivity						
Metal		Cu	Cu	W/Ag	Cu	
Processing						
Min. L/S	μm	100/100	100/100	100/100	40/40	150/150
(HDI)	,	(75/75)	(75/75)	(75/75)	(25/25)	
Min.via / land	μm	200/350	200/350	200/250	30/100	N/A
(HDI)		(100/250)	(100/250)	(100/200)		
Metal thickness	μm	< 35	< 35	< 15	< 35	150
Process precision		Medium	Medium	Low	High	Medium
Cavity capability		Routing	Routing	Punch	Punch	Etch

Impedance-Controllable Flex

Reel-to-reel process for impedance control

	Impedance hm)	Trace Width (um)	Trace Thickness (um)	Trace Space (um)	Pl Thickness (um)	SM Thickness (um)	Measured I Impedan	
Nominal	Differential						Sample 1	Sample 2
100	95.3	50	18	40	50	30	Min. 102.1	Mn. 102.2
100	94.4	25	12	25	25	30	Max. 107.5	Max. 107.5

• Reel-to-Reel process easily produces controlled differential impedance at tight tolerances with better line width control.

Summary

Flexible substrate provides

- Finer trace pitch and blind via, providing HDI for IC Packages
- Well adapt to cavity packages and exclusive to the bending requirement
- Multi-layer and embedded passives to narrow the gap to HDI laminate
- · Good solution for driving small form factor

MANAMA

- Good process for high volume/low cost in roll-to-roll & reel-to-reel format
- New base materials, such as LCP etc, will widen the applications of flexible substrate