Presented at the evening meeting of the Santa Clara Valley Chapter, CPMT Society, IEEE January 14, 2009 www.cpmt.org/scv/

A Highly Compact Lensless High-Resolution Optofluidic Microscope (OFM)

Xiquan Cui xiquan@caltech.edu

California Institute of Technology

Redesigning the microscope

We abandon the conventional microscopy design and uses a novel aperture array for high resolution cell-level imaging.

X. Cui et. al, PNAS, **105**, 10670 (2008)

Overview

- Motivation
- Intensity contrast OFM
 - (a) Gravity driven OFM (GD OFM)
 - Automated and quantitative OFM microscopy
 - Phenotype characterization of C. elegans
 - Resolution issue
 - (b) Electrokinetic OFM (EK OFM)
 - Spherical/ellipsoidal cells imaging
- Conclusions and future directions

Motivation

Conventional optical microscopy

Advantages:

- Noninvasive
- High resolution
- Comprehensive microscopy information
- Gold diagnosis standard

Disadvantages:

- Bulky
- Expensive

X. Heng, Lab on a Chip, 6, 1274 (2006)

Advantages of OFM

• On-chip high resolution imaging

- Compact
- Low cost

• Microfluidics

- Sharp projection
- Bio-friendly
- High efficiency and throughput
- Automatic operation

C. elegans images

Intensity contrast OFM

Complete on-chip OFM

X. Cui et. al, PNAS, **105**, 10670 (2008)

Gravity driven OFM (GD OFM)

C. elegans flowing in OFM (top view)

- Complete on-chip device
- Self-sustained flow
- Bio-compatible

Automated and quantitative OFM microscopy

Resolution comparison

C. elegans

OFM imaging parameters:

- Illumination:
 - ~ 20 mW/cm² white light, the intensity of sunlight
- CMOS sensor line rate:
- 1k fps
- Specimen velocity (V): ~500 µm/s
- Sampling grid:
 δX = δY =0.5 μm
- Aperture size (D):
 1 μm
- Microfluidic channel: width 50 µm, height 15 µm

OFM has comparable resolution as a conventional microscope.

Phenotype characterization of C. elegans

Performed automated

phenotype characterization

- a) Automated
- b) Image 1 worm / 2.5 sec
- c) Computerized worm length and area measurement
- d) Drop and go

Resolution Issues

Prototype resolution = 0.9 microns (Sparrow's Criterion)

15 micron tall channel

25 micron tall channel

Shallow channels give better images.

Electrokinetic OFM (EK OFM)

(Collaborated with Lap Man Lee)

- Spherical/ellipsoidal cells imaging
- Easy to be integrated on a chip

Electrokinetic Drive: Why?

- 1. EK enables uniform cell transportation.
- 2. Electroorientation aligns cells.

On-chip EK OFM

Conclusions and future directions

Conclusions

- Created world's smallest high resolution microscope on a single chip
- Automated & parallelizable on-chip cell microscopy method
- The low cost and compactness of OFM can change the way we use microscopes

Chlamy

C. elegans

Acknowledgment

Biophotonics group:

Prof. Changhuei Yang

Lap Man Lee Xin Heng Matthew Lew Dr. Jigang Wu Dr. Zahid Yaqoob Emily McDowell Han Shuo Guoan Zhang Jian Ren Dr. Vahan Senekerimyan Arthur Chang Jose Pacheco Edward Hsiao

Collaborators:

Prof. Demetri Psaltis Prof. Paul W. Sternberg Dr. Weiwei Zhong Prof. Axel Scherer Prof. David Erickson (Cornell) Dr. L. Ryan Baugh

Funding Sources: DARPA Center for Optofluidic Integration, NIH, Coulter Foundation,

Thank you!

xiquan@caltech.edu

