

SCANIMETRICS	
Current Wafer Probing Problems	
 Contact Probes Pitch, till size, restricted pad size 	
Pad Damage Maximum allowable damaged area	
•ESD Structures	
How : Non-contact Test Access	2))
March 11, 2009	Page 5

SCANIMETRICS									
I/O Issues – Pa	d Pit	tch a	nd E	SD					
	2006	6 ITRS fc	or Test				5		
				Year o	f Prod	uction			
I/O Pad Min. Dimension (µm)	2005	2006	2007	2008	2009	2010	2011	2012	2013
Wirebond	35	30	30	25	25	25	25	20	20
 Bond / probe pad dimensions accord Probes: Pitches r Pad Damage: Madecreasing ESD structures accord 	rding not sl aximu	to M hrink um a	loore ing, t llowa	e's La tip si able o	aw zes r dama	not c aged	hang area	-	
 ESD structures at 	nect	sign	ai sp	eeu	anu	powe	31		

SCANIMETRICS SiP Challenges	
 Assembly yields low Yield is product of die yields Testability during assembly is non-existent Probing SiP modules difficult due to Mechanical issues Varying component heights Good die lost during substrate build-up process Design kits for SiP not available from Vendors 	Y - X
Vendor availability for start-up volumes – Lack of low-volume manufacturing capacity	Page 9

WiTAP™ SiP Testing	Solution
Features	Benefits
Monitor quality of SiP process in real-time	 Detect problems earlier in the process Early detection yield excursions Reduce number of dies wasted
	Reduce assembly cost up to 30% or more

SCANIMETRICS WITAP™ SiP Testing	Solution
Features	Benefits
Non-contact signal probing at high speeds	 Less probing debris Less damage to circuits and pads Less damage to probe cards More robust process
13 March 2009	Full speed testing at wafer level Page 2

Wafer Probe Sol	ution
Features	Benefits
Non-contact signal probing at high speeds	 Less probing debris Less damage to circuits and pads Less damage to probe cards
	 Less I/O pads and routing area More robust process

SCANIMETRICS I/O Issues - Data rate roadmap	
Chip power density greater than a 'Formula One' engine >1.5 kW/cu.in and increasing!	
 Current technology is out of Gas!!!! I/O performance measured by speed, power, distance, density (size) 	
 I/O complexity is increasing Speed is available at expense of power I/O is not scaling with technology nodes 	M
 Chips are pad and power limited Power at Gigabit rates needs to fall Testability issues 	
March 13, 2009	Page 33

SCANIMETRICS	
The Options – Wired or Wireless	
Optical	
 Does not have many of the limitations present in electrical signals. However, to enter the optical domain electrical signals have to be converted using optical transceivers 	
 These circuits dissipate almost as much power as transceive that drive PCBs and short backplanes 	ers
 Only useful alternative is to have signal processed and transmitted entirely in optical domain. However, there are many performance problems with silicon photonics 	
 Even if performance problems are solved it is doubtful that fu optical links will be economical over short distances 	lly
 Silicon having an indirect bandgap provides no easy path to the integration of optics especially with regard to photon generation 	
March 13, 2009	Page :

SCANIMETRICS Inductive Coupling I/O	
External wire	Low power Data rates are 2.5Gbps now Major target is 10 Gbps
Uses the fact that tran overcome input capac	 High Speed Signal Integrity Small Size Less ESD Sformer has inductance to itance.
March 13, 2009	Page 39

SCANIMETRICS	
Ultral/O™ features and	benefits
Feature	Benefit
Higher Bandwidth	
Higher performance designs	New Applications
Fewer I/Os	Smaller Chips
	Less pin counts
	Less expensive packages
Lower power consumption	
Simpler package	Cheaper packages
Less Heat	Simpler system level designs
Smaller Size	
Less area	Lower cost
Scalable	Future Proof
Simpler Signaling schemes	
Easier circuit design	Faster cycle time
Simpler board/package designs	Lower cost system design
	Page 43

	LPDDR2 Specifications	Implementation Using Ultral/O™
BOM cost	2 or more RAM	1 RAM
Signal pins	53 @ 800 Mbytes/sec 69 @ 3.2 Gbytes/sec	2 @ 800 Mbytes/sec 4 @ 3.3 Gbytes/sec
I/O power	60 mW @ 800 Mbytes/sec 220 mW @ 3.2 Gbytes/sec	7.2 mW @ 800 Mbytes/sec 30 mW @ 3.3 Gbytes/sec
I/O power		

	PCI Express Gen 3 Specifications	Implementation Using Ultral/O™
Signal pins	2 @ 800 Mbytes/sec 8 @ 3.2 Gbytes/sec	2 @ 800 Mbytes/sec 4 @ 3.3 Gbytes/sec
I/O power	120 mW @ 800 Mbytes/sec 480 mW @ 3.2 Gbytes/sec	7.2 mW @ 800 Mbytes/sec 30 mW @ 3.3 Gbytes/sec
	480 mvv @ 3.2 Gbytes/sec	30 mvv @ 3.3 Gbytes/se

	METRICS arisons of Ultral/O™ to M	IPI UniPro sm
	MIPI UniPro Specifications	Implementation Using Ultral/O™
Signal pins	16 @ 800 Mbytes/sec 64 @ 3.2 Gbytes/sec	2 @ 800 Mbytes/sec 4 @ 3.3 Gbytes/sec
I/O power	28 mW @ 800 Mbytes/sec 112 mW @ 3.2 Gbytes/sec	7.2 mW @ 800 Mbytes/sec 30 mW @ 3.3 Gbytes/sec
		111
		Page

