

Molecular Modification of PCB Substrates for Fine Line Patterning

Werner G. Kuhr, Ph.D.
Founder and Vice President, Research
ZettaCore, Inc.
369 Inverness Drive, Suite 350,
Englewood, CO 80112 USA
Werner.Kuhr@zettacore.com

Presented Wednesday, Sept. 9, 2009

IEEE Santa Clara Valley Chapter, CPMT Society

Next Generation IC Packages

Goal: Multilayer PCB substrate with ~10 micron L/S

Process: Semi-additive (plating and build-up lamination)

Adhesion Issues in Substrates

- Fine line patterning (< 25 um) requires smooth surface
 - Semi roadmap requires ~10um line/space on substrates in 3-5 years
 - Mechanical adhesion insufficient for reliability of fine line traces
- Adhesion mechanism for fine lines will depend on mechanical and chemical forces

Improving Adhesion in Substrates

- Chemical composition of surface depends on many factors
 - Material composition
 - Curing conditions
 - Storage history
 - Chemical treatments (cleans, desmear, etc.)
- Selection of adhesion chemistry
 - Stable chemistry (i.e., good shelf life, reproducibility)
 - Wide process window (time, temperature, concentration)
 - Broad application to many substrates

ZettaCore Approach: Molecular Interface

- Molecules can attach "incompatible" materials
- Copper can be attached to epoxy
- Epoxies, resists, etc. can be attached to copper
- Chemistry engineered for specific material properties

Summary of ZettaCore feasibility studies

- Porphyrin molecules have survived exposure to various electroplating solutions
 - Cu plating demonstrated on a variety of substrates
 - Enhanced peel strength correlates with good porphyrin coverage
- Porphyrin survives Cu metal deposition
 - Porphyrin configuration does not change significantly in Cufilm
 - Metal structure of Cu film on top of porphyrin monolayer is as smooth as underlying Si (100) structure

ZettaCore Chemistry: Initial Work

X: Cu, Pd-binding component

Y: Surface reactive component

Z: Surface leaving group

Molecule / Process Development

- Identification of reactive components
 - Chemical characterization of target substrates
 - Identification of reactive chemical species on surface
- Molecular design and synthesis
 - Design of reactive intermediates for attachment to selected surface
 - Id or synthesis of desired molecules and chemical characterization
- Molecule attachment and characterization
 - DOE on attachment conditions (time, temperature, concentration)
 - Method development for surface characterization
- Copper deposition / Lamination evaluations
 - Electroless plating / Electroplating
 - or -
 - Lamination

Overview: Molecule-enhanced Cu²⁺ plating

ଵୢଵଵୄଵଵଵୄଵଵୢଵଵୄଵଵଵୄଵଵଵୄଵଵଵଵ

Ероху

Molecule Optimization

$$R_1$$
 R_2
 R_1
 R_3
 R_2
 R_3
 R_2
 R_2
 R_3

R for carbon substrates

Numerous C-C linkages can be formed with existing chemistries

X for Cu substrates

Numerous chemistries tested and available for use

- Utilize a stable molecular platform
- Each site can perform different function
 - Individually optimized for specific function
 - Failure analysis possible for each function
- Systematic building block approach
 - Isolate the chemistry needed for specific function
 - Each site can be optimized independently and systematically
- Allows root cause failure analysis and complete characterization
 - Allows rational design and optimization of each molecular component
 - Preserves flexible design that can be modified & optimized as conditions change

ZettaCore MI Process for Cu Plating

Correlation of porphyrin and Pd distribution on surfaces

Porphyrin distribution

Pd distribution

- Porphyrin molecules distribute uniformly on the epoxy surface
- Pd catalyst distributes uniformly on top of porphyrin

Cross-sectional SEM of E-less Cu deposition

On ZETTACORE

Eless-Cu: @ 30°C

10min.

20min.

40min.

Roughened surface

Porphyrin attached smooth surface

Optimization of Molecule Properties

Demonstration of Peel Strength on Planar Substrates

- Demonstration of peel strength pre-HAST testing
 - 0.62 ± 0.02 Kg/cm on smooth surface, better than roughened control

Summary: Impact of Molecular Layer for Copper on Epoxy – Reliability Tests

Test	Test conditions	Success criteria	Result /Status	
Peel strength	Peel width 1.0 cm, speed 5.0 cm/min at 90 degree angle	Roughened control (~0.6 Kg/cm)	0.62 Kg/cm	
Reflow and HAST	Pre-conditioning (Level 3): 125C – 25 hr, 30°C/60%RH – 192 hr Reflow: 260°C 3 times HAST: 130°C, 85%RH – 96 hr	Peel strength degradation ≤ roughened control	10% degradation vs. 13% for roughened control	
Extended Bake	165°C – 504 hr	Peel strength degradation ≤ roughened control	No degradation	
Thermal Cycle	Pre-conditioning (Level 3) Reflow: 260°C 3 times TC (cond. C): -65°C to 150°C, dwell 15 min, 1000 cycles	Peel strength degradation ≤ roughened control	No degradation	
Thermal Shock	Preconditioning (Level 3) Reflow: 260°C 3 times TS (condition C): -65°C to 150°C, dwell 5 min, 1000 cycles (in liquid)	Peel strength degradation ≤ roughened control	4% degradation vs. 8% for roughened control	
THS	85°C, 85%RH – 1000hr	Peel strength degradation 9% degradation - s ≤ roughened control as control		

Plating: Enabling Fine-line patterning

	L/S	Customer A	Customer B	Customer C	Customer D
0	50/50um	Pass	Pass	N/A	N/A
Current	30/30um	Pass	Pass	N/A	N/A
ren bili:	20/20um	Pass	Pass	Pass	N/A
₹ +	18/18um	Pass	Pass	Pass	N/A
	14/14um	Pass	Pass	Pass	N/A
Ena	12/12um	Pass	TBD*	Pass	N/A
Enabled Capability	10/10um	Pass	TBD*	Pass	Pass
ity \	8/8um	Pass	TBD*	TBD*	Pass

Patterned structures

Patterning completed on ZettaCore processed substrates to L/S of 8um

Confirms value of ZettaCore technology in enabling advanced geometries

Adhesion Issues in Lamination on Copper

- Fine line patterning (~10 um) requires smooth Cu surface
 - Mechanical adhesion insufficient for reliability of fine line traces
 - Conventional Cu roughening processes provide insufficient adhesion
- Adhesion mechanism for fine lines will depend on mechanical and chemical forces

Optimization of Molecule Properties for Adhesion in Cu Lamination Process

ZettaCore MI Process for Cu Lamination

SEM of Smooth and MITM—treated Copper Surfaces

After HAST and Peel-back of laminated Epoxy

Untreated Smooth Cu

Surface is clean Cu suggesting that the peeled surface breaks at the Cu-resin interface.

Mi[™] - Treated Cu Surface

Most areas covered by resin suggesting Cu-resin interface breaks within the resin, not at the Cu-resin interface

Lamination: Peel Strength Data

ZettaCore treatment shows superior HAST stability – 21% degradation vs. 36% for roughened control

Solder Resist: Paste and Dry Film Processes

Paste SR Process

Dry Film Resist Process

Solder Resist: DFR Material Summary

ZettaCore treated smooth Cu shows superior HAST stability and No undercut or delamination after subsequent processing (soft-etch and Ni/Au plating)

Lamination: Results Summary

Peel strength and HAST stability:

- 1.33 Kg/cm before and 1.15 Kg/cm after HAST
- 14% degradation vs. 36% for roughened control

Lamination and HAST stability on patterned Cu lines:

- ZettaCore process does not roughen the Cu lines
- No delamination after HAST
- Isolation resistance > $10^{12} \Omega$ after HAST

Laser drilling and via clean/plating compatibility:

No delamination or undercut post via-clean and plating

ZettaCore process enhances adhesion without roughening the Cu surface

Demonstrated through HAST testing

MI Results Summary

- ZettaCore solutions available for all 3 interfaces
 - e-less plating on smooth dielectric
 - resin lamination on smooth copper
 - solder resist on smooth copper
- Provides finer line dimensions and improved reliability performance