Embedded Passives Methodologies and Opportunities for Implementation

John Savic

Presentation to IEEE September 24, 2009

"The Bean" in Chicago's Millennium Park
Michigan Ave skyline collapsing into the bean is a good metaphor for the product
miniaturization and the driving force for advanced integration technologies

Background Information

- Collaborate with product development teams to enable manufacturing processes for improving the functionality of PWB's and advanced package substrates to meet existing and future product performance requirements.
- Focus on developing and utilizing new Embedded Passives (EP) technologies has been a consequence of pursuing the best possible solution.
- Picking a title...7 choices
 - Get the Pb out with EP!
 - Enabling Functionality: The Who What and How of EP
 - Embedded Passives I Don't Get It!
 - Embedded Passives The (For)Ever-Emerging Technology
 - Embedded Passives Methodologies and Opportunities for Implementation
- Learn from what has been done and evolve

Outline

- Introduction
- Overview of EP technology
- EP in RF applications: Case Study of a Cost and Size Reduction Opportunity
- EP in ASIC applications: Case Study of a Performance Improvement Opportunity
- Conclusions and Key Takeaways
- Future of EP

What are Embedded Passives (EP)? • Replace traditional Surface Mount Components with embedded equivalents - Improves electrical performance – Decoupling, lower inductance - Reduces part count - Reduces solder joints – improves reliability - Can reduce net cost in high volume applications - Reduces product thickness and overall size • Compatible with conventional manufacturing processes SMT Resistor 4-Layer FR-4 PWB

- The goal was to create an EP Rx-VCO to replace the incumbent ceramic VCO.
- Ceramic VCO was experiencing yield problems and was expensive.
- Alternative organic PWB VCO's were unable to meet size and design rule & size requirements.
- Restictions
 - Must match LTCC footprint and pin-out

- Ceramic Rx-VCO
- 7 x 9 mm
- 27 SMT parts

17

Case A: Rx-VCO Schematic Review **Schematic review** Identify Critical **Components** Embedded R's Identify printable resistors 20% tolerance 50 & 1kΩ/□ **Identify EP caps** HDI only • 10 pF max Embedded L Identify L's Embedded C' T-lines Spiral

Case A: RxVCO Results and Impact

- Embedded 8 resistors using 2 inks
- Embedded 3 capacitors 1.8 2.2 pF using HDI dielectric as capacitance material
- Embedded 4 inductors: Two T-Lines and two 2.5 turn spiral inductors (1.5 nH – 10 nH)
- Impact: 13 fewer parts than ceramic (10 % savings)
 - Lower cost substrate (30% less) and assembly (40% less) resulting in >\$2 savings/part
 - Equivalent performance and size (could have been smaller)
 - Improved manufacturability and immediate high yield supply
 - Implemented with Ohmega-Ply and PTF resistors

19

Case A: RxVCO Results and Impact

Spiral L's + embedded C's underneath SMTs

SMT pad on embedded C's plate

Effect of mutual capacitance

SMT pad as part of embedded C's plate/parallel C's using microvia

PTF R's terminated on embedded C's plate

Case B: 800 MHz LO Design Objective

- Modularize a Motherboard functionality
- Enable module reuse across products
- Must be lower cost than incumbent and offer improved yields over a non-EP based (full SMT) modular solution

Incumbent Technology

- · Discrete solution on motherboard
- Area on motherboard 48 mm²
- 18 placed parts
- Implementation cost: \$ 0.38
 - DM \$ 0.20
 - Conversion \$ 0.18

HDI EP Technology

- 1+2+1 HDI with CFP capacitors
- Module area = 24.3 mm²
- 5 placed parts
- Implementation cost: \$ 0.28
- Area reduction = 49.4 %
- Cost Reduction = 27.3 %
- Part count reduction = 13

 Pick & place directly onto motherboard

EP in an ASIC Application: Case Study of a Performance Improvement Opportunity

ASIC Case Study - Advanced ASIC Packaging

- Next generation (90nm and below) ASIC's have significantly higher Power & Signal Integrity challenges
 - Decrease in core power and higher levels of IC integration increases resultant IR drop in the power rails eroding power integrity and circuit timing margins.
 - Implementation of various power saving techniques like clock gating, module power down and sleep mode, will result in steeper steps in power delivery requirements
 - Noise and crosstalk will increase due to density & isolation limitations
- To overcome the challenges, next generation package substrates require revolutionary change in capability
 - Decreased pkg inductance more direct connections/shorter paths
 - Enable increased incidence of localized (appropriately placed) decoupling
 - Increase circuit density along with methods for improved isolation

ASIC Case Study - BGA Side Capacitor Conversion

	Original Package	BGA Side Capacitor	Difference (%)	Number of Capacitors
GND	339	288	51 (15%)	
VDD (1.0V)	126	104	22 (17.5%)	31
VDDO18 (1.8V)	98	74	24 (24.5%)	27
VDDO25 (2.5V)	6	6	0 (0%)	3
Total	569	472	97 (17%)	61

Capacitor Choice dictated by the following factors:

- Low ESL value was the key factor 83 pH.
- Size: Needed to fit in a row where the BGA balls were depopulated and the height needed to be less than the package standoff height 0204-2T t=0.35 mm. max.
- Capacitance Value: With the above constraints the maximum capacitance value available today is 0.47uF

31

ASIC Case Study – Embedded Bulk Capacitance

- Currently it is Confidential Design information and cannot be shared
- Conventional PCB materials layer stack-up
- "Next best thing" to capacitance on the die
- Available commercially in low volume

ASIC Case Study - Simulation of 1V AC EBC predicts lowest impedance at higher frequency BGA-side capacitor design second best Mounting L is negligible for EBC and ~4x lower for BGA side when compared to caps mounted on the top layer (~40pH/cap on the bottom vs. ~160pH/cap on the top). Coreless shows minimal 1.0V Zout measured at die side with die improvement for 1.0 volt plane because minimal Coreless change to relevant Orange: layers Yellow: Baseline

- ASIC's with advanced substrates were placed onto a functional Motherboard for system level test
- 12Gbps traffic generated with IXIA packet generator
- Measurements were made on bottom side of motherboard and at special test points through opening in lid.

37

ASIC Case Study – Measured Performance Results

- · Excellent correlation with simulation results
- EBC show greatest improvement in power noise and clock jitter (54%)
- FaradFlex interposer and BGA-side caps show similar improvement (~20%)
- Deterministic jitter leading to bimodal clock is eliminated with BGA-side capacitance and FaradFlex interposer solutions
 - Much more stable clock as a result of lower power noise

		Performance					
		Power Noise (normailized)	% Improvement (Noise)	Clock Jitter (normalized)	% Improvement (Jitter)		
1.0 Volt Plane	Baseline	1	N/A	1.00	N/A		
	Interposer-FR4	0.82	18%	0.87	13%		
	Interposer-Flex	0.64	36%	0.76	24%		
	BGA-side	0.69	32%	0.79	21%		
	Int. Bulk Cap	TBD	TBD	0.46	54%		
	Coreless	TBD	TBD	TBD	TBD		

FR4 Interposer

Conclusion and Key Takeaways

- EP can provide value for PWB, organic and ceramic packages, MCM's and SiP by enabling cost and size reduction, and performance improvement
- EP technology and materials are available in many formats and multiple commercial vendors to accommodate various application needs
- Value of printed resistor and capacitor technology has been demonstrated in over 100M cell phone and memory module applications
- Laminate based buried capacitance materials have been used for years in server boards and other large format PCB's

 now being demonstrated for ASIC and advanced packaging applications
- Buried bulk capacitance is "next best thing" to on-die decoupling offering lowest inductance and highest performance.

39

Future of EP – Where to Next?

- My favorite title applies: "Embedded Passives The (For)Ever-Emerging Technology" ...unless
 - More design, lay-out and modeling tools are needed to facilitate EP use.
 - Engineering familiarity with the value-ads needs to grow
- Broad-based use in MCM's, SiP and advanced packaging applications will struggle until familiarity and comfort level is achieved
- As Si nodes and PI/SI margins continue to shrink, advanced packages need to bridge performance gaps
 - Trade-off assessment between on-die capacitance and "next best thing". EP and other advanced packaging options become a necessity
 - Space limitation on MB's will require size reduction
 - Cost reduction via improved yield, part count reduction and reliability becomes a driving force
- · 2 more titles with which to conclude...
 - Embedded Passives Just Shove Them Where The Sun Don't Shine
 - Embedded Passives Just Do It! :)