Improving the accuracy of alpha emissivity measurements for wafer and packaging materials

Brendan Dwyer-McNally XIA LLC

Outline

- Background What is it?
- Background Why does it matter?
- Approach 1 Gas proportional counter
- Approach 2 XIA prototype ion chamber
- How the two approaches stack up
- Summary/Conclusion

Introduction

- Pressing need to measure α-particle emissions in today's materials
- SEMATECH
 - alpha detection limit \geq 0.0001 α /cm²/hr,
 - measurement times ≤1 week
- Instrument background is currently limiting our ability to achieve these goals

Background - Definition

In the context of alpha particle detectors:

back-ground \'bak-,(g)raund\ n :
The count rate observed while
measuring a sample which produces
zero counts.

Background Subtraction

- 1. Measure Background Rate (B)
- 2. Place a sample into counter, measure rate (R)
- 3. Compute Sample Rate S

$$S = R - B$$

Sources of Background

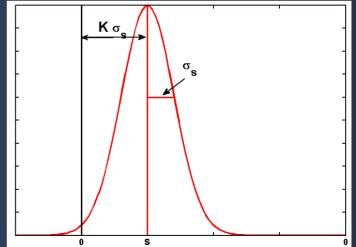
- Intrinsic sources of alphas:
 - Alpha particle emissions from materials comprising the counter itself
- Extrinsic sources of alphas:
 - Counter/Sample Tray contamination
 - Radon in counting gas
- Fake/Spoofed sources of alphas:
 - Power line noise
 - Microphonics

The Impact of Background

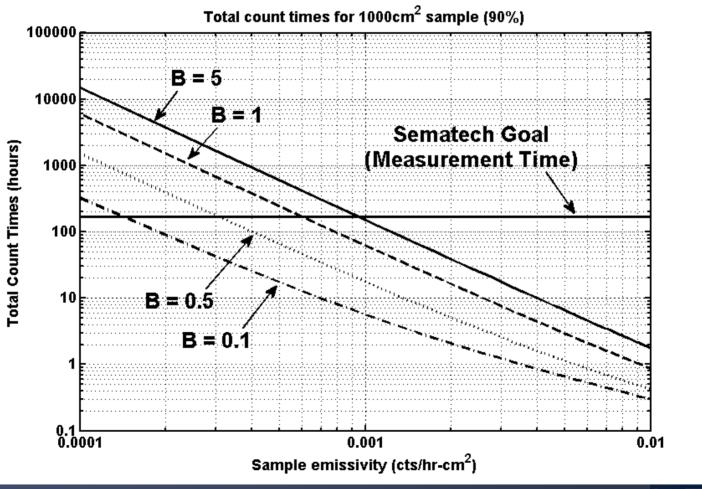
- Error in background term propagates to large errors in measurement data
- <u>Time</u> required to extract S to desired statistical significance in the presence of background, when background is well known

Impact on Measurement Error

- Observed background count rate $B(\pm\sqrt{B})$ in background measurement lasting t_B
- Observed gross count rate (sample + background) R (±√R) in measurement lasting t_R
- Computed sample rate S = R B
- Errors combine in quadrature:

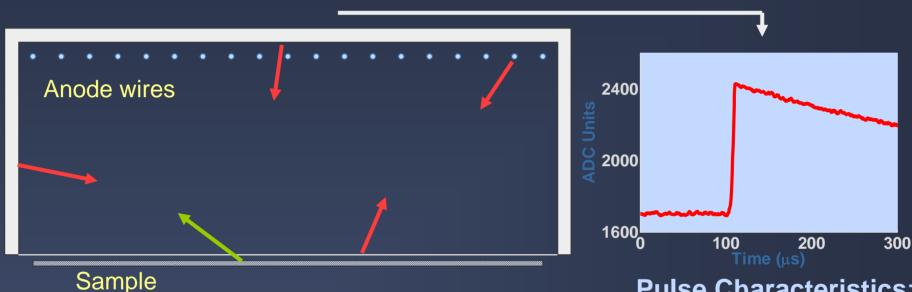

$$\sigma_{S} = \sqrt{\frac{R}{t_{R}} + \frac{B}{t_{B}}}$$

Impact on Measurement Time


- Sample with S counts/hour
- Instrument counted for t_B to obtain estimate B (background) counts/hour
- How long *t* to make a 90% (1.64 σ) measurement?

$$t = \frac{K^2(S+B)}{S^2 - K^2(B/t_B)}$$

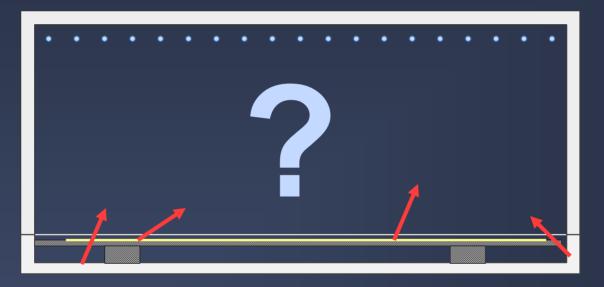
Impact on Measurement Time



Backgrounds in practice

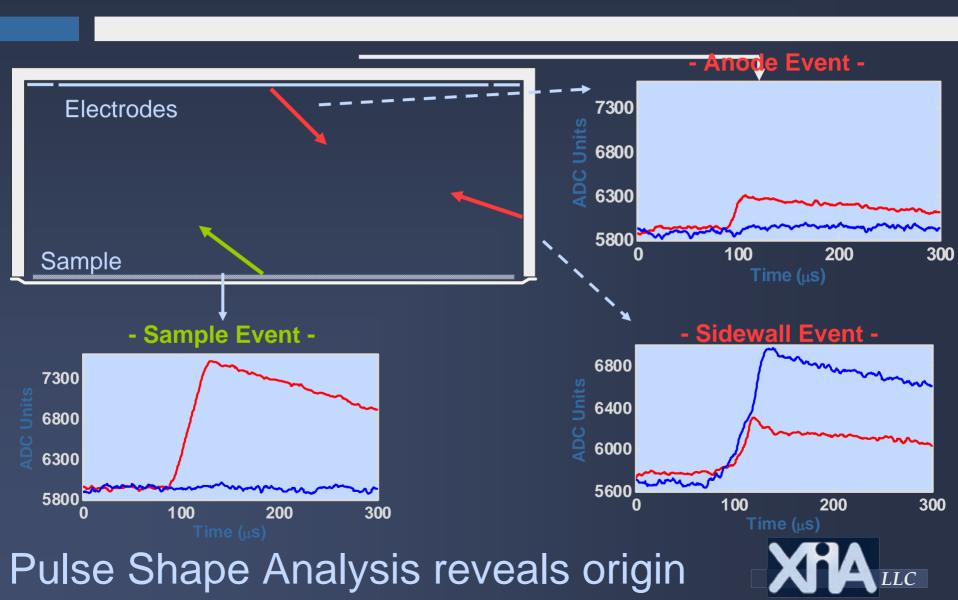
- Two approaches examined:
 - Gas proportional counter
 - XIA ionization chamber
- Theory of operation
- Practical measurement of background on each system

Gas flow proportional counter


- All pulses look the same!
- Intrinsic sources lead to a background of ~ 5 cts/hr

Pulse Characteristics: Good Signal/Noise

Risetime < 5 μs


Practical difficulties

- Remove tray for background measurement?
- Empty tray for background measurement?
- Cover tray w/ zero-background material?

XIA's Dual Channel Ion Chamber

Background in practice

- Insensitive to emissions from surfaces other than sample tray
- Undersized samples? OK, but...
- No volume rejection
- Current estimate: 0.0006 α/cm²/hr

Measurements in Practice

• IBM recently conducted a counter comparison study

- Sample 1: Bare wafers plated with lowalpha lead
- Sample 2: Flat sheet of Sn / 0.5% Ag
- Sample 3: IBM-proprietary ultra low emissivity material

Measurement Results – Sample 1

Counter	Count Time (hrs)	Activity (α /hr/cm ²)
α -Sciences*	656 (4 x 164)	0.0040 (4)
XIA Prototype	10	0.0044 (6)

*Model 1950 – Count time doesn't include background measurement time

Sample Description: bare wafers plated with low-alpha lead

Measurement Results – Sample 2

Counter	Count Time (hrs)	Activity (α /hr/cm ²)
α -Sciences*	273	0.0018 (2)
α -Sciences*	177	0.0014 (2)
XIA Prototype	70	0.0019 (2)
XIA Prototype	24	0.0019 (3)
XIA Prototype	24	0.0021 (4)

*Model 1950 – Count time doesn't include background measurement time

Sample Description: flat sheet of Sn / 0.5% Ag

Measurement Results – Sample 3

Counter	Count Time (hrs)	Activity (α /hr/cm ²)
α -Sciences*	756 (4 x 189)	0.0001 (2)
XIA Prototype	116	0.0006 (1)

*Model 1950 – Count time doesn't include background measurement time

Sample Description: IBM-proprietary ultra low emissivity material deposited onto bare wafers

Measurement Results - Summary

- Significantly reduced counting time
- Systematically larger emissivities
- Presence of background rate which is not currently accounted for
- Full paper An Evaluation of An Ultra-Low Background Alpha-Particle Detector presented at NSREC 2009, and will be published in IEEE Trans. Nucl. Sci. Dec 2009

Summary

- Instrument background is critical when measuring low activity samples
- XIA's approach drives down background

 Shortening required counting times
 Reducing sources of measurement error

 Ongoing work to resolve remaining issues

