

Alpha Particle or Neutron SER - What Will Dominate in Future IC Technology?

- Charlie Slayman
- Sun Microsystems, Inc
- October 2009

Outline

- Source of alpha soft errors
- Source of neutron soft errors
- Device scaling trends
- Deposited energy of alpa particles and neutrons
- Critical energy vs design rule
- Trend of alpha and neutron soft errors
- Conclusions

Source of Alpha SER

- Process Contamination in Wafer Fab Materials
 - happens rarely but can be catastrophic if not detected early enough
- Trace elements in plastic packaging
 - reduced with higher purity materials (cost \$\$)
 - > reduced with low-alpa die coating materials
- Trace elements in lead bumps
 - reduced with isotopically purified Pb (cost \$\$)
 - Reduced with "keep out" areas around bumps and low alpha underfill

Source of Neutron SER

- High Energy Neutrons (100KeV 1GeV) from cosmic ray background
- >not practical to shield
- >deep penetration (~10ft concrete)
- >live with it!
- Low Energy Neutrons (10meV to 1eV) from thermalization of high energy neutrons
- >background thermal neutron flux depends on high energy flux and building environment (some materials "absorb" thermal neutrons)
- >large scatter cross section with ¹⁰B
- >easy to shield with ¹⁰B containing materials
- >not believed to be a problem for non-BPSG processes (???)
- >insufficient quantitative data to indicate if boron doping causes a problem

ITRS Roadmap

Source: ITRS 2007 Executive Summary (http://www.itrs.net/Links/2007ITRS/Home2007.htm)

Alpha Particle Energy Deposition

- Translate deposited energy to deposited charge (3.6eV/e-h pair)
- Critical Energy E_c(MeV) = 2.25 10⁻² Q_c(fC)

Neutron Energy Deposition

- Neutron energy deposition much broader and extends to lower energies compared to alpha particles
- Low energy contribution due to proton generation from nuclear collisions

Critical Energy vs Design Rule

- Below 45nm, critical energy for upset is moving into proton distribution!
- Alpha SER will stay flat but neutron SER will increase

n + Si Product Particles Contributing to Neutron Soft Errors

 The sharp rise below 0.6fC (13.5keV) is due to the direct ionization of protons

Conclusions

- Alpha particle
 - Trade-off of \$ (high purity materials and circuit design) vs acceptable SERa
 - Remain roughly flat below 45nm
- Neutron
 - Trade-off of \$ (circuit design) vs acceptable SERn
 - Could continue to trend upward below 45nm without techniques to address proton generation

Thank You!

•charles.slayman@sun.com

